
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 03/10 pp288 –300
Volume 6, Number 3, September 2023
DOI: 10.26599/BDMA.2022.9020044

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies
Generated from JSON Big Data

Zouhaier Brahmia�, Fabio Grandi, and Rafik Bouaziz

Abstract: Temporal ontologies allow to represent not only concepts, their properties, and their relationships, but also

time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist view.

They are widely used to formally represent temporal data semantics in several applications belonging to different fields

(e.g., Semantic Web, expert systems, knowledge bases, big data, and artificial intelligence). They facilitate temporal

knowledge representation and discovery, with the support of temporal data querying and reasoning. However, there

is no standard or consensual temporal ontology query language. In a previous work, we have proposed an approach

named �JOWL (temporal OWL 2 from temporal JSON, where OWL 2 stands for “OWL 2 Web Ontology Language”

and JSON stands for “JavaScript Object Notation”). �JOWL allows (1) to automatically build a temporal OWL 2

ontology of data, following the Closed World Assumption (CWA), from temporal JSON-based big data, and (2)

to manage its incremental maintenance accommodating their evolution, in a temporal and multi-schema-version

environment. In this paper, we propose a temporal ontology query language for �JOWL , named �SQWRL (temporal

SQWRL), designed as a temporal extension of the ontology query language—Semantic Query-enhanced Web

Rule Language (SQWRL). The new language has been inspired by the features of the consensual temporal query

language TSQL2 (Temporal SQL2), well known in the temporal (relational) database community. The aim of the

proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any (complex)

temporal query on time-varying ontologies generated from time-varying big data. Some examples, in the Internet of

Healthcare Things (IoHT) domain, are provided to motivate and illustrate our proposal.

Key words: temporal big data; temporal ontology; temporal query language; temporal OWL 2 from temporal JSON

(�JOWL); Semantic Query-enhanced Web Rule Language (SQWRL); Temporal SQL2 (TSQL2); Internet

of Healthcare Things (IoHT)

� Zouhaier Brahmia and Rafik Bouaziz are with the
Department of Computer Science, Faculty of Economics and
Management, University of Sfax, Sfax 3029, Tunisia. E-mail:
zouhaier.brahmia@fsegs.rnu.tn; rafik.bouaziz@usf.tn.
� Fabio Grandi is with the Department of Computer Science and

Engineering, University of Bologna, Bologna 40136, Italy. E-
mail: fabio.grandi@unibo.it.

* To whom correspondence should be addressed.
Manuscript received: 2022-08-26; revised: 2022-10-15;
accepted: 2022-10-28

1 Introduction

1.1 Context of work

Time is pervasive in computer applications, whether they
are using classical technologies[1, 2], like management
information systems and database applications, or
modern ones[3, 4], like blockchains, Internet of Things
(IoT), Internet of Healthcare Things (IoHT)[5], and
internet of vehicles. A temporal database is a database

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 289

with built-in support for managing time-varying data[6, 7].
In the temporal database literature, there are two well-
known temporal dimensions which have been proposed
for timestamping temporal data: (1) transaction time[8],
which denotes when some datum is current in the
database, and (2) valid time[9], which denotes when
some datum is valid in the modeled reality. The
applications’ requirements concerning temporal data
management and querying are omnipresent regardless
of both the application field (e.g., business, banking,
weather monitoring and forecasting, meteorology, and
health and social services) and the underlying database
model (e.g., relational, object-oriented, relational-object,
document-oriented, graph-oriented, etc.).

In the ontology[10] research field, which is closely
related to databases, temporal ontologies[11–13] allow
not only to represent concepts, their properties, and
their relationships, but also time-varying knowledge,
via versioning (e.g., Refs. [14–16]) or by adopting the
four-dimensional (4D) perdurantist view[17]. Temporal
ontologies are widely used to formally represent
temporal data semantics in several applications
belonging to different domains (e.g., Semantic Web,
expert systems, knowledge bases, big data, and artificial
intelligence). They facilitate temporal knowledge
representation and discovery, and make easy temporal
data querying and reasoning. However, to the best of
our knowledge, there is a lack of standard or consensual
query language for temporal ontologies, like Temporal
SQL2 (TSQL2)[18] for temporal relational databases.
Therefore, knowledge base administrators, ontology
engineers, and Semantic Web application developers
are proceeding in an ad hoc manner when querying time-
varying ontologies.

Big data[19–22] are being widely used in several
application fields like online social networks, IoT, IoHT,
telecommunications, energy consumption control and
grid management, water resources monitoring, studies of
climate change effects on agriculture and environment,
fighting pandemics like COVID-19, food and nutrition
security, and nuclear industry. Big data can be stored
according to some specific data format like JavaScript
Object Notation (JSON)[23], and require to be efficiently
managed, to satisfy the requirements of end users in
performing daily tasks concerning creation, deletion,
and update of big data instances. Moreover, they also
require to be efficiently queried[24] and analyzed[25], to
help/assist the decision-makers in taking appropriate
decisions. From one hand, the semantics of big data[26]

is very helpful for both big data management[27] and
analytics[28], and, from the other hand, ontologies are
widely used to formally represent data semantics of
applications. Hence, we have proposed in a previous
work[29] an approach, named �JOWL (temporal OWL
2 from temporal JSON, where OWK 2 stands for
OWL 2 Web Ontology Language), which allows (1) to
automatically produce a temporal OWL 2[30] ontology of
data, following the Closed World Assumption (CWA)[31],
starting from temporal JSON-based big data, and (2) to
manage the incremental maintenance of such a temporal
ontology by accommodating the evolution of temporal
big data, in a temporal and multi-schema-version
environment. Notice that OWL 2 is the World Wide
Web Consortium (W3C) standard ontology language for
the Semantic Web ontologies.

1.2 Problems

However, the state-of-the-art of temporal OWL 2
ontology management and querying does not include any
standard or consensual language for querying temporal
OWL 2 ontologies, either generated from temporal big
data or from temporal databases. The few available
query languages for OWL ontologies, like OWL-QL[32],
Semantic Web Rule Language (SWRL)[33], Semantic
Query-enhanced Web Rule Language (SQWRL)[34], and
OWL 2 QL[35], do not provide any built-in support
for querying temporal ontologies. Moreover, some
temporal instance support has been added to the SQWRL
language, as shown in Refs. [36] and [37], and to the
Protégé tool, as shown in Ref. [38], but such a support is
very limited and does not fulfill all users’ requirements
since it does not allow them to express powerful
and complex temporal queries on temporal OWL 2
ontologies. Furthermore, there is neither a language nor
a tool (among those mentioned in Refs. [36–38]) that
has tried to take advantage of the expressiveness of the
consensual temporal query language TSQL2[18], which
is well known in the temporal database community (for
querying bitemporal relational databases).

In a previous work[39], we have proposed a temporal
OWL 2 ontology framework, temporal OWL 2 called
�OWL , to construct and validate time-varying OWL
2 documents via the use of a temporal ontology
schema. Nevertheless, �OWL does not support querying
(temporal) ontology instances since it has not been
equipped with a temporal ontology query language yet.

