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Denoising Graph Inference Network for
Document-Level Relation Extraction

Hailin Wang, Ke Qin, Guiduo Duan�, and Guangchun Luo

Abstract: Relation Extraction (RE) is to obtain a predefined relation type of two entities mentioned in a piece of text,

e.g., a sentence-level or a document-level text. Most existing studies suffer from the noise in the text, and necessary

pruning is of great importance. The conventional sentence-level RE task addresses this issue by a denoising method

using the shortest dependency path to build a long-range semantic dependency between entity pairs. However, this

kind of denoising method is scarce in document-level RE. In this work, we explicitly model a denoised document-level

graph based on linguistic knowledge to capture various long-range semantic dependencies among entities. We first

formalize a Syntactic Dependency Tree forest (SDT-forest) by introducing the syntax and discourse dependency

relation. Then, the Steiner tree algorithm extracts a mention-level denoised graph, Steiner Graph (SG), removing

linguistically irrelevant words from the SDT-forest. We then devise a slide residual attention to highlight word-level

evidence on text and SG. Finally, the classification is established on the SG to infer the relations of entity pairs.

We conduct extensive experiments on three public datasets. The results evidence that our method is beneficial to

establish long-range semantic dependency and can improve the classification performance with longer texts.
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1 Introduction

The document-level Relation Extraction (RE), which
aims to detect a relationship between entity mentions
from raw text, plays a critical role in addressing the
issue of information extraction. Conventional works
that obtained relational facts within a single sentence
(sentence-level) ignored these complex facts across
�Hailin Wang is with School of Computer Science and

Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China, and also with School of
Computing and Artificial Intelligence, Southwestern University
of Finance and Economics, Chengdu 611130, China. E-mail:
wanghl@swufe.edu.cn.
�Ke Qin, Guiduo Duan, and Guangchun Luo are with School of

Computer Science and Engineering, University of Electronic
Science and Technology of China, Chengdu 611731, China.
E-mail: qinke@uestc.edu.cn, guiduo.duan@uestc.edu.cn;
gcluo@uestc.edu.cn.

* To whom correspondence should be addressed.
Manuscript received: 2022-10-07; revised: 2022-12-05;
accepted: 2022-12-12

multiple sentences. Over the past few years, researches
on the document-level RE[1–7] provide in-depth insights
into the RE task, where transformer-based and graph-
based methods are widely applied. All these methods
suffer from noise in the text, and a necessary long-
range semantic dependency among all mentions is a
way around this issue. Nevertheless, too little work
is devoted to constructing a document’s long-range
semantic dependency between entity pairs.

Conventional sentence-level methods[8–10] using the
Syntax Dependency Tree (SDT) give some insights
into coping with this problem in the document-level
RE. The sentence-level RE task exploits the SDT to
graphically present word intradependency relation. The
critical point is that the trimmed SDT, the Shortest
Dependency Path (SDP), cuts the sentence to a short
sequence, thus guiding the model to extract relations
between entity pairs. This SDP method builds the
long-range semantic dependency between entities by
transforming the sentence-level RE task into a graph



Hailin Wang et al.: Denoising Graph Inference Network for Document-Level Relation : : : 249

denoising paradigm. This paradigm first constructs
a graph and then extracts a subgraph by eliminating
nodes to retain a piece of keyword set, which works
well for the sentence-level RE, and may apply to
the document-level RE. Following the sentence-level
paradigm, two steps are necessary to transform this
denoising paradigm for the document-level task. The first
step is to represent intradependency and interdependency
relations among words and sentences for a document,
and we introduce discourse dependency relation to
illustrate the interdependency relation. The second step
is to remove irrelevant words graphically to achieve the
purpose of denoising. To show the feasibility of this
denoising paradigm for document-level RE task, Fig. 1
illustrates a long text example[11] of building the long-
range semantic dependency by denoising. In Fig. 1,
a word set organizes the simple graph as a trimmed
sentence “Julian Reinard is German footballer appeared
in German Bundesliga” by collecting all entities and
their semantic dependency words along the syntax and
discourse dependency relation. Inferencing this word
set reasonably makes it easy to deduce the relationship
among the three entities (Julian Reinard, German,
Bundesliga). This simple graph shows that carefully
picking out some keywords relevant to those entities in
a long text is enough to infer all relationships among
entities. In other words, graphically constructing a long-
range semantic dependency using a denoising method
could benefit the document-level RE. Based on this

observation, transforming the sentence-level denoising
paradigm to a document-level RE should figure out the
following three problems: (1) create a document-level
graph using various linguistic knowledge, e.g., syntax
and discourse dependency relation, (2) denoise the graph
carefully as the SDP does, and (3) infer all relations on
the denoised graph.

In this work, we propose a Denoised Graph Inference
model (DGI) to address the abovementioned issues. We
construct a basic document-level graph, develop a novel
graph-based denoising method for RE, and utilize a
slide residual attention mechanism to reason entity pairs’
relationship on the denoised graph. Figure 2 shows the
whole model architecture.

