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RF-PSSM: A Combination of Rotation Forest Algorithm
and Position-Specific Scoring Matrix for Improved Prediction of

Protein-Protein Interactions Between Hepatitis C Virus and Human

Xin Liu�, Yaping Lu, Liang Wang�, Wei Geng, Xinyi Shi, and Xiao Zhang�

Abstract: The identification of hepatitis C virus (HCV) virus-human protein interactions will not only help us understand

the molecular mechanisms of related diseases but also be conductive to discovering new drug targets. An

increasing number of clinically and experimentally validated interactions between HCV and human proteins have

been documented in public databases, facilitating studies based on computational methods. In this study, we

proposed a new computational approach, rotation forest position-specific scoring matrix (RF-PSSM), to predict

the interactions among HCV and human proteins. In particular, PSSM was used to characterize each protein,

two-dimensional principal component analysis (2DPCA) was then adopted for feature extraction of PSSM. Finally,

rotation forest (RF) was used to implement classification. The results of various ablation experiments show that on

independent datasets, the accuracy and area under curve (AUC) value of RF-PSSM can reach 93.74% and 94.29%,

respectively, outperforming almost all cutting-edge research. In addition, we used RF-PSSM to predict 9 human

proteins that may interact with HCV protein E1, which can provide theoretical guidance for future experimental

studies.

Key words: protein-protein interactions; hepatitis C virus; position specific scoring matrix; two-dimensional principal

component analysis; rotation forest

1 Introduction

Viral diseases, which are caused by various viruses, kill
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millions of people every year. For example, nearly
71 million people died each year from the hepatitis
C virus (HCV) complications such as cirrhosis and
hepatocellular carcinoma[1, 2]. The notorious Ebola virus
affected 28 000 cases and over 11 000 deaths were
reported during the 2014 epidemic[3]. For many viral
diseases, there is currently no effective vaccine or
treatment, due to the unclear pathogenic mechanisms
and fast mutation rates of virus genomes[4].

Therefore, the identification of interactions among
viral and host proteins is significant for comprehending
the molecular mechanisms of viral infection and
identifying antiviral drugs[5]. In this paper, we mainly
studied interactions among HCV and humans. HCV
genome can be translated into 11 proteins, including four
structural proteins, six non-structural proteins, and an F
protein[6–8]. Chronically infected HCV patients usually
present liver injuries associated with hepatic cirrhosis,
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hepatic steatosis, and hepatocarcinoma if not properly
treated[9]. However, the treatment of HCV is very
expensive, and also has severe adverse effects. Thus, if
we can obtain a clear map of HCV-human protein-protein
interactions (PPIs), it would make us better understand
the mechanisms of HCV infection. However, due to
the shortcomings of traditional biological experimental
methods, such as high cost and long cycles, large-scale
screening is not possible. By contrast, computational
methods solve this issue with higher efficiency and
more accuracy, which have been gaining more and more
attention[10, 11].

In proteomic studies, a growing number of machine
learning algorithms are proposed to predict PPIs in
the same species[12, 13], however the PPIs between
different species deserve more attention. Moreover, PPIs
are more conservative within species than between
species[14], thus traditional computational method for
PPIs prediction may not be suitable for PPIs between
different species. Recently, along with the advancement
of biological experimental technology, more and more
virus host PPI data have been accumulated, which
provides a good data foundation for the research based
on machine learning prediction methods. The earliest
research on virus-host interaction based on machine
learning was reported in 2012[15], which focused on
the model construction on human papilloma virus
(HPV) and HCV interactions with human proteins based
on transforming protein sequences into amino acid
triplets, respectively. Next, the authors investigated the
performance of HCV-host interaction prediction models
based on more feature representation methods and
ensemble learning[16]. In particular, a total of 6 features
such as amino acid composition (ACC) were used to
encode proteins, and ensemble learning was developed
based on four different base classifiers. In addition, some
people took into account information such as network
structure information[17]. Certainly, more studies prefer
to construct features directly from amino acid sequence,
such as the frequency difference between amino acid
triplets (FDAT)[18], repeat patterns and compositions of
amino acids[19], and so on. Although machine learning
has made many achievements in the field of virus-host
PPIs prediction, it is still challenging to develop effective
models to improve the predicting performance of viral-
host PPIs.