1.3 Objectives, choices, and contributions

For the reasons presented above, a new temporal

290 Big Data Mining and Analytics, September 2023, 6(3): 288–300

ontology query language, temporal SQWRL named
�SQWRL , is proposed in this paper to be used in
the �JOWL environment. The aim of the proposal
is to facilitate the retrieval of any desired temporal
OWL 2 ontology version and to express (complex)
temporal query on time-varying OWL 2 ontologies
that are generated from temporal JSON-based big data.
The new language is designed as a temporal extension
of the ontology query language SQWRL, inspired by
the features of TSQL2 to take advantage of its widely
acknowledged strengths. Notice that we chose to extend
the SQWRL language[34] and not the W3C-endorsed
OWL 2 QL language[35] for the following reasons:
� SQWRL is simpler and more practical than OWL 2

QL whose specification is very long, complex and, thus,
a bit impractical.
� SQWRL is far more used in the ontology querying

literature than OWL 2 QL.
� Since we are especially interested in medical/health

applications, we prefer SQWRL, which has been
developed for the biomedical field and, thus, it is more
often than OWL 2 QL used in the development of such
applications.

It is worth mentioning that this paper does not deal
with temporal reasoning on ontologies[40], which is
applied in an Open World Assumption (OWA)[41], but
focuses on temporal querying of OWL 2 ontologies that
are produced from JSON big data, in a CWA environment.

Dealing with the general issue of querying temporal
ontologies generated from temporal big data, the
contribution of the present paper is to focus on the data
side, assuming a separation of environments/concerns:

(1) The �JOWL framework to manage the temporally
versioned ontology, to be used as a (versioned) schema,
and

(2) A temporal database, equipped with a TSQL2-like
query language, to manage the JSON-based big data
(e.g., generated by an IoT or an IoHT platform).

1.4 Organization

The rest of this paper is structured as follows. Section 2
presents the background of the present work. Section 3
proposes the new temporal ontology query language
�SQWRL , and illustrates its use through some examples
of �SQWRL queries in the IoHT domain. Section 4
gives some information on the implementation of the
current proposal. Section 5 discusses related work and
clarifies the contribution with respect to the state-of-the-
art. A summary of the present contribution and some

remarks concerning its continuation in future work are
provided in Section 6.

2 Background

In this section, we first introduce the temporal ontology
instance data model on which the new proposed language
�SQWRL is based. Then, adoption of this model is
illustrated through an application example. Finally, the
main features of the SQWRL ontology language are
briefly recalled.

2.1 Data model for temporal OWL 2 ontology
instances

A temporal data model[14] (e.g., BCDM, TEMPOS,
XBiT, TempoJCM, tOWL, and tRDF) is a data model
for representing temporal data, which can be of
type state (i.e., with a continuous persistence over a
temporal interval) or event (i.e., with an instantaneous
occurrence).

The temporal OWL 2 ontology data model, on which
the proposed language is based, has been defined
for the �JOWL framework. In such a framework,
temporal OWL 2 ontology instances are stored in an
eXtensible Markup Language (XML) document called
the “temporal instances document”. In the following,
it is explained how a temporal instances document is
created.

Each time �JOWL generates a new OWL 2 ontology
schema (i.e., an OWL 2 file), this latter is considered as a
new conventional (i.e., non-temporal) ontology schema;
to each conventional schema corresponds a conventional
ontology document (i.e., an OWL 2 file) which stores
conventional ontology instances conforming to that
schema. Consequently, the �JOWL base administrator
specifies temporal aspects of this conventional ontology
schema by annotating this ontology schema with a set
of temporal features, such that each feature is associated
with a component of this conventional ontology schema.
There are two types of temporal features: logical
features and physical features. Logical features allow the
administrator to specify which components (e.g., a class,
a data property, and an object property) of a conventional
ontology schema can vary over transaction time and/or
valid time. Physical features allow the administrator
to specify where timestamps should be placed and
how the temporal aspects should be represented. The
whole set of temporal features is stored in a temporal
feature document (which is an XML file). Then, once
the �JOWL base administrator asks the system to

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 291

commit his/her temporal annotation of the conventional
ontology schema, the system automatically generates the
following files:

(1) The temporal ontology schema is an XML file
which ties together the conventional ontology schema
and the temporal feature document;

(2) A temporal ontology document is an XML file
which links each conventional ontology document,
which is conformant to the conventional ontology
schema, to its temporal ontology schema and,
consequently, to its set of temporal logical and physical
features; notice that the temporal ontology document
(a) represents a sequence of versions of the same
conventional OWL 2 ontology instance document, such
that each version, also termed “ontology slice”, has
a distinct timestamp, and (b) specifies the temporal
ontology schema associated to these conventional
ontology document versions; hence, an ontology slice is
a version of a temporal ontology document during some
given time interval. For example, if a Temporal Ontology
Document (TOD) is composed of three conventional
ontology instance documents OntoDoc1, OntoDoc2, and
OntoDoc3, which are valid during time intervals Œt1; t2/,
Œt2; t3/ and Œt3;UC), respectively, then the slice at time
tx such that t1 6 tx < t2, is OntoDoc1;

(3) The temporal instances document is an OWL
file associated to each generated temporal ontology
document; it stores the temporal ontology instances
that result from the application of the temporal features
to the conventional ontology instances. For example,
the temporal instances document TID corresponding to
the TOD mentioned above is the “squashed”/combined
version of the three documents OntoDoc1, OntoDoc2,
and OntoDoc3. Notice that �JOWL deals with OWL 2
ontologies with an RDF/XML syntax[42] (RDF stands
for Resource Description Framework), which is the
only syntax that must mandatorily be supported by
OWL 2 tools as recommended in the W3C OWL
2 specification document[43]. Notice also that the
management of temporal features in �JOWL is similar to
the management of temporal annotations in the �OWL
framework[39].

2.2 Illustrative example

In order to illustrate the underlying data model, let us
consider the example of a “temporal instances document”
that stores the medical data of a patient (i.e., his/her SSN,
name, birthdate, body temperature, and heart rate), in a
�JOWL base of a hospital. Furthermore, let us assume

that the �JOWL base administrator has chosen to manage
the evolution over time of body temperature and heart
rate along the valid time dimension[9]. Figure 1 shows an
instance of the temporal OWL 2 ontology instance data
model, which stores the information of one patient with
two valid-time versions of body temperature and two
valid-time versions of heart rate. Notice that the temporal
instances document of Fig. 1 combines/squashes two
versions of the same conventional ontology instance
document, such that the first is valid during [2022-05-14,
2022-05-15] and the second during [2022-05-16, now).

2.3 SQWRL ontology query language

SQWRL[34] is a high-level query language that is based
on the low-level SWRL language[33]. It enables not
only writing temporal rules, but also temporal queries
on an OWL ontology. It provides a set of SQL-like
query operators that are based on some proprietary built-

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:pt="http://www.hospital.cure/patient#">

<rdf:Description
rdf:about=
"http://www.hospital.cure/patient/Layla-Ahmad">
<SSN>111222333</SSN>
<name>Layla Ahmad</name>
<birthdate>1989-05-16</birthdate>
<bodyTemperature RepItem>
<bodyTemperature Version>
<timestamp ValidExtent

begin="2022-05-16" end="now" />
<pt:bodyTemperature>37</pt:bodyTemperature>

</bodyTemperature Version>
<bodyTemperature Version>
<timestamp ValidExtent

begin="2022-05-14" end="2022-05-15" />
<pt:bodyTemperature>40</pt:bodyTemperature>

</bodyTemperature Version>
</bodyTemperature RepItem>
<heartRate RepItem>
<heartRate Version>
<timestamp ValidExtent

begin="2022-05-16" end="now" />
<pt:heartRate>130</pt:heartRate>

</heartRate Version>
<heartRate Version>
<timestamp ValidExtent

begin="2022-05-14" end="2022-05-15" />
<pt:heartRate>140</pt:heartRate>

</heartRate Version>
</heartRate RepItem>

</rdf:Description>
</rdf:RDF>

Fig. 1 An example of a temporal ontology instance
document in the ���JOWL framework.