First, this paper introduces the Rhetorical Structure
Theory (RST)[12], as an external linguistic knowledge
to analyze the discourse association among multiple
Elementary Discourse Units (EDUs). Furthermore, a
graph constructor combines the syntax and discourse
dependency relation from SDT and RST to construct a
basic graph SDT-forest.

Second, our mention-level denoised graph SG is
constructed from the abovementioned SDT-forest. A
conventional SDP with two entities can easily estimate
the shortest path between two entities using a simple
algorithm. Nevertheless, for the document-level RE
with more than three mentions, it is not easy to describe
the minimal requirement of the semantic keywords. The
Steiner tree algorithm can generate a minimum-spanning

1. Document

Julian Reinard ( born 5 March 1983 )  is a German footballer.…… He first   appeared in the German 

Bundesliga on 21 March 2004 while SC Freiburg 's first and second keepers had been injured.……

2. Long-range semantic dependency among entities 3. Relation

Entities with their semantic dependency words

Julian  footballer Reinard                                             is  German

appeared in German Bundesliga

Entity pair

Julian Reinard
Bundesliga

Relation

Julian Reinard
German

Bundesliga
German

 League

Country of
 citizenship

Country 

Denoising

Inferring

Fig. 1 Example of discovering a long-range semantic dependency among entities in a graph manner. Figure 1 presents three
cards, in which Card 1 shows a document instance and its entities, Card 2 picks up minimal evidence (subgraph) along the syntax
and discourse relation (blue or red line) to build the long-range semantic dependency for various entities (i.e., Julian Reinard,
German, and Bundesliga), and Card 3 indicates the relation between each entity pair.
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Fig. 2 Framework of DGI model.

tree that contains all required terminals and additional
vertices. We use the Steiner tree algorithm with all
mentions as the terminals to extract a subgraph from
the SDT and assume the subgraph as the long-range
semantic dependency for all mentions.

Finally, after obtaining the mention-level denoised
graph, the Densely Connected Graph Convolutional
Network (DCGCN)[13] is deployed to capture a word-
level feature. For performance improvement, our slide
residual attention highlights two different word attention
weights to enhance the contextual presentation and infer
the classification using the denoised graph feature.

The main contributions of our work are summarized
as follows:

(1) This article defines a simple document-level
graphically denoising method, which utilizes syntactic
and discourse relations to present a document in a novel
graphical way and then eliminates the linguistically
irrelevant words to build a long-range semantic
dependency among entity mentions.

(2) We propose a slide residual attention mechanism
that dynamically chooses two levels of word features
from the original text and the denoised graph as
complementary elements to infer the corresponding
relation of entity pairs.

(3) We conduct extensive experiments on three
standard datasets and present detailed analyses. Our
experiment shows that the denoising method has a better
effect and can bring better performance for longer text
instances.

2 Related Work

Early sentence-level RE builds long-range semantic
dependency using the SDP methods[14–17] by denoising
words of low linguistic relevance. The document-level
RE must infer from multiple sentences, resulting in
the sentence-level denoising methods being unable to
cope with a document. However, there are still many
other approaches for the document-level RE, including
transformer- and graph-based methods.

Transformer-based methods deal with a document in
a sequence-to-sequence manner. Wang et al.[1] used a
two-step strategy to divide the task into two subtasks,
yielding a better result. Han and Wang[3] inserted
some special tokens to identify all mention positions
and types to enhance the entity representation. Tang
et al.[2] constructed a hierarchical inference network,
reasoning at the entity, sentence, and document levels
to output the final prediction. Zhou et al.[18] proposed
a transformer-based model of localized context pooling
technique and adaptive-thresholding. Eberts and Ulges[4]

jointly predicted the entity, entity type, and relation step
by step. Yuan et al.[6] designed a document using two-
level features to predict relations. Xue et al.[19] used
simple multiple [CLS] tokens with a relation refinement
gate to capture possible relations between different pairs
of entities mentioned in the dialogue. These studies
focused only on the local entity representation, ignoring
the global links among words or phrases in a document.

Graph-based methods effectively provide a reasoning
ability considering more association across words in a
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flattering text. Nan et al.[20] refined a latent document-
level graph with mention, entity, and meta-dependency
to reason the relation from the document. Zeng et
al.[21] generated an efficient inference path for the
RE from a mention-level graph showing all entities
globally. Li et al.[22] developed a graph-enhanced dual
attention network to characterize the interaction between
sentences and relation instances. Christopoulou et al.[23]

constructed a heterogeneous graph with three types
of nodes and edges, iteratively modeling the long-
range semantic dependency among entity pairs over a
document. Xue et al.[24] generated a latent multi-view
graph using a Gaussian graph generator to capture the
possible relationships among tokens. Li et al.[7] devised
a heterogeneous affinity graph inference network with
noise suppression mechanism to build the long-distance
reasoning chain in document-level RE.