In general, feature representation and selection
of classification models are two key factors for
successful constructions of PPI predicting models.
In order to achieve good predicting performance,

many models first combine multiple features and then
build classification models through appropriate feature
selection or feature dimensionality reduction, which
increases the complexity of the model. According
to Occam’s Razor theory, the simpler, the better[20].
Therefore, in this paper, we aim to build a valid
classifier with fewer feature representations. Considering
that position-specific scoring matrix (PSSM) has been
widely used in various proteomics studies with good
capability[21–23], such as subcellular locations[24], protein
secondary structure prediction[25], protein folding
patterns[26], and di-sulfide connectivity[27]. However,
most of them just converted the PSSM from matrix
L � 20 to vector of length L � 20, which may lead
to information loss. Therefore, for the purpose of
fully utilizing the information contained in PSSM, we
proposed a new computational model that could obtain
more information from PSSM by adopting an effective
feature extraction method.

The model present in this study is based on rotation
forest (RF) and PSSM, termed RF-PSSM, which is
a predictor of HCV-human PPIs based on feature
extraction from PSSM. Specifically, position specific-
iterated basic local alignment search tool (PSI-BLAST)
was used to generate PSSM for each protein, and
then 2DPCA was used to further extract features from
PSSM. Finally, RF was utilized as classifier. We have
conducted several ablation experiments, and the results
show that RF-PSSM is superior to almost all the
cutting-edge methods. Furthermore, RF-PSSM was
used to predict proteins that may interact with E1,
which may provide theoretical guidance for subsequent
experimental verification.

2 Experiment

2.1 Datasets

The HCV-human PPIs dataset was sourced from
VirHostNet[28], which contains 477 PPIs among HCV
and human proteins, and is treated as a positive dataset.
Then we randomly select 477 datasets that do not overlap
with positive samples from the Human Protein Reference
Database (HPRD) as negative dataset. Therefore, the
HCV-human PPIs dataset is a balanced dataset with 954
sets of data (see Table S1, which is in the Electronic
Supplmentary Material (ESM) of the online version of
this article). Then, the HCV-human PPIs dataset was
divided into two parts: 20% was utilized as independent
dataset for test (n D 191) and the remaining as training
dataset (n D 763).
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The PPI network was shown in Fig. 1, which was
generated by CytoScape (version 3.8.0). The network
includes 432 nodes in which 11 hub nodes (large nodes)
are HCV proteins while 421 nodes are human proteins
(small nodes). A total of 477 edges were drawn to depict
the PPIs between HCV and human. The specific quantity
of human proteins interacting with each HCV protein is
shown in Table 1. The third column represent the length
of HCV protein, where the bracket AA represents the
length unit of amino acid.

2.2 Algorithms

2.2.1 PSSM
For an element Pi;j in PSSM, its value indicates the
possibility that the i -th amino acid is mutated into the
j-th amino acid during evolution. If the value is positive,
it indicates the greater the possibility; Otherwise, it
means that the probability is smaller. PSSM has been
used in various bioinformatics fields because of its
high quality to preserve the evolutionary information
of each protein[22, 29]. The PSSM is obtained by PSI-
BLAST which hunting for the NCBI non-redundant
database[30, 31]. The PSSM matrix of protein with length
L is L � 20[32].

2.2.2 2DPCA
2DPCA is usually applied to two-dimensional matrices
such as digital images and board games, etc., and
has become an effective method by reducing the
computational complexity and singularity during feature

Fig. 1 Illustration of PPIs network among HCV and human.
The network was constructed and visualized by CytoScape
(version 3.8.0).

extraction[33–36]. Therefore, we try to use 2DPCA for
feature extraction of the PSSMs that we constructed
in this study. Suppose there are L samples, then the
i -th sample can be expressed as a matrix Pi of m � n

.i D 1; 2; : : : ; L/, and NP represents the average of Pi .
Project each P onto the best projection matrix, and the
formula is as follows:

H D PX (1)

Therefore, H is projection vector. X is an n-
dimensional column vector. The best projection axis
X is defined by the divergence distribution of H :

J .X/ D t race.Sx/ (2)

where Sx represents the covariance matrix of H ,
t race.Sx/ denotes the trace of Sx .