292 Big Data Mining and Analytics, September 2023, 6(3): 288–300

ins. An SQWRL query consists of two components,
the antecedent (or the body) and the consequent (or the
head), and is specified as follows:
antecedent -> consequent.

The antecedent and consequent consist of a positive
conjunction of atoms:
atom ˆ atom ˆ � � � ˆ atom

-> atom ˆ atom ˆ � � � ˆ atom.
An atom is an expression having the following form:
p(arg1, arg2, : : :, argn) such that:
- p() is a predicate symbol, representing an OWL

class, property, or data type, and
- argi (i D .1; 2; : : : ; n/) is an argument of p(),

representing an OWL individual, a data value, or a
variable referring to one of them.

For example, the following query returns all medicines
that have been used by any patient (in all his/her
diseases):

Patient(?p)ˆhasDisease(?p,?d)

ˆ Medicine(?m)ˆuseMedicine(?p,?m,?d)

->sqwrl:select(?p,?m).

Moreover, SQWRL also supports set-based queries.
In fact, it provides some operators to create and to
manipulate sets like the following ones:
� sqwrl:makeSet(S,elem): it creates a set S

and adds the element elem to it;
� sqwrl:size(z,S): it returns the size z of the

set S ;
� sqwrl:union(U,S1,S2): it returns the union

U between the sets S1 and S2;
� qwrl:difference(D,S1,S2): it returns the

difference D between the sets S1 and S2.
Aggregation operators, like sqwrl:min(), sqwrl:

max(), sqwrl:sum(), and sqwrl:avg(), are
also supported by SQWRL. Furthermore, similarly to the
GROUP BY clause of SQL, the sqwrl:groupBy()
operator allows to group related sets, but only one
grouping could be applied to each set. The first argument
of sqwrl: groupBy(set,group) is the set and
the second and (optional) subsequent arguments are
the entities to group by. Finally, SQWRL offers a
clause, represented by character ı, for containing the
set management operators. To illustrate these operators,
we provide the following SQWRL query that returns the
number of diseases of each patient:

Patient(?p)ˆhasDisease(?p,?d)
ısqwrl:makeSet(?s,?d)ˆsqwrl:groupBy(?s,?p)

ˆ sqwrl:size(?n,?s)->sqwrl:select(?p,?n).

3 Temporal Ontology Query Language
���SQWRL

In this section, first, the basic assumptions of this work
are presented (in Section 3.1). Then, the goals of the
approach are provided (in Section 3.2). Next, the syntax
and semantics of the temporal ontology query language
�SQWRL are defined (in Section 3.3). Finally, the use of
the language is illustrated by providing some examples
of �SQWRL queries in the IoHT context (in Section
3.4). Notice that a temporal query language[44] (e.g.,
TSQL2, SQL/Temporal, TTXPath, �XQuery, TOQL,
and T-SPARQL) is a query language that provides built-
in support for querying temporal data. It is associated
with a temporal data model that specifies the underlying
data structures that the query language acts on.

3.1 Basic assumptions

The �SQWRL proposal is based on the following four
assumptions:

(A1) The ontologies are managed/queried in a CWA
environment, which means that “what is not known
to be true must be false”. Notice that although the
OWA, which means that “what is not known to be
true or false is unknown”, is the classical approach
adopted for managing ontologies in environments where
data are supposed to be incomplete (e.g., artificial
intelligence, expert systems, knowledge bases, and
Semantic Web applications), the CWA can be used
to manage ontologies in environments where data are
supposed to be complete (e.g., traditional databases) via
the Data Box (DBox) concept[45]. It is important to note
that, with the CWA, an ontology definition (concepts,
relationships between concepts, axioms, . . .) operates
like a database schema and, thus, can be named ontology
schema; the ontology individuals are instances of such
an ontology schema.

(A2) Time is used as part of data/instances, as in
temporal databases and, thus, temporal reasoning is not
required to query temporal data.

(A3) A separation is made between the ontology
definition/schema and the ontology instances (or the
individuals), which are stored in a temporal database
according to such a schema.

(A4) Considering OWL 2 ontologies that are
automatically constructed from JSON big data (received
from an IoHT system), we assume that such big data
are well structured, cleaned and validated, and such
ontologies are consistent and faithfully encode the
underlying big data; we assume that both big data and

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 293

ontologies do not require specific processing tasks (e.g.,
repair actions) to be ready for use/exploitation (e.g.,
querying).

3.2 Goals

The �SQWRL language is proposed to achieve the
following six goals:

(G1) �SQWRL must be designed as a TSQL2-
like query language, which means that it has to take
advantage of all strengths of TSQL2 and to provide
temporal atoms that are similar to the temporal operators
of TSQL2.

(G2) �SQWRL should be fully backwards-compatible
with SQWRL, which means that any SQWRL query is
also a valid �SQWRL query.

(G3) The extensions to SQWRL should be both
minimal and efficient. Hence, the definition of �SQWRL
should reuse SQWRL whenever possible.

(G4) The extensions to SQWRL should include all
functions that could be useful to query temporal OWL 2
ontology instances.

(G5) �SQWRL should be scalable when the volume of
the queried ontologies grows, since we are dealing with
temporal ontologies that are generated from temporal
big data. In fact, querying in the ontology world is
considered a deduction/reasoning task, which is usually
computationally intractable for large ontologies even
in absence of data and introducing temporal reasoning
usually implies a blow-up in complexity. Considering
the management of IoHT big data, scalability is an issue
that should be seriously taken into account.

(G6) The completeness and the expressiveness of
�SQWRL should be guaranteed.

It must be noted that, due to space limitations, goals
G5 and G6 will be dealt with in a future work.

3.3 Syntax and semantics of ���SQWRL

The proposed temporal extension of SQWRL consists
of augmenting the its syntax with a set of valid-time
atoms, as shown below, in order to allow querying valid-
time OWL 2 ontology instances that are generated from
valid-time JSON big data. Such new temporal atoms
have been inspired from the specification of the TSQL2
language[18] (and, as for TSQL2, the resulting language
is capable of testing all the thirteen possible relationships
between intervals[46]).