However, the above works rarely considered
denoising a document to physically build the long-
range semantic dependency between entity pairs. But
some previous sentence-level approaches[9, 16, 25–28]

graphically trimmed the sentence to a short sequence
to obtain an excellent result. These methods
effectively use the syntax dependency relation
or the intradependency. Nevertheless, only a few
studies[10, 29, 30] introduced the interdependency or
simple discourse (inter-sentence) relation to the RE.
Inspired by the RST[12], the most accepted discourse
analysis framework, we consider introducing this well-
organized representation of documents and utilizing their
discourse-level segmentation to model inter-sentence
semantic dependency with more refined granularity.
This can help us to merge the intradependency and
interdependency among words and sentences in a
document and establish the long-range semantic
dependency by denoising the text. The RST transforms
a document into a DEPendency-based Discourse Tree
(DEP-DT)‘ with EDUs, which explicit pinpoints
the critical interdependence relation (e.g., example,
elaboration, concession, consequence, and contrast).
This discourse relation has been applied in question and
answering[32], summarization[33, 34], and translation[35].

Consequently, in this study, we leveraged
intradependency and interdependency relationships
from the SDT and the DEP-DT (shown in Fig. 3) to
form a novel document-level graph for denoising like
the SDP. Further, we proposed a slide residual attention
to dynamically choose two levels of word features

‘ The transformation algorithm of DEP-DT follows Ref. [31].

as complementary elements to infer the entity pairs’
relation on a denoised document graph.

3 Method

This paper proposes a DGI model for document-level
relation extraction using a denoising method to capture
the long-range semantic dependency among all entities.
Figure 2 shows the whole model structure. This section
presents the DGI in a pipeline: the text encoder, graph
construction and denoising modules, graph encoder, and
slide residual attention modules.

3.1 Text encoder module

Given a document D D ŒS1; S2; : : : ; Sn�, which
contains l words and n sentences, and each sentence
Si D Œx1; x2; : : : ; xm� has m words. In this document,
two different inserted special marks (“##1” and “ORG”)
indicate the entity positions and types� at the start and
end of each mention. A previous work[36] shows these
composite marks’ effectiveness. Following Ref. [11],
the text encoder module converts the document D to
contextual embedding as follows by using a pre-trained
language model:

H e D Œh1; h2; : : : ; hl � D Encoder.D/ (1)

Generally, the pre-trained language model encodes
sentences less than 512 words. However, after inserting
the composite marks and tokenization, the longest
sentence would be more than 1024 words. Hence,
we concatenate two encoder modules to obtain more
complete sentence embedding sequences. Meanwhile,
the final sentence would discard any word longer than
1024 tokens. This work follows Ref. [37], applying
logsumexp pool to obtain entity embedding hei

. Each
embedding corresponds to the first start marker “##1”
of mentions. In the document D, any entity ei has m
mentions. Thus, our DGI denotes each entity as follows:

hei
D logsumexp.h1; h2; : : : ; hm/ D

log
mX

jD1

exp.hj / (2)

3.2 Graph construction and denoising module

We use the linguistics knowledge SDT and DEP-DT as
a tool to transform document D to a graph and get a
subgraph. To this end, we parse a document to EDU
pieces and further parse each sentence of the document
to the SDT, forming an SDT tree set. A designed
� These marks contain “##1”, “##2”, and so on. Type marks convert type

words into abbreviations, such as “blank” to “BLANK” and “organization”
to “ORG”.
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Fig. 3 Example of SDT and DET-DT, which are parsed from a sentence or the whole document. For any document, each
sentence has an SDT, but just with one DEP-DT.

algorithm connects each EDU through links in the SDT
and DEP-DT, yielding a word-level graph, that is, SDT-
forest. However, this simple graph is not our target. We
want an acceptable denoising method for the document-
level RE, like the SDP in the sentence-level RE. We
exploit the Steiner tree as an alternative method to find
the minimum spanning-tree over a graph. Hence, the
following subsection includes three parts: syntax and
discourse dependency parsing, graph connection with
linguistic knowledge, and denoise with the Steiner tree.

3.2.1 Syntax and discourse dependency parsing
The SDT and DEP-DT research has a long tradition.
In this work, intradependency and interdependency
relations across words in a document depend on these
two. As a subset sequence of the SDT, the SDP
plays a critical role in the sentence-level RE field.
Despite its prolonged success, the SDP is limited in
sentence-level RE. Syntax dependency only explains the
relationship between the words within a sentence without
the relationship between the words across sentences.
Hence, it is not suitable for the document-level RE. The
discourse dependency, which fills this gap somewhat, has
exerted preliminary efforts to interpret the relationship
between the words across sentences, which could benefit
the document-level graph construction.