t race .Sx/ D

t race.XT �E .P �E.P //T .P �E.P //
�

X/ (3)

where E represents the expectation.
Mt represents total scatter matrix, as follows:

Mt D E
�
.P �E.P //T .P �E.P //

�
D

1

L

LX
iD1

�
Pj � NP

�T
.Pi � NP / (4)

Consequently, the criterion function is shown as
below:

J .X/ D t race.XTMtX/ (5)

The first d eigenvalues constitute the best orthogonal
projection axis X1; X2; : : : ; Xd , the matrix P is
projected into the projection axis, and the formula is
as follows:

Hk D PXk; k D 1; 2; : : : ; d (6)

Finally, a new set of eigenvectors of matrix P ,
H1; H2; : : : ; Hd , can be obtained by above calculation.
Therefore, 2DPCA can retain as much useful information
as possible.

2.2.3 Rotation forest
Rotation forest uses linear analysis theory and decision
tree ensemble classification algorithm, which can still
achieve good results even with few classifiers, and can
ensure the performance of ensemble classification[37].
Since RF was proposed, it has been used in protein
interaction prediction and cancer classification[38, 39], and
so on. The detailed process is as follows.

First, suppose Z is training sample set, Y is
corresponding label, and F is feature set. Then the
training set Z containing N samples and n features can
be expressed as N � n. In this study, we adopt k-nearest
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Table 1 Basic description of HCV proteins and the quantity of human proteins interacting with each HCV protein.
HCV protein UniProt ID Length (AA) PDB ID 3D structure Number of human proteins

Core NP 751919.1 191 1xcq.2.C 84

E1 NP 751920.1 192 4uoi.3.B 11

E2 NP 751921.1 363 6mej.1.C 18

F NP 803170.1 161 2q6u.1.A 13

NS2 NP 751923.1 217 2hd0.1.A 7

NS3 NP 803144.1 631 3o8d.1.A 177

NS4A NP 751925.1 54 6uju.1.A 10

NS4B NP 751926.1 261 2kdr.1.A 52

NS5A NP 751927.1 448 4cl1.1.A 69

NS5B NP 751928.1 591 3hkw.1.A 24

P7 NP 751922.1 63 3zd0.1.A 12

Note: 3D structures of HCV proteins were constructed via Swiss-Model for demonstration purposes.

neighbor (KNN) as basic model, for which there are
two parameters that need to be predefined. The first is
Q, which is the number of basic classifiers in a rotation
forest; the second is K, which is the number of feature
subset. The implementation of the RF can be divided
into training phase and classification phase. The training
process of the RF is shown as follows. Divide the feature
set F into K subsets Fi;j ; j D 1; 2; : : : ; k. For each
subset Fi;j , first choose the homologous feature column

in subset Fi;j in training sample set Z, forming a novel
matrix Zi;j ; 75% sample of Zi;j are then collected by
bootstrapping approach, forming a matrix Z0i;j ; feature
transformation is finally made in Z0i;j to obtain the
matrix Di;j . The j -th column in Di;j is the coefficient
of j -th feature component. Construct a block diagonal
matrix Ri by matrix Di;j ; Adjust the rows of matrix Ri

to be accordance with the feature order of feature set F;

and obtain the rotation matrix Ra
i .
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Ra
i D266664
a

.1/
i;1 ; : : : ; a

.M1/
i;1 0 � � � 0

0 a
.1/
i;2 ; : : : ; a

.M2/
i;2 � � � 0

:::
:::

: : :
:::

0 0 � � � a
.1/
i;K ; : : : ; a

.MK/
i;K

377775
(7)

The classification procedure is as follows. ZRa
i Y is

the input of basic classifier Di ; for the test sample z, Di

could generate the labels yi ; the confidence level can be
obtained by averaging Di results:

!j .z/ D
1

Q

QX
iD1

Di;j

�
ZRa

i

�
(8)

Then assign the category with the largest !j .z/ value
to z:

2.2.4 Support vector machine
The basic principle of support vector machine (SVM)
is to realize the linear classification function by finding
the separation hyperplane that maximizes the interval
in the feature space[40, 41]. Specifically, if samples are
linearly separable, linear classifier could be learned; if
samples are approximately linearly separable, a slack
variable is introduced, and a soft margin is maximized
to learn a linear classifier. When samples are linearly
inseparable, the kernel technique and soft interval
maximization can be used to learn the nonlinear SVM.
SVM has good generalization ability and has excellent
performance in various fields, including antifungal
peptides prediction[42], cancer prediction[43, 44], protein
secondary structure prediction[45], and so on.
2.2.5 K-fold cross-validation
Cross-validation can not only solve the problem that
the amount of data in the dataset is not large enough,
but also solve the problem of parameter tuning. K-
fold cross-validation means separate the dataset into K
mutually exclusive subsets of the same size, and keep
the distribution consistent by sampling K subsets in a
stratified manner. K � 1 of these sets are utilized for
training, and the remaining set for evaluating, and the
average value obtained after K repetitions is used as a
measure of model performance.

2.3 Overall procedure

First of all, the positive dataset is obtained by searching
in the VirHostNet database, which has 477 HCV-
human interaction datasets. Then, the negative sample
containing 477 non-interacting pairs was constructed by
searching for human proteins from the HPRD that did
not interact with HCV. After that, 80% of the data are

used as training sets and the rest are independent sets.
In this paper, PSSM is used for protein characterization,
and 2DPCA was utilized to extract latent feature from
PSSM. Finally, rotating forests are used as classifiers
and the models are evaluated using cross-validation and
other methods.

2.4 Performance measurement

As usual, we adopted the following six metrics to
evaluate RF-PSSM, the first five of them are calculated
as follows:

ACC D
TPC TN

TPC FPC TNC FN
� 100% (9)

Sen D
TP

TPC FN
� 100% (10)

Spec D
TN

FNC TN
� 100% (11)

Pre D
TP

TPC FP
� 100% (12)

MCC D
.TP�TN/�.FP�FN/p

.TPCFN/�.TNCFP/�.TPCFP/�.TNCFN/
�100%

(13)
ACC represents the correct proportion predicted in all

samples. Sen represents the proportion of all instances
that are actually positive and are predicted to be positive,
which is equivalent to the recall. Spec describes the
proportion of predicted negative samples to actual
negative samples. Pre represents the proportion of the
predicted positive samples to the actual positive samples.
MCC describes the correlation coefficient between actual
classification and prediction classification, and its value
range is Œ�1; 1�:

Among them, P in TP, TN, FP, FN means positive,
N means negative, and T means correctly predicted, N
means wrongly predicted. For example, TP represents
the number of positive samples that are correctly
predicted. Area under curve (AUC) and receiver
operating characteristic (ROC) curve are also used to
evaluate performance of RF-PSSM.

3 Result and Discussion

3.1 Performance of RF-PSSM on the training
dataset

In this paper, the value of two important parameters K

and L in RF are got by grid search (K D 6; L D 5),
respectively, where K means the quantity of feature
subsets, L means the quantity of base classifiers. The
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performance on training dataset is depict in Table 2. As
seen from Table 2 that the variance of each indicator
changes gently which means the model is relatively
robust. For example, the variances of ACC and Sen
are 2.63% and 2.00%, respectively.

Meanwhile, the ROC curves of five-fold cross-
validations are shown in Fig. 2. The mean AUC value
of RF-PSSM on five-fold cross-validation is 0.9286,
and with gentle change in each validation, which show
stability of RF-PSSM.

3.2 Comparison with other methods

To evaluate the effectiveness of the rotation forest
algorithm in the HCV-host interaction model, we
compared it with the classical SVM and some other
ensemble learning methods, respectively.

3.2.1 Comparison with SVM-based methods
Considering the ubiquitous application of SVM in the
field of bioinformatics, we made comparison with it to
verify the effectiveness of RF-PSSM[42–45]. In specificity,
we obtained the best kernel function, c and g by grid
search, respectively[41, 46].