Hence, in order to have a TSQL2-like query language,
we decided to exploit the full power of temporal querying
along valid time using the following atoms to extract and
compare timestamps (a timestamp could be either a time

point, or a time interval):
� sqwrl:validAt(?x,?t): it returns true if the

argument x is valid at the time t, and false otherwise;
� sqwrl:validBetween(?x,?vts,?vte): it

returns true if the argument x is valid between the time
point vts (for valid-time period start) and the time point
vte (for valid-time period end), and false otherwise;
� sqwrl:precedes(?i1,?i2): it returns true if

the ending point of interval i1 is earlier than the starting
point of interval i2, and false otherwise;
� sqwrl:meets(?i1,?i2): it returns true if the

interval i1 precedes the interval i2 and there are no time
points between them, and false otherwise;
� sqwrl:overlaps(?i1,?i2): it returns true if

the intervals i1 and i2 have some point in common, and
false otherwise;
� sqwrl:starts(?i1,?i2): it returns true if

the intervals i1 and i2 have the same starting point, and
false otherwise;
� sqwrl:contains(?i1,?i2): it returns true if

every point of the interval i2 also belongs to the interval
i1, and false otherwise;
� sqwrl:finishes(?i1,?i2): it returns true if

the intervals i1 and i2 have the same ending point, and
false otherwise;
� sqwrl:equals(?i1,?i2): it returns true if

the intervals and i2 are identical, and false otherwise;
� sqwrl:valid(?t): this atom is always

specified with the sqwrl:select(?x) atom. It
returns the valid-time timestamp of the argument x of
the sqwrl:select atom;
� sqwrl:VTbegin(?t,?b): this atom is always

specified with the sqwrl:select(?x) atom. It
returns the starting point b of the valid-time timestamp t
of the argument x of the sqwrl:select atom;
� sqwrl:VTend(?t,?e): this atom is always

specified with the sqwrl:select(?x) atom. It
returns the ending point e of the valid-time timestamp t
of the argument x of the sqwrl:select atom;
� sqwrl:duration(?t,?d,?g): it returns the

duration d, at a given granularity g (e.g., “year”, “month”,
“day”, and “hour”), of the time expression t;
� sqwrl:firstVers(?fv,?s): it returns the

first version fv of the set of versions s (i.e., the version
having the first valid-time interval among all versions
belonging to s);
� sqwrl:firstNVers(?fnv,?s,n): it returns

the first n versions (fnv) of the set of versions s;
� sqwrl:lastVers(?lv,?s): it returns the last

294 Big Data Mining and Analytics, September 2023, 6(3): 288–300

version lv of the set of versions s (i.e., the version having
the last valid-time interval among all versions belonging
to s);
� sqwrl:lastNVers(?lnv,?s,n): it returns

the last n versions (lnv) of the set of versions s;
� sqwrl:NthVers(?nthv,?s,n): it returns

the n-th version (nthv) of the set of versions s (i.e., the
version having the n-th valid-time interval among all
versions belonging to s).

Moreover, for use in a temporal and multi-version
ontology setting, the SQWRL language does not include
expressions/statements/clauses to specify the ontology
version(s) on which the queries are formulated and have
to be executed. Therefore, the �JOWL base administrator
writes his/her query while considering only one big
fat ontology that includes all temporal versions in the
background. Hence, in the proposed extension, the
following SET clauses can be used to select the desired
ontology version(s) along transaction time:
� SET ontology version anOntology.

owl as of tt: It selects the schema version of
the ontology anOntology.owl, whose transaction-time
interval includes the temporal value (i.e., a time point)
tt. Notice that this clause will select the current schema
version of the ontology anOntology.owl if the user
specifies the string “current time” or “CT” or “now” as
a value of the parameter tt.
� SET ontology version anOntology.

owl between b and e: It selects the consecutive
schema versions of the ontology anOntology.owl, which
were current between the temporal value b (for
beginning) and the temporal value e (for ending).

Recall that, in the �JOWL framework, ontology
schemas are versioned along transaction-time[29]; for
that reason, each ontology schema version has only a
transaction-time timestamp.

3.4 Examples of ���SQWRL queries

In Refs. [18, 47], the authors have defined the following
types of temporal queries: time-point selection, history
selection, rollback (with transaction time only), snapshot
(with valid time only), temporal slicing, temporal join,
temporal aggregate, and restructuring. In the rest of
this section, �SQWRL usage is illustrated via the
specification of eight queries. Notice that queries 5,
6, 7, and 8 are set-based temporal queries[34]. Temporal
atoms are colored in red.

Let us assume to deal with a temporal knowledge base
that is being exploited in an IoHT environment, and that

is storing temporal information on patients, medicines,
doctors, and diseases. Assume also that the creation and
the evolution over time of such a knowledge base has
been managed via the use of the �JOWL framework.
Therefore, collected big data that are received from
connected medical devices (e.g., monitors, sensors) are
stored in JSON format and ontologies associated to these
big data are automatically generated and stored in OWL
2 files. Furthermore, the evolution over time of such big
data, when new values that replace old ones are received,
leads to two inseparable modifications: (1) temporal
updates to the involved JSON-based big data instances,
executed in order to produce new temporal versions of
such instances, and (2) temporal changes to the involved
OWL 2 ontology schema, executed in order to generate
a new temporal version of such schema.

Query 1: Find medicines which appeared in 2020 and
exactly when

Medicine(?m)

ˆ sqwrl:validAt(?m,?t)

ˆ sqwrl:VTbegin(?t,?b)

ˆ sqwrl:contains(’2020’,?b)

-> sqwrl:select(?m)

ˆ sqwrl:valid(?b)

Query 2: Find patients who were hospitalized with
COVID-19 in 2021.

Patient(?p)

ˆsqwrl:validAt(hasDisease(?p,?d),?t)

ˆ Disease(?d,’COVID-19’)
ˆ sqwrl:contains(’2021’,?t)

-> sqwrl:select(?p)

Query 3: Find patients who changed doctor and when
(this query could be motivated by, for example, the
emigration of Tunisian doctors to European countries,
which intensifies from one year to the next).

Patient(?p)

ˆ sqwrl:validAt(followedBy(?p,?d1),?t1)

ˆ sqwrl:validAt(followedBy(?p,?d2),?t2)

ˆ sqwrl:isDifferent(?d1,?d2)

ˆ sqwrl:meets(?t1,?t2)

-> sqwrl:select(?p)

ˆ sqwrl:valid(?t)

Query 4: Find medicines which have been used by
any patient during the period of his/her hospitalization
with COVID-19 during 2020.

Patient(?p)

ˆsqwrl:validAt(hasDisease(?p,?d),?t)

ˆ Disease(?d,’COVID-19’)

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 295

ˆ Medicine(?m)

ˆ sqwrl:contains(’2020’,?t)

ˆ sqwrl:validAt(useMedicine(?p,?m,?d),?t)

-> sqwrl:select(?p,?m)

Query 5: Find the time of the first hospitalization of
each patient.

Patient(?p)

ˆ sqwrl:validAt(hospitalized(?p,?h),?t)

ˆ sqwrl:VTbegin(?t,?begin)
ı sqwrl:makeSet(?s,?begin)

ˆ sqwrl:groupBy(?s,?p,?h)

ˆ sqwrl:min(?first,?s)

ˆ sqwrl:equals(?first,?begin)

-> sqwrl:select(?p,?begin)

Query 6: Find, for each patient, the hospitalization
having the minimum duration and that having the
maximum duration, among his/her hospitalizations
(durations should be presented in days).

Patient(?p)

ˆ sqwrl:validAt(hospitalized(?p,?h),?t)
ı sqwrl:makeSet(?s,?t)

ˆ sqwrl:groupBy(?s,?p,?h)

ˆ sqwrl:min(?mi,?s)

ˆ sqwrl:max(?ma,?s)

ˆ sqwrl:duration(?mi,minDur,’day’)

ˆ sqwrl:duration(?ma,maxDur,’day’)

-> sqwrl:select(?p,?minDur,?maxDur)

Query 7: Find the most recent disease of each patient
together with medicines used by this patient for such a
disease.