To construct the document-level graph, we first use
spaCy� to acquire each SDT of sentences in a document.
The spaCy outputs a set, including n SDTs,
SDTset D ft1; t2; : : : ; tng D SpaCy.ŒS1; S2; : : : ; Sn�/

(3)
For each SDT t D G.Ng ;Lg/, Ng and Lg

correspond to the words and syntax dependency

� https://spacy.io

relations, respectively.
The discourse dependency parsing phrase uses the

code from the DPLP[38], which parses the document D
into a DEP-DT with segmented text EDUs. Any SDT
usually includes d EDUs (d > n),

T D DPLP.ŒS1; S2; : : : ; Sn�/ (4)

For any DEP-DT tree T D G.Nd ;Ld /, Nd and Ld

correspond to EDUs D Œedu1; edu2; : : : ; edup� and
discourse dependency relation. Each EDU includes a
short word sequence, and Fig. 4 shows the visualization
of the relationship between syntax and discourse
dependencies.

3.2.2 Graph connection with linguistic knowledge
The intradependency and interdependency relations from
t and T are exploited to link words in a document to
construct the document-level graph. Actually, after
getting t and T two different trees, we use three
link types to construct the graph: syntax dependency
relation Lg , discourse dependency relation Ld , and
sentence adjacent relation La. The syntax dependency
relation indicates the relationship between the words in
a single sentence. The discourse dependency relation
reveals the discourse rhetoric relationship between
EDUs, showing the relative importance of different
context units. Lastly, the sentence adjacent relation
shows a neighbourhood relationship within sentences.

We use an anchor node (i.e., a special word in EDU)
from a subtree to present the discourse relation. The
subtree composes of the intersection of nodes Nst in
the tree t and words in each EDU. The connection
Lst of the nodes in the subtree is the same as that of
tree t . Consider a t with a word sequence Œxq; : : : ; xw �

and an EDU with another word sequence Œxy ; : : : ; xu�,
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Fig. 4 Example of the SDT-forest connected by the syntax and discourse dependencies. Two SDTs are plotted and the others
are omitted. The coloured areas depict the EDUs in the corresponding SDT. Each EDU has an anchor node (circle with dashed
lines), which is a relative root node in the subtree (coloured area).

Nst D Œxq; : : : ; xw � \ Œxy ; : : : ; xu�. Hence, a subtree is
denoted as t si D G.Nst ;Lst /. The process of obtaining
one anchor node (Figure 4 circle with dashed lines) is
root.t si /. All the root node set or the anchor node set is
Nanchor D

˚
root.t s1/; root.t

s
2/; : : : ; root.t

s
q/
	

(5)

With the three kinds of relationships, anchor node-
set, and other words in the document, a new graph
SDT-forest (shown in Fig. 4) could be denoted as
F D G.N ;L/ , where N D D D Œx1; x2; : : : ; xm� and
L D Lg [ Ld [ La. The relationships in Ld connect
each corresponding node in SDT according to Nanchor

instead of EDUs.

3.2.3 Denoise with Steiner tree
In the sentence-level task, the SDP is an efficient method
of obtaining the keywords in a sentence. It could obtain
a path along with two entity words. However, the
SDP is unsuitable when we obtain the abovementioned
document-level graph, namely, the SDT-forest with
multiple entities and more words. Hence, a novel
method, called the Steiner tree, is used to acquire the
minimum spanning-tree among the whole document-
level graph. The Steiner tree is an NP problem, and
we take an approximation algorithm from Networkx[

to obtain the SG S D G.Ns;Ls/ D Steiner.F;Ne/,
where Ne is the entity node set. Ls is a subset of
L calculated by the Steiner tree, and denoted as an
undirected edge Ls with an s � s adjacency matrix AAA.

3.3 Graph encoder module

After getting S , this module extracts all node
representations R from their corresponding embedding

[ https://networkx.org/

of Ns inHHH e . We then exploit the DCGCN[13] for further
graph processing with adjacency matrix AAA and node
representation R. The DCGCN computation processing
is as follows:

HHHg D DCGCN.R; AAA/ (6)

where the dimension of all parameters follows the
DCGCN, HHHg D Œh1; h2; : : : ; hs�, s is the number of
nodes corresponding to the dimension of AAA.

3.4 Slide residual attention

The attention weight is from the pre-trained language
model and a slide multi-head module herein.
Considering that the denoising method may disrupt
the continuity of tokens, the one-layer multi-head
module is deployed to enhance the node representation
and augment the input data. Meanwhile, slide means
that the multi-head shifts at a different position
during the training/testing phase, and residual refers
to two attentions from the encoder module and the
abovementioned slide multi-head module. We argue
that this shift operation will avoid overfitting and help
improve the model’s performance in this combination of
graphics and text sequences.