In the SVM-based model, the feature representation
and feature selection methods are the same as those
of RF-PSSM, we first analyze its performance on the
training set. The five-fold cross-validations results of
SVM on training dataset was depicted in Table 3. It can

Table 2 Performance of RF-PSSM on training dataset.
Training set ACC (%) Sen (%) Pre (%) MCC (%) AUC

1 94.08 100.00 89.16 88.81 0.9553
2 92.76 98.77 88.89 86.32 0.9106
3 91.45 98.61 85.54 84.27 0.9160
4 88.16 100.00 0.7978 78.77 0.9128
5 94.84 95.12 95.12 90.18 0.9484

Average 92.26˙
2.63

98.50˙
2.00

87.70˙
5.61

85.67˙
4.48

0.9286˙
0.0214

Fig. 2 ROC curves of RF-PSSM on training dataset.

be seen from Table 3 that the SVM-based model is not
very robust because many indicators fluctuate greatly.
For example, the ACC value varies between 68.42% and
82.24%. To be more intuitive, the ROC curves of the
five-fold cross-validations are shown in Fig. 3.

As can be seen from Tables 2 and 3, RF-PSSM not
only outperforms SVM on the training dataset in all
metrics, but is also more stable, as the variance of each
metric is also lower than that of SVM.

Furthermore, we also made comparison of the two
algorithms on independent datasets that are virtually
unaffected by the training dataset. The result is shown
in Table 4. It can be seen that RF-PSSM is better than
SVM in all aspects, especially in the Sen value RF is
19.59% higher than SVM. This may be due to the fact
that RF integrates multiple base classifiers to improve
model performance.

3.2.2 Comparison with ensemble learning-based
methods

Since the rotation forest adopted in this paper is an
ensemble learning algorithm, in order to further verify its
performance, we compared it with some other excellent

Table 3 Performance of SVM-based model on training
dataset.
Training set ACC (%) Sen (%) Pre (%) MCC (%) AUC

1 82.24 90.54 77.01 70.47 0.9414
2 81.58 92.59 77.32 68.73 0.9231
3 68.42 69.44 65.79 56.73 0.8720
4 76.97 95.77 68.00 62.69 0.8943
5 74.19 79.27 73.86 61.29 0.9001

Average 76.68˙
5.69

85.52˙
10.93

72.40˙
5.26

63.89˙
5.62

0.9062˙
0.0268

Fig. 3 ROC curves of SVM-based method.
Table 4 Comparison performance of RF-PSSM and SVM
on independent dataset.

Model ACC (%) Sen (%) Pre (%) MCC (%) AUC
RF-PSSM 93.74 98.97 89.72 88.14 0.9429

SVM 89.01 79.38 87.62 80.10 0.9061
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ensemble learning algorithms, such as random forest,
Xgboost, and Adaboost[47]. We first adopted the feature
representation method proposed in this paper, and then
use random forest and Adaboost as classifiers to build
models, and compared them with RF-PSSM on the
training set and independent dataset. The results are
shown in Fig. 4.

As can be seen from Fig. 4 the rotation forest slightly
outperforms random forest and Adaboost on both the
training and independent datasets. This indicates that
rotation forest is more suitable for the characteristics of
HCV-host interaction data presented in this paper than
other integrated learning algorithms.

3.3 Comparison to other protein representations

Feature representation is critical to the construction
of predictive models, it determines the upper bound
of model performance. Even though many excellent
feature representation methods have been proposed in

Fig. 4 Comparison of AUC values between rotation forest,
Xgboost, Adaboost, and random forest, on different dataset.

previous studies for HCV-host PPIs prediction, such as
amino acid triplet, physical and chemical properties,
PSSM, network structure information, PTM, and
so on[15–19]. However, they lack in-depth mining of
features, and the performance of the model can be
further improved. Considering that PSSM contains both
the position information of amino acid sequence and
chemical information, we adopted 2DPCA to extract
features of PSSM, which is called 2DPCA-PSSM.
To verify the effectiveness of it, we compared the
performance of 2DPCA-PSSM with PSSM and four
other feature representation methods on independent
datasets, respectively.

For the comparison of 2DPCA-PSSM and PSSM, we
multiplied the PSSM matrix of each protein with its
transpose matrix to obtain a 20�20 matrix, which is then
vectorized to 400 dimensions. Thus, for an HCV-host
interaction pair, it can be represented as 800-dimensional
vector. The ROC curve obtained on the independent
dataset are shown in Fig. 5. It can be seen that the
AUC value based on PSSM model only achieve 0.6669,
which is 27.6% lower than that of using 2DPCA-PSSM.
This indicates that 2DPCA effectively extracts latent
information of PSSM, while direct vectorization of the
PSSM may lose a lot of location information.