Patient(?p)

ˆ sqwrl:validAt(hasDisease(?p,?d),?t1)

ˆ Disease(?d)

ˆ Medicine(?m)

ˆ sqwrl:validAt(useMedicine(?p,?m,?d),?t2)
ı sqwrl:makeSet(?s,?d)

ˆ sqwrl:groupBy(?s,?p)

ˆ sqwrl:lastVers(?l,?s)

ˆ sqwrl:equals(?t1,?t2)

-> sqwrl:select(?p,?d,?m)

Query 8: Find the average number of medicines used
by each patient for each one of his/her diseases.

Patient(?p)

ˆ sqwrl:validAt(hasDisease(?p,?d),?t1)

ˆ Disease(?d)

ˆ Medicine(?m)

ˆ sqwrl:validAt(useMedicine(?p,?m,?d),?t2)
ı sqwrl:makeSet(?s,?m)

ˆ sqwrl:groupBy(?s,?p,?d)

ˆ sqwrl:avg(?a,?s)

ˆ sqwrl:equals(?t1,?t2)

-> sqwrl:select(?p,?d,?a)

4 Implementation

In order to show the feasibility of the proposed language,
a tool that supports �SQWRL, named �SQWRL-
Processor, is under development.

The �SQWRL-Processor will be integrated in the
�JOWL-Manager system that is being developed
to support the whole �JOWL framework[29]. The
�SQWRL-Processor is a temporal stratum[48], written in
Java, programmed to run on top of a traditional (i.e., non-
temporal) SQWRL engine (like the SWRLTab plugin[34]

developed in Protégé-OWL), as shown in Fig. 2. The
stratum is composed of four modules: “Query Syntax
Checker”, “Query Mapper”, “Query Optimizer”, and
“Query Result Processor”.

As far as its functioning is concerned, the �JOWL base
administrator first specifies his/her �SQWRL query with
a graphical user interface that allows him/her to edit and
manage the execution of �SQWRL queries. Then, the
“Query Syntax Checker” module carefully checks the
syntax of the input �SQWRL query and guarantees that
it is syntactically valid. After that, the “Query Mapper”
module converts the syntactically checked �SQWRL
query into a valid SQWRL query; in particular, temporal
atoms are transformed into semantically equivalent

τSQWRL

query

τJOWL base

administrator

τJOWL base

Query syntax

checker

Query

mapper

τSQWRL-Processor

Query result

processor

SQWRL query engine

τSQWRL

query result

SQWRL

query

SQWRL

query result

Query

optimizer

Query

execution plan

Fig. 2 Architecture of the ���SQWRL-Processor tool.

296 Big Data Mining and Analytics, September 2023, 6(3): 288–300

SQWRL expressions. Next, the “Query Optimizer”
generates a query execution plan[49] for the SQWRL
query that has been produced by the “Query Mapper”.
Finally, the generated execution plan is submitted to
the SQWRL engine to be executed on the underlying
�JOWL base. Once the query result is returned by the
SQWRL engine to the temporal stratum, it is managed
by the “Query Result Processor”, which checks if the
results of the query necessitate temporal coalescing[50]

(i.e., merging value-equivalent data that have adjacent or
overlapping timestamps).

5 Related Work

Querying temporal data has been widely studied in the
database field (e.g., Refs. [18, 44, 51, 52] just to cite a
few). In the Semantic Web world, Grandi has provided,
in Section 2.1 of his annotated bibliography on temporal
and evolution aspects[53], a list of 97 references for works
(published before December 2012) which have added
time dimension(s) to some Semantic Web models (e.g.,
RDF) or languages, like the SPARQL protocol and RDF
query language.

The study of the state-of-the-art shows that only few
works focused on the problem of temporal ontology
querying considered in the present work: Refs. [36, 37,
54, 55]. In Ref. [54], a high-level Temporal Ontology
Querying Language (TOQL), has been proposed as
an SQL-like query language. It considers ontologies
as relational databases. TOQL represents temporal
concepts of ontologies based on the 4D perdurantist
approach. References [36] and [37] proposed an
approach (a data model and a set of tools) to represent
and query temporal information in biomedical ontologies
that are specified in OWL. A lightweight temporal
model is used to encode the temporal dimension of
biomedical data, from one hand, and both the SWRL
and SQWRL languages are used to query the temporal
information that are conforming to that model, from
the other hand. In Ref. [55], Grandi proposed T-
SPARQL, a temporal extension of the SPARQL query
language for RDF graphs to represent the evolving
specification of an ontology. T-SPARQL is based on a
multi-temporal RDF database model[11] which employs
triple timestamping with temporal elements; such a
model best preserves the scalability property enjoyed
by triple storage technologies, especially in a multi-
temporal setting. The temporal extensions proposed
for SPARQL are aimed at embedding several features of
TSQL2.

As for available technical support related to temporal
ontology querying, the SWRLAPI[56] Protégé project
(on GitHub) includes a software component named
“SWRL Temporal Ontology and Library”. Considering
the documentation on the GitHub page[38] of such
a component (on which the name of the component
becomes SWRLAPI temporal), it can be said that the
Protégé tool (1) allows to specify in OWL a valid-time
ontology named SWRL Temporal Ontology[57], and (2)
provides some temporal support, via a library named
SWRL temporal Built-ins[58], which allows ontology
engineers or knowledge base administrators to query
the SWRL Temporal Ontology. Moreover, it is worth
mentioning that SQWRL has been used in the Protégé
tool as a Tab, called SWRLTab, acting on the ontology
that has been already opened in the editor, as indicated
in Ref. [59].

Moreover, some researchers have focused on
querying spatio-temporal ontologies like Refs. [60]
and [61]. In Ref. [60], a spatio-temporal query
language, called SOWL QL, was proposed to query
Spatio-temporal OWL (SOWL) ontologies. An SOWL
ontology represents spatio-temporal information in
OWL. SOWL QL enables to query not only quantitative
information (e.g., exact dates, times, and locations), but
also qualitative spatio-temporal information (specified
through natural language expressions like “east of”,
“west of”, “north of”, “south of”, “before”, and
“after”). SOWL QL augments SPARQL with a set
of temporal and spatial operators, like temporal
Allen operators[46], spatial directional, and topological
operations. In Ref. [61], a spatiotemporal data model
based on RDF was defined and spatiotemporal algebraic
operations were studied. The authors proposed five types
of graph algebras and define a spatiotemporal RDF
syntax to allow browsing, querying, and reasoning with
spatiotemporal RDF graphs.

Some other works have dealt with temporal reasoning
on (temporal) ontologies, like Refs. [40] and [62]. In
fact, Ref. [40] proposed an approach for reasoning
over temporal OWL ontologies: first they defined an
OWL ontology that represents both temporal qualitative
information and temporal quantitative information, and
after that they introduced and discussed a temporal
query language, which is based on SPARQL, for
querying such an ontology. In Ref. [62], a reasoner
that supports an extension of the TOQL language[54]

to temporal reasoning aspects, was developed. Notice
that, contrarily to temporal querying, which deals

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 297

with retrieving information/knowledge explicitly
represented in the underlying temporal ontology,
temporal reasoning focuses on inferring/deducing
new information/knowledge from those represented
in a temporal ontology. Hence, TOQL supports
both querying and reasoning. Furthermore, since
(temporal) OWL 2 ontologies could be considered as
semi-structured data collections, the research works
that have dealt with temporal semi-structured data
(e.g., XML data and JSON data) querying could also
be considered as related. In the literature, only a few
works can be found that have studied temporal XML
or JSON data querying: Refs. [63–66]. In Ref. [63],
Dyreson proposed TTXPath, a temporal extension of
the XML Path language (XPath)[67] to locate and query
transaction-time XML data. Gao and Snodgrass[64]

extended the XQuery language[68] to support querying
bitemporal XML data in a �XSchema (temporal XML
Schema) environment[69]. Rizzolo and Vaisman[65]

provided TXPath, a temporal extension of XPath for
querying bitemporal XML data. In Ref. [66], Brahmia
et al. proposed a temporal extension of the JSON
Path language (JSONPath)[70] to support querying
transaction-time JSON data in a �JSchema (temporal
JSON Schema) framework[71].