Precisely, the multi-head module formulated by Ref.
[39] consists of multiple linear transformations and
scaled dot-product attention,

Attention.QQQ;KKK;VVV / D softmax

 
QQQKKKT

p
d
VVV

!
(7)

MultiHead.QQQ;KKK;VVV /DCon.head1; : : : ; headh/WWW

(8)
where headi D Attention.QQQWWW Q

i ; KKKWWW
K
i ; VVV WWW

V
i / and

QQQ D KKK D VVV D HHHg .
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Next, the multi-head module MultiHead.HHHg ;

HHHg ;HHHg/ outputs embeddingHHHm and attention weights
AAAm
2 Rhead�s�s . Each token in HHHm is given a head

attention matrix. We take the attention from the “##1”
mark as the mention-level attention with the head
matrix. The head attention matrix is averaged to a
vector to present one attention to all tokens. In this way,
each entity has a corresponding attention vector. The
attention vector from the head eh entity and tail et entity
are denoted as AAAm

h and AAAm
t , respectively. When these

two vectors are combined to represent all the context,
they multiply with each other. At the same time, the pre-
trained language model also outputs an attention vector
from the head eh entity and tail et entity, denoted as AAAe

h

and AAAe
t , respectively. All attention procedures are as

follows:
˛̨̨ D f˛m; ˛eg D averagef.AAA

m
h �AAA

m
t /; .AAA

e
h �AAA

e
t /g (9)

These two attention weights ˛m and ˛e can highlight
the word-level evidence on both text and SG in a
complementary way. We use the DCGCN module to
encode nodes from the pre-trained language module
and extract the first token to present the whole original
words. This partial token may result in information
loss. To overcome these problems, our DGI shifts the
multi-head module during training/testing, called slide
residual attention, which may slow down the fitting
process and enrich the representation of the first token
of entity mention. The attention is calculated as follows:
cresidual D HHH e˛e C kHHHm˛m C .1 � k/HHHg˛m (10)

where HHH e is contextual embedding from the encoder
module, HHHm is the output from the multi-head module,
k is 1 or 0 during training/testing, respectively, HHHg is
based on HHHm. In model training, the multi-head module
is after the DCGCN module. Instead, in testing our
model, the multi-head module slides ahead of DCGCN
module, and HHHg is from Eq. (6) should be redefined as
HHHg D DCGCN.HHHm; AAA/.

Accordingly, two entities embedding from HHH e and
HHHm (or HHHg ) for any entity ei are represented as he

ei

and hm
ei

according to Eq. (2). To obtain the final entity
representation Oe, these two entities are combined by
addiction he

ei
+ hm

ei
, and then concatenated with the

abovementioned residual context cresidual . Therefore,
each entity and its context embedding will be fed
into a fully connected layer to obtain Oe by linear
transformation,

Oe D tanh.WWW ..he
ei
C hm

ei
/ W cresidual// (11)

where “:” is concatenation, WWW 2 Rd�2d , d is the

dimension of each token. Finally, for any instance in
the data set, our method obtains Oeh and tail Oet entity
representation.

3.5 Prediction module

For any entity pair, the abovementioned module gives
two embeddings . Oeh and Oet /. Following the DocRED[11],
our method uses a bilinear function with sigmoid
activation to obtain the probability of predication as
follows:

P D .r j Oeh; Oet / D sigmoid. Oe
T
hWWW r Oet C br/ (12)

where WWW r 2 Rd�k�d and br 2 Rk are the trainable
weights and bias, respectively, k is the number of
relation categories. Our method operates three different
loss functions: the standard cross-entropy loss and the
methods adopted in Refs. [18, 40], the last of which
works better.

4 Experiment

4.1 Dataset

In this work, we use three different standard public
datasets, DocRED[11], and CDR[41], and GDA[42]. The
first is the main experimental object, and the other
two datasets are auxiliary comparative experiments.
DocRED is a prevailing general-purpose dataset, with 96
predefined relation types, consisting of 5053 instances,
of which 3053 for training, 1000 for development, and
others for testing. CDR[41] is a chemical-induced disease
dataset selecting a total of 1500 articles split into three
subsets: 500 each for the training, development, and
testing. GDA[42] contains 30 192 Medline abstracts split
into 29 192 articles for training and 1000 for testing.
This dataset for the biomedical domain aims to predict
the associations between gene and disease concepts.

4.2 Experiment settings

This section presents in detail the three types of settings.
First, the method parses a document to the SDT and the
DEP-DT by exploiting spaCy and DPLP, respectively.
Next, our DGI adopts prevailing pre-trained language
models, including BERT-base, BERT-large, RoBERTa-
large, SciBERT-base, and BioBERT[43]. Our model is
then optimized with AdamW using a two-layer learning
rate with a linear warmup for the first 6% of the steps,
followed by a linear decay to 0. We perform early
stopping based on the F1-score on the development set.
Our DGI adjusts all hyperparameters on the development
set. Table 1 lists these parameters.
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Table 1 Hyperparameters setting.

Hyperparmeter
DocRed CDR/GDA

BERT RoBERTa SciBERT BioBERT
Lr 1st 1 � 10�4 1 � 10�4 1 � 10�4

Lr others 3 � 10�5 5 � 10�5 2 � 10�5

Epoch 30 30 30
Batch size 4 4 4
GCN layer 3 2 3
GCN drop 0.4 0.4 0.4

Note: “Lr 1st” and “Lr others” refer to different learning rates for
the GCN and other layers, respectively.

