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Medical Knowledge Graph: Data Sources, Construction, Reasoning,
and Applications

Xuehong Wu�, Junwen Duan�, Yi