Recently, Ref. [3] studied temporal querying of
streaming data which are in general considered as
temporal big data. However, neither ontologies have
been used in data querying, nor JSON format has
been used to represent and store streaming data. On
the contrary, while considering a temporal relational
environment, the authors extend the temporal algebra
TA[72], which is equipped with six primitive temporal
operators (selection, projection, Cartesian product,
union, difference, and grouping), with non-temporal
operators to support both sequenced and non-sequenced
temporal queries on streaming tables[73]. A streaming
table, which is a special kind of a temporal relational
table, stores streaming data for a user-defined period
called historical period; outside their historical periods,
data are vacuumed[18].

6 Conclusion

In this paper, we have proposed, for the �JOWL
framework[29], a TSQL2-like temporal ontology query
language, named �SQWRL. �SQWRL has been
defined as a valid-time extension to the SQWRL
query language. It augments SQWRL with several
temporal functions. The �SQWRL language allows

a �JOWL base administrator to query, in a user-
friendly manner, temporal OWL 2 ontologies that are
automatically constructed from temporal JSON big data
(e.g., generated by IoHT sensor networks). In sum, the
present paper deals with querying of temporal ontologies,
corresponding to temporal big data, by focusing on the
data side while assuming a separation of concerns: (1)
the �JOWL approach to manage the temporal and multi-
version ontology, to be used as a temporal and multi-
version schema for such big data, and (2) a temporal
database provided with a TSQL2-like query language
to manage the time-varying and evolving big data
generated by an IoHT infrastructure. For these reasons,
the proposed language fills a gap in the state-of-the-art
of temporal OWL 2 ontology instances querying, and
completes the �JOWL framework with an appropriate
temporal query language. As far as the examples of
�SQWRL queries provided in Section 3.4 are concerned,
they illustrate the use of the proposed language. In
particular, they are conceived to give an idea on how
a temporal ontology query language could be helpful
when expressing (in a compact way) temporal complex
queries in order to fulfill non-trivial users’ requirements,
in an IoHT context.

In the near future, we plan to finish the development
and testing of the �SQWRL-Processor tool that supports
the �SQWRL language; we intend to experimentally
evaluate both the usability and the performances of
this tool. The usability evaluation will be based on the
assessment of the feedbacks that will be received from
the large set of users who will be asked to use and test
the �SQWRL-Processor tool during some reasonable
period. The performance evaluation will be possibly
based on the adoption of a readily available IoHT
benchmark. If such a benchmark could not be found, a
synthetic temporal knowledge base will be constructed,
through the use of the �JOWL framework, and a set
of �SQWRL queries expressed on such a knowledge
base will be defined. Then, performance figures will be
collected (i.e., by recording execution times) from the
�SQWRL-Processor for the execution of such queries.
In order to evaluate the performance scalability with
respect to the growth of the multi-version ontology
(as mentioned in goal (G5) of Section 3.2), queries
will be executed on several successive versions of the
knowledge base, such that each new version has a
different size and introduces new atoms, with respect
to the previous one. Moreover, we will also deal with
other important aspects of the �SQWRL language, that

298 Big Data Mining and Analytics, September 2023, 6(3): 288–300

is its completeness and expressiveness (as mentioned in
goal G6 of Section 3.2), using theoretical inspection and
user feedbacks. Additionally, since �SQWRL currently
supports only valid-time, we intend to extend it to also
include transaction time[8], so that it can be used for
querying also transaction-time and bitemporal OWL 2
ontology instances. Last but not least, optimization of
�SQWRL queries also deserves a special attention and,
thus, it will be taken into account in our future work.
As a matter of fact, we plan to develop advanced cost-
based optimization algorithms for the “Query Optimizer”
module (introduced in Section 4) that allows to produce,
for each �SQWRL query, an efficient query execution
plan taking into account some important performance
measures like Central Processing Unit (CPU) usage,
memory usage, and query response time. Such an
execution plan will be a sequence of operators that can
be directly executed by the query execution engine. The
design of such operators is currently under way.

References

[1] M. H. Böhlen, A. Dignös, J. Gamper, and C. S.
Jensen, Database technology for processing temporal data
(invited paper), in Proc. 25th Int. Symp. on Temporal
Representation and Reasoning, Dagstuhl, Germany, 2018,
pp. 2:1–2:7.

[2] W. Lu, Z. Zhao, X. Wang, H. Li, Z. Zhang, Z. Shui, S. Ye,
A. Pan, and X. Du, A lightweight and efficient temporal
database management system in TDSQL, Proc. VLDB
Endow., vol. 12, no. 12, pp. 2035–2046, 2019.

[3] F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo,
Unleashing the power of querying streaming data in a
temporal database world: A relational algebra approach, Inf.
Syst., vol. 103, p. 101872, 2022.

[4] Z. Brahmia, F. Grandi, and R. Bouaziz, Temporal
Blockchains for intelligent transportation management and
autonomous vehicles support in the internet of vehicles,
in Modelling and Simulation of Fast-Moving Ad-Hoc
Networks (FANETs and VANETs), T. S. Pradeep Kumar
and M. Alamelu, eds. Hershey, PA, USA: IGI Global, 2023,
pp. 155–189.

[5] S. Ketu and P. K. Mishra, Internet of healthcare things:
A contemporary survey, J. Netw. Comput. Appl., vol. 192,
p. 103179, 2021.

[6] F. Grandi, Temporal databases, in Encyclopedia of
Information Science and Technology, 3rd ed, M. Khosrow-
Pour, ed. Hershey, PA, USA: Idea Group Reference, 2015,
pp. 1914–1922.

[7] C. S. Jensen and R. T. Snodgrass, Temporal database, in
Encyclopedia of Database Systems, 2nd ed, L. Liu and M.
T. Özsu, eds. New York, NY, USA: Springer, 2018, pp.
3945–3949.

[8] C. S. Jensen and R. T. Snodgrass, Transaction time, in
Encyclopedia of Database Systems, 2nd ed, L. Liu and M.

T. Özsu, eds. New York, NY, USA: Springer, 2018, pp.
4200–4201.

[9] C. S. Jensen and R. T. Snodgrass, Valid time, in
Encyclopedia of Database Systems, 2nd ed, L. Liu and
M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp.
4359–4360.

[10] N. Guarino, Formal Ontology in Information Systems.
Amsterdam, The Netherlands: IOS Press, 1998.

[11] F. Grandi, Multi-temporal RDF ontology versioning, in
Proc. 3rd Int. Workshop on Ontology Dynamics (IWOD),
Washington, DC, USA, 2009, pp. 1–10.

[12] F. Grandi and M. R. Scalas, The valid ontology: A simple
OWL temporal versioning framework, in Proc. 3rd Int.
Conf. on Advances in Semantic Processing, Sliema, Malta,
2009, pp. 98–102.