4.3 Baseline models and metric

This experiment compares our approach with some
classic methods operating on DocRED, CDR, and GDA
in four types: embedding-based, embedding + graph-
based, Transformer-based, and Transformer + graph-
based. Our experiment results are presented in Tables 2
and 3. These methods mainly adopt two metrics to
evaluate the results: the macro-averaged F1-score and

Ign F1 for DocRED, F1-score for CDR and GDA.
Ign F1 refers to the F1-score evaluated on the dataset
that excludes the relational facts occurring in the test,
development, and training sets.

4.4 Result

4.4.1 Results on DocRED
Table 2 lists the related models on DocRED. From the
table, our model can predict competitive results among
all models, achieving a 62.96 F1-score on the test data
set (test on the CodaLab score-boardz). Although our
test F1-score is lower than some previous work[18, 21, 46],
our output still outperforms mostly those of RoBERTa-
large work and stays ahead of other models based on
Transformers + graph-based methods. In short, our
model effectively works in document-level RE tasks.
Compared with GAIN on RoBERTa-large, our model
outputs 0.84 and 0.64 of improvement on development

zhttps://competitions.codalab.org/competitions/20717#results

Table 2 Model comparison on DocRED.

Type Model
Development set Test set

Ign F1 F1-score Ign F1 F1-score

Embedding-based

CNN[11] 41.85 43.45 40.33 42.26
LSTM[11] 48.44 50.68 47.71 50.07

BiLSTM[11] 48.87 50.94 48.78 51.06
Context-Aware[11] 48.94 50.17 48.40 50.70

Embedding+
graph-based

AGGCN-RE[44] 46.29 52.47 48.89 51.45
LSR[20] 48.82 55.17 52.15 54.18

Transformer-based

BERTbase
[1] – 54.16 – 53.20

BERT-Two-Stepbase
[1] – 54.42 – 53.92

HIN-BERT[2] 54.29 56.31 53.70 55.60
DEMMT-BERTbase

[3] 55.50 57.38 54.93 57.13
JEREXbase

[4] – – 58.44 60.40
CoreBERTbase

[45] 55.32 57.51 54.54 56.96
BERT+ESAbase

[6] 56.20 58.28 55.71 58.04
SSANbase

[46] 57.03 59.19 55.84 58.16
ATLOPbase

[18] 59.22 61.09 59.31 61.30

CoreBERTlarge
[45] 56.82 59.01 56.40 58.83

CoreRoBERTlarge
[45] 57.35 59.43 57.90 60.25

ATLOP-RoBERTalarge
[18] 61.32 63.18 61.39 63.40

SSANlarge
[46] 63.76 65.69 63.78 65.92

Transformer+
graph-based

LSR-BERTbase
[20] 52.43 59.00 56.97 59.09

DISCO-REbase
[5] 55.91 57.78 55.01 55.70

GAINbase
[21] 59.14 61.22 59.00 61.24

HAGbase
[7] 60.85 63.06 60.78 60.82

Our BERTbase 60.10 61.80 59.18 61.20

GAINlarge
[21] 60.87 63.09 60.31 62.76

Our RoBERTalarge 61.61 63.41 60.95 62.96
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Table 3 Comparison of models CDR and GDA for F1- score.

Model
CDR GDA

Development/
Test

Development/
Test

Embedding-based BRAN[47] – /62.1 – /–

Transformer-
based

sciBERT[48] –/65.1 –/82.5
SSANbase

[46] 68.4 /68.7 82.8 /83.7
ATLOP-

sciBERT[18]
–/69.40 –/83.9

(69.29)/(69.44) (82.49)/(84.45)

Transformer+
grpah-based

EoG[23] –/63.6 78.7/81.5
LSR-BERT[20] – /64.8 – /82.2

GLRE[49] –/68.5 –/–

Our SciBERT 69.42 /70.09 82.51/83.63
Our BioBERT 74.13/ 70.37 82.93 /84.52

Note: The values in brackets are from our reproduction.

and test Ign F1, respectively. For SSAN[46], our model
can outperform the indicators on BERT-base. We re-
implement ATLOP to further compare with our model. In
the same environment, ATLOP outputs a set of values
(F1-score: 60.93 and Ign F1: 58.90 on the development
set, and F1-score: 60.96 and Ign F1: 58.85 on the
test set), in which our results can outperform on all
indicators.

4.4.2 Results on CDR and GDA
Table 3 presents our experiment results on the
CDR and GDA datasets. They are biomedical texts.
Hence, BiomedNLP-PubMedBERT(BioBERT) base[43]

is adopted to evaluate our model. From Table 3 our
model exceeds all these models on F1-score. We also
use the SciBERT base[48] to test our model. Under this
situation, our results have a lower value than BioBERT.
However, although the test result is worse than those
of ATLOP-SciBERT and SSANbase, our final results
outperform most previous works, showing that BioBERT
brings more representation ability to biomedical texts.
In summary, our approach is beneficial for this task.