Here we selected four commonly used protein
feature representation methods and compare them with
2DPCA-PSSM, including amino acid composition,
autocorrelation, pseudo amino acid composition,
and profile-based features[48]. Since many features
contain high-dimensional redundant information, we
first adopted extra-tree for dimension reduction. The
comparison results on independent datasets are shown

Fig. 5 ROC curve of PSSM and 2DPCA-PSSM on independent dataset.
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below. As shown in Fig. 6, 2DPCA-PSSM outperforms
the other four features in all metrics. In particular, the
MCC value is nearly double that of autocorrelation.

In conclusion, the feature representation method of
2DPCA-PSSM can better represent the key features of
HCV-host interaction.

3.4 Comparison with cutting-edge methods

Finally, we also made a comparison between RF-PSSM
and several cutting-edge methods in Table 5. As shown
in Table 5, we can see that RF-PSSM outperforms other
methods in basically all metrics, except for the Pre value
obtained using the naive Bayes method in Ref. [17]. The
reason may be mainly due to the comprehensive use of
2DPCA for effective feature extraction of PSSM and the
rotation forest model. At the same time, we analyze that
the reason why some studies integrate multiple features
but their performance is not very good may be that
they have not conducted in-depth research on feature
extraction. To sum up, effective feature engineering and
models are indispensable.

3.5 Case study

Furthermore, we adopted RF-PSSM to find proteins
that have potential interaction with E1. The steps are
as follows: (1) NCBI protein BLAST was adopted to
look for proteins similar to the proteins that interact
with E1; (2) Screening for all proteins with similarity
of 60% yielded in the first step; (3) PSSM features of
these proteins were obtained by PSI-BLAST, and further
features were extracted by 2DPCA; (4) The RF-PSSM
is used to predict the potential proteins which are likely
to interact with HCV E1. Eventually, 9 proteins were

Table 5 Comparison of cutting-edge methods and RF-
PSSM on independent dataset.

Model ACC (%) Sen (%) Pre (%) MCC (%) AUC
SVMŒ15� 81.60 77.80 – – –
MLPŒ16� 83.00 84.00 – – –
SVMŒ17� 74.00 67.00 72.00 44.00 0.7300

Naive BayesŒ17� 68.50 37.49 98.80 47.00 0.7100
Random forestŒ17� 72.41 55.66 82.26 48.00 0.7600

SVMŒ18� 88.80 89.40 88.60 77.40 –
SVMŒ19� 73.20 94.37 66.30 51.20 0.9250

RF-PSSM 93.74 98.97 89.72 88.14 0.9429

predicted to potentially interact with E1 (Table S2 in the
ESM).

4 Conclusion

PSSM is often used in various proteomic studies along
with other features after simple processing (vectorization
from 2 to 1). However, few studies have been devoted
to the effective feature extraction of PSSM. In this
study, we proposed the RF-PSSM method, which first
extracted the effective features from PSSM through
2DPCA, and then rotation forest was used to establish
the prediction model. The experiment results showed
the satisfactory prediction performance of the RF-PSSM.
We also compared 2DPCA-PSSM with PSSM and four
other feature representation methods to further verify the
effectiveness of 2DPCA-PSSM. Furthermore, we also
made comparisons with SVM and other cutting-edge
approaches, and the results indicated the excellent of
RF-PSSM. Finally, we adopted RF-PSSM to find some
potential proteins that may interact with E1, which may
provide guidance for future wet experiments.

Fig. 6 Performance of four features compared with 2DPCA-PSSM on independent test set.
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The dataset and code are available at https://github.
com/flyinsky6/RF-PSSM.

Of course, the lack of developing special software or
website for the algorithm proposed in this paper is the
shortcoming of this paper. Furthermore, we will focus on
improve the performance of the prediction of HCV-host
interaction field in the following areas, such as adding
the network structure features of HCV-host interaction
through graph neural network technology[49], adding
protein structure features, physicochemical properties
and so on.

Electronic Supplementary Material

Supplementary materials including
� HCV-human PPIs dataset, and
� potential human proteins that may interact with E1

are available in the online version of this article at
https://doi.org/10.26599/BDMA.2022.9020031.
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