[13] V. Milea, F. Frasincar, and U. Kaymak, tOWL: A temporal
web ontology language, IEEE Trans. Syst. Man Cybern. B
Cybern., vol. 42, no. 1, pp. 268–281, 2012.

[14] C. S. Jensen and R. T. Snodgrass, Temporal data models,
in Encyclopedia of Database Systems, 2nd ed, L. Liu and
M. T. Özsu, eds. New York, NY, USA: Springer, 2018, pp.
3940–3945.

[15] M. Klein and D. Fensel, Ontology versioning on the
Semantic Web, in Proc. 1st Int. Conf. Semantic Web
Working, Stanford, CA, USA, 2001, pp. 75–91.

[16] N. F. Noy and M. A. Musen, Ontology versioning in an
ontology management framework, IEEE Intell. Syst., vol.
19, no. 4, pp. 6–13, 2004.

[17] C. A. Weltyand R. Fikes, A reusable ontology for fluents
in OWL, in Proc. 4th Int. Conf. on Formal Ontology in
Information Systems, Baltimore, MD, USA, 2006, pp. 226–
236.

[18] R. T. Snodgrass, The TSQL2 Temporal Query Language.
Boston, MA, USA: Kluwer Academic Publishers, 1995.

[19] X. Jin, B. W. Wah, X. Cheng, and Y. Wang, Significance
and challenges of big data research, Big Data Res., vol. 2,
no. 2, pp. 59–64, 2015.

[20] A. Ali, J. Qadir, R. ur Rasool, A. Sathiaseelan, A. Zwitter,
and J. Crowcroft, Big data for development: Applications
and techniques, Big Data Anal., vol. 1, no. 2, pp. 2:1–2:24,
2016.

[21] A. Davoudian and M. Liu, Big data systems: A software
engineering perspective, ACM Comput. Surv., vol. 53, no.
5, p. 110, 2021.

[22] A. K. Sandhu, Big data with cloud computing: Discussions
and challenges, Big Data Mining and Analytics, vol. 5, no.
1, pp. 32–40, 2022.

[23] IETF, The JavaScript Object Notation (JSON) Data
Interchange Format, Internet Standards Track document,
https://tools.ietf.org/html/rfc8259, 2022.

[24] L. Fegaras, Incremental query processing on big data
streams, IEEE Trans. Knowl. Data Eng., vol. 28, no. 11, pp.
2998–3012, 2016.

[25] C. W. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, Big
data analytics: A survey, J. Big Data, vol. 2, pp. 21: 1–21:
32, 2015.

[26] P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-
Mauroux, E. Damiani, A. Mazak, M. Van Keulen, M. Jarrar,
G. Santucci, et al., Big data semantics, J. Data Semant., vol.
7, no. 2, pp. 65–85, 2018.

Zouhaier Brahmia et al.: ���SQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated : : : 299

[27] R. M. Keller, S. Ranjan, M. Y. Wei, and M. M. Eshow,
Semantic representation and scale-up of integrated air traffic
management data, in Proc. Int. Workshop on Semantic Big
Data, San Francisco, CA, USA, 2016, pp. 4: 1–4: 6.

[28] M. V. Nural, M. E. Cotterell, H. Peng, R. Xie, P. Ma, and J.
A. Miller, Automated predictive big data analytics using
ontology based semantics, Int. J. Big Data, vol. 2, no. 2, pp.
43–56, 2015.

[29] Z. Brahmia, F. Grandi, and R. Bouaziz, �JOWL: A
systematic approach to build and evolve a temporal OWL
2 ontology based on temporal JSON big data, Big Data
Mining and Analytics, vol. 5, no. 4, pp. 271–281, 2022.

[30] W3C, OWL 2 Web Ontology Language Primer
(Second Edition), W3C Recommendation, http://www.
w3.org/TR/owl2-primer/, 2012.

[31] O. Etzioni, K. Golden, and D. S. Weld, Sound and efficient
closed-world reasoning for planning, Artif. Intell., vol. 89,
nos. 1&2, pp. 113–148, 1997.

[32] R. Fikes, P. Hayes, and I. Horrocks, OWL-QL—a language
for deductive query answering on the Semantic Web, J. Web
Semant., vol. 2, no. 1, pp. 19–29, 2004.

[33] W3C, SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, W3C Member Submission,
https://www.w3.org/Submission/SWRL/, 2004.

[34] M. J. O’Connor and A. K. Das, SQWRL: A query language
for OWL, in Proc. 6th Int. Workshop on OWL: Experiences
and Directions, Chantilly, VA, USA, 2009, pp. 208–215.

[35] W3C, OWL 2 QL, in OWL 2 Web Ontology Language
Profiles (Second Edition), https://www.w3.org/TR/owl2-
profiles/#OWL 2 QL, 2012.

[36] M. J. O’Connor and A. K. Das, A lightweight model for
representing and reasoning with temporal information in
biomedical ontologies, in Proc. 3rd Int. Conf. on Health
Informatics, Valencia, Spain, 2010, pp. 90–97.

[37] M. J. O’Connor and A. K. Das, A method for representing
and querying temporal information in OWL, in Proc. 3rd

Int. Joint Conf. on Biomedical Engineering Systems and
Technologies, Valencia, Spain, 2010, pp. 97–110.

[38] SWRLAPITemporal functionality of the SWRLAPI
Protégé project on GitHub, https://github.com/
protegeproject/swrlapi/wiki/SWRLAPITemporal, 2022.

[39] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz,
�OWL: A framework for managing temporal semantic web
documents, in Proc. 8th Int. Conf. on Advances in Semantic
Processing, Rome, Italy, 2014, pp. 33–41.

[40] S. Batsakis, K. Stravoskoufos, and E. G. M. Petrakis,
Temporal reasoning for supporting temporal queries in
OWL 2.0, in Proc. 15th Int. Conf. on Knowledge-Based
and Intelligent Information and Engineering Systems,
Kaiserslautern, Germany, 2011, pp. 558–567.

[41] P. F. Patel-Schneider and I. Horrocks, A comparison of two
modelling paradigms in the Semantic Web, J. Web Semant.,
vol. 5, no. 4, pp. 240–250, 2007.

[42] W3C, RDF/XML syntax specification (revised), W3C
recommendation, http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/, 2004.

[43] W3C, OWL 2 Web Ontology Language document overview
(second edition), W3C recommendation, http://www.w3.
org/TR/owl2-overview/, 2012.

[44] C. S. Jensen and R. T. Snodgrass, Temporal query
languages, in Encyclopedia of Database Systems, 2nd ed,
L. Liu and M. T. Özsu, eds. New York, NY, USA: Springer,
2018, pp. 4023–4028.

[45] I. Seylan, E. Franconi, and J. De Bruijn, Effective query
rewriting with ontologies over DBoxes, in Proc. 21st Int.
Joint Conf. on Artificial Intelligence, Pasadena, CA, USA,
2009, pp. 923–929.

[46] J. F. Allen, Maintaining knowledge about temporal intervals,
Commun. ACM, vol. 26, no. 11, pp. 832–843, 1983.

[47] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S.
Subrahmanian, and R. Zicari, Advanced Database Systems.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997.

[48] K. Torp, Temporal strata, in Encyclopedia of Database
Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New York,
NY, USA: Springer, 2018, pp. 4035–4040.