5 Analysis and Discussion

5.1 Ablation study

This work has three critical components: SDT-forest,
denoising method, and slide residual attention. To
validate the effectiveness of various components, we
conduct an ablation study experiment corresponding to
different modules:

Model-base is a base model without any components;
SDT-forest merges the model-base with the novel
document-level graph; Slide residual attention

includes the model-base using a slide residual attention
mechanism with the SDT-forest; Denoising means
the model trims the SDT-forest with the Steiner tree
algorithm.

The experimental analysis is performed only on
the development set because the DocRED dataset has
no ground truth to the test set. Table 4 shows that
all modules have a performance increase with each
module, indicating that all components contribute to
the model performance. The slide residual attention
and the denoising method are most important to the
model performance and sensitive to the F1-score, leading
to an increase of 1.57 (2.6%) and 1.33 (2.3%) in the
development F1-score and Ign F1 score when adding
these two modules. The denoising method reveals that
removing irrelevant words can improve RE performance.
Meanwhile, the slide residual attention seems to capture
more key information for the document-level RE.

5.2 Case study

Figure 5 presents a visualization of how the SDT-forest
transforms into our SG. Figure 5a shows each SDT in
one document connected through different dependency
relations, syntax, or discourse. Figure 5b is an SG
produced by the Steiner tree algorithm, which denoises
the irrelevant words to build the long-range semantic
dependencies among all entities.

When our model utilizes the Steiner tree algorithm to
trim the SDT-forest, most instances in the development
set will benefit from this structure. That is, the DGI
model will obtain more prediction results. Figure 6
illustrates the incremental results obtained from each
instance in the data set, including the true positive
and false positive cases. We chose a model[18] without
a graphical structure similar to our performance as
a baseline. We statistic that 37%(370/1000) of the
instances in the DocRED development set will extract
more relations than the baseline[18]. This phenomenon
shows that the graphical structure can bring more
semantics to the model. However, the performance
improves insignificantly due to the false positive results.
This situation also shows that there should do much work

Table 4 Ablation study of our model on the DocRED
development set.

Model Ign F1 F1-score
Model-base 58.23 60.18

Model-base + SDT-froest 58.77 60.23
Model-base + slide residual-attention 58.92 60.89

Model-base + denoising 60.10 61.80
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(a)

Entity pair: The Girl with Golden hair:  ABBA

Indicators: recording of

(b)

Fig. 5 (a) Example of the SDT-forest combining syntax and discourse dependency relations. (b) Example of the SG from (a)
denoising words by the Steiner tree algorithm. The different colour nodes and links indicate different SDTs. The rectangular
nodes refer to the entity mention. The others depict words in the document. All nodes connect through syntax, discourse, or
“adjacent” relation.
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Fig. 6 Comparison of the amount of results of each instance
between our model and the baseline[18].

to alleviate this situation.
Table 5 presents examples of the incremental output

from our model, and the two rows correspond to
two instances. The first row shows four true positive
results, which the baseline can not predict. However,
this instance has 30 labelled relations in the dataset,
but the baseline or our model cannot predict them.
Our model and the baseline model predict 21 and 12

relations ( including false positive and true positive ),
respectively. We will analyze them separately from two
views, intra-sentence and inter-sentence. We believe
that the shortened semantic dependencies between
entities (distance between entity pairs) contribute to this
situation. Figure 7 depicts an example of the shortened
distance between entities in the SG and the original text.

The first case mentions the “Does Your mother
Know” recording published in 1979. Note that this
is an intra-sentence relation. Both “recording” and
“of” are the indicators of this entity pair (Fig. 5b);
thus, incorporating them into the graph as evidence
words is vital for the prediction. However, the baseline
model cannot extract this relation because the sequence-
based method rarely highlights the two indicators.
From Fig. 5b, our SG links this entity pair via “Does
Your Mother Know �!recording�!of�!1979” (grey
colour words), which helps our model predict this
relation.

The second case detects the inter-sentence relation
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Table 5 Examples of the incremental output from our
model.

Entity pair Relation

Does Your Mother Know: 1979 Publication date
Wembley Arena: London LATE

The Girl with the Golden Hair: ABBA Performer
Thank You for the Music: ABBA Performer

American Airlines Group Inc.: American Country
Fort Worth: American Country

Texas: American Country
Texas: American LATE

AMR Corporation: American Country
US Airways Group: American Country

Federal Aviation Administration: American A2j
American: Texas CATE

Note: The above predictions are from our model, which cannot be
predicted by the baseline model[18]. These results exclude the false
positives or true positives shared by the two models. “LATE”,
“CATE”, and “A2J” mean “Located in the administrative territorial
entity”, “Contains administrative territorial entity”, and “Applies
to jurisdiction”, respectively.

Polar Music: Sweden
Does Your Mother Know: ABBA

ABBA: Polar Music
I Am an A: ABBA

The Girl with the Golden Hair: 1977
Thank You for the Music: ABBA

ABBA Live: Polar Music
I Am an A: Polar Music

I 'm a Marionette: Polar Music
The Girl with the Golden Hair: Polar…

Distance between entity pair

E
nt

ity
 p

ai
r

Steiner Original

0 50 100 150

Fig. 7 Distance between the entity pair in the SG and
original text.

between mentions “The Girl with the Golden Hair” and
“ABBA”. However, the entity “ABBA” has multiple
mentions, and the nearest mention “ABBA” has a long
distance of more than 40 words from the mention “The
Girl with the Golden Hair”. In Fig. 5b, only four nodes
between this entity pair, which shortens the distance
between entity pair and builds a long-range semantic
dependency across multiple sentences. The second row
in Table 5 shows another instance from DocRED, in
which our model also predicts more relations than the
baseline.

5.3 Analysis of denoising

We analyze our method to show the effectiveness brought
by this denoising approach. Figure 8 illustrates the
length distribution of the development dataset. The
light orange colour means the length of each original
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Fig. 8 Text lengths distribution on DocRed.

text. The dark orange colour depicts the number of SG
nodes. Table 6 shows the document length statistics.
The original development text’s maximum, minimum,
and average lengths are 512, 129, and 201, respectively.
After our denoising method, the maximum, minimum,
and average graph nodes are reduced to 187, 20, and
86, respectively. The maximum length reduces by
approximately 63%, the minimum length reduces by
84%, and the average length reduces by 57%.

After denoising, our approach shows better
performance for those longer text instances. Figure 9
compares F1-scores between the baseline and our model,
and the difference between the two values. We divide
the development data into nine intervals of text length
and calculate F1-score of the two models in these nine
intervals. As shown Fig. 9, the longer the text, the worse
the performance, indicating that the number of words
significantly affects the performance. However, our

Table 6 Document lengths before and after denoising.
Before denoising After denoising

Maximum Minimum Average Maximum Minimum Average
512 129 201 187 20 86
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Fig. 9 Comparison of the results from our model and the
baseline[18] in terms of the text length on DocRED. The
histogram of the text length is divided into nine intervals,
[0–150], (150–200], . . . , [500, 550), with the F1-score from the
two models. The grey line depicts the difference between two
values of F1-score.
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model has two characteristics: (1) better performance
in each interval than the baseline model, and (2) higher
performance gains in longer text. For instance, the
different line of the model performance in Fig. 9 shows
an upward trend, which means the longer the text, the
better the performance brought by our model. In other
words, physically reducing the distance between entity
pairs may benefit building the long-range semantic
dependency for document-level RE. Note that when the
text is longer than 400, the unbalanced data distribution
causes performance degradation.

5.4 Analysis of attention

This section analyzes the effectiveness brought by the
slide residual attention. Figure 10 visualizes the slide
residual attention weight on the text and the SG. These
attention weights show various features to describe
the inter-sentence relational fact (Entity 1: “Does
Your Mother Know”; Entity 2: “ABBA”, Relation:
Performer). Figure 10a shows the attention weights
on the text focus on detailing a relation between “Does
Your Mother Know” and the live recording “Hole in
Your Soul”. These yellow words show a few pieces
of evidence about the relation between “Does Your

(a)

Your

Know

Mother

ABB
A

recording
of

1979

of
case

edited

Your

Soul

Hole

in

medley
as

by performed

minutes

album released
ABBA

Live was
three

tracks
five

ABBA

Live

Swedish

group

ABBA

released
by Music Polar

1986in

is

(b)

Fig. 10 (a) Visualization of the attention weight on partial
text and (b) attention weight on the SG nodes. The yellow
circles are the weights. Subject: “Does Your Mother Know”,
object: “ABBA”, and relation: “Performer”.

Mother Know” and “ABBA”. After denoising the graph
(see Fig. 10b), the attention on the graph gives a
high weight to the word “released”, building a long-
range semantic dependency along with the graph, which
indicates the relation of “ABBA live” (released) between
“ABBA”. Consequently, the slide residual attention
weights gather evidence to infer the ground truth
relationship “Performer”. His visualization demonstrates
that our slide residual attention fusion the words features
in context and the node features in the graph that
complement each other to predict the relational fact.

6 Conclusion

This work proposed a DGI model, which exploits
a graphic denoising paradigm to build long-range
semantic dependency among all entities, therefore
learning an effective representation to reason on text
and graph to classify relation categories. First, in
the graph construction phrase, we utilized the SDT-
forest associating words and sentences through the
syntax or discourse relation. Then our denoising
approach exploits the Steiner tree to physically reduce
linguistically irrelevant words, providing a mention-
level denoised graph SG for building the long-range
semantic dependency among all entities. Second, after
denoising, to fit the training data dispersing in our graph
to preserve a better semantic coherence, the slide residual
attention gathers information from the context and the
graph in two different layers. These attention weights
highlight the essential features from two perspectives
that complement each other. Third, we conduct extensive
experiments on three public datasets. The experiment
results show that our model has a competitive result,
establishes the long-range semantic dependency among
all entities for the document-level RE, and significantly
improves the classification performance for those longer
text instances.
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