[49] E. Pitoura, Query optimization, in Encyclopedia of
Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds.
New York, NY, USA: Springer, 2018, pp. 3008–3009.

[50] M. H. Böhlen, Temporal coalescing, in Encyclopedia of
Database Systems, 2nd ed, L. Liu and M. T. Özsu, eds. New
York, NY, USA: Springer, 2018, pp. 3917–3921.

[51] K. Kulkarni and J. E. Michels, Temporal features in SQL:
2011, SIGMOD Rec., vol. 41, no. 3, pp. 34–43, 2012.

[52] J. Chomicki, D. Toman, and M. H. Böhlen, Querying
ATSQL databases with temporal logic, ACM Trans.
Database Syst., vol. 26, no. 2, pp. 145–178, 2001.

[53] F. Grandi, Introducing an annotated bibliography on
temporal and evolution aspects in the semantic web,
SIGMOD Rec., vol. 41, no. 4, pp. 18–21, 2012.

[54] E. Baratis, E. G. M. Petrakis, S. Batsakis, N. Maris, and N.
Papadakis, TOQL: Temporal ontology querying language,
in Proc. 11th Int. Symp. on Advances in Spatial and
Temporal Databases, Aalborg, Denmark, 2009, pp. 338–
354.

[55] F. Grandi, T-SPARQL: A TSQL2-like temporal query
language for RDF, in Local Proc. 14th East-European Conf.
on Advances in Databases and Information Systems, Novi
Sad, Serbia, 2010, pp. 21–30.

[56] The SWRLAPI Protégé project, https://archive.is/GtlM5,
2022.

[57] The SWRL temporal ontology, https://github.com/
protegeproject/swrlapi/wiki/SWRLTemporalOntology, 2014.

[58] The SWRLAPI temporal built-in library, https://github.
com/protegeproject/swrlapi/wiki/SWRLTemporalBuiltInLi-
brary, 2014.

[59] M. O’Connor, The Semantic Web rule language, http://
protege.stanford.edu/conference/2009/slides/SWRL2009Pro-
tegeConference.pdf, 2022.

[60] K. Stravoskoufos, E. G. M. Petrakis, N. Mainas, S. Batsakis,
and V. Samoladas, SOWL QL: Querying spatio-temporal
ontologies in OWL, J. Data Semant., vol. 5, no. 4, pp. 249–
269, 2016.

[61] L. Zhu, N. Li, and L. Bai, Algebraic operations on
spatiotemporal data based on RDF, ISPRS Int. J. Geo-Inf.,
vol. 9, no. 2, pp. 80:1–80: 16, 2020.

[62] N. Maris, A reasoner for querying temporal ontologies,
master dissertation, Dept. Electron. Comput. Eng., Tech.

300 Big Data Mining and Analytics, September 2023, 6(3): 288–300

Univ. Crete, Crete, Greece, 2009.
[63] C. E. Dyreson, Observing transaction-time semantics with

TTXPath, in Proc. 2nd Int. Conf. on Web Information
Systems Engineering, Kyoto, Japan, 2001, pp. 193–202.

[64] D. Gao and R. T. Snodgrass, Temporal slicing in the
evaluation of XML queries, in Proc. 29th Int. Conf. on
Very Large Data Bases, Berlin, Germany, 2003, pp. 632–
643.

[65] F. Rizzolo and A. A. Vaisman, Temporal XML: Modeling,
indexing, and query processing, VLDB J., vol. 17, no. 5, pp.
1179–1212, 2008.

[66] Z. Brahmia, F. Grandi, S. Brahmia, and R. Bouaziz,
£JSONPath: A temporal extension of the JSONPath
language for the £JSchema framework, in Proc.
4th Int. Conf. on Artificial Intelligence and Smart
Environments (ICAISE), Errachidia, Morocco, https://bdsde.
sciencesconf.org/, 2022.

[67] W3C, XML Path language (XPath) 3.0, W3C
Recommendation, https://www.w3.org/TR/xpath-30/,
2014.

[68] W3C, XQuery 3.1: An XML query language, W3C
recommendation, https://www.w3.org/TR/2017/REC-
xquery-31-20170321/, 2017.

[69] F. Currim, S. Currim, C. Dyreson, and R. T. Snodgrass, A
tale of two schemas: Creating a temporal XML schema
from a snapshot schema with �XSchema, in Proc. 9th Int.
Conf. on Extending Database Technology, Crete, Greece,
2004, pp. 348–365.

[70] IETF, JSONPath: Query expressions for JSON, internet-
draft, https://datatracker.ietf.org/doc/draft-ietf-jsonpath-
base/, 2022.

[71] S. Brahmia, Z. Brahmia, F. Grandi, and R. Bouaziz,
�JSchema: A framework for managing temporal JSON-
based NoSQL databases, in Proc. 27th Int. Conf. on
Database and Expert Systems Applications, Porto, Portugal,
2016, pp. 167–181.

[72] A. Dignös, M. H. Böhlen, J. Gamper, and C. S.
Jensen, Extending the kernel of a relational DBMS with
comprehensive support for sequenced temporal queries,
ACM Trans. Database Syst., vol. 41, no. 4, pp. 26: 1–26:
46, 2016.

[73] L. Carafoli, F. Mandreoli, R. Martoglia, and W. Penzo,
Streaming tables: Native support to streaming data in
DBMSs, IEEE Trans. Syst. Man Cybern. Syst., vol. 47,
no. 10, pp. 2768–2782, 2017.

Zouhaier Brahmia received the BSc, MSc,
and PhD degrees in computer science from
University of Sfax, Tunisia in 2003, 2005,
and 2011, respectively; he is currently an
associate professor at the Department of
Computer Science, Faculty of Economics
and Management, University of Sfax.
His research interests include temporal

databases, database schema versioning, temporal, evolution, and
versioning aspects in emerging (XML, NoSQL, etc.) databases,
big data, Semantic Web ontologies, knowledge representation,
IoT data management, and blockchains.

Rafik Bouaziz received the PhD degree in
computer science from the University of
Tunis El Manar, Tunis, Tunisia in 1991,
and a Habilitation in computer science
from the University of Sfax, Sfax, Tunisia
in 2007. He was the director of the
Economy, Management, and Computer
Science Doctoral School, University of

Sfax, between 2011 and 2014, and the president of the same
university between 2014 and 2017; he is currently a full professor
at the Department of Computer Science, Faculty of Economics and
Management, University of Sfax. His research interests include
temporal databases, real-time databases, information systems
engineering, ontologies, and data warehousing and workflows.

Fabio Grandi received a Laurea degree
cum Laude in electronics engineering
from the University of Bologna, Italy in
1988, and the PhD degree in electronics
engineering and computer science in 1994;
from 1989 to 2012 he worked at the CSITE
center of the Italian National Research
Council in Bologna in the field of neural

networks and temporal databases, initially supported by a CNR
fellowship. In 1993 and 1994 he was an adjunct professor at the
University of Ferrara, Italy. In 1994 he was appointed as a research
associate at the University of Bologna. Since 1998 he has been
an associate professor at the Department of Computer Science
and Engineering, University of Bologna. He published more
than 100 papers in scholarly journals and conference proceedings.
He is a member of the TSQL2 Language Design Committee
and the co-author of the book “The TSQL2 Temporal Query
Language”. His scientific interests include temporal, evolution,
and versioning aspects in data management, WWW and Semantic
Web, knowledge representation, and storage structures and access
cost models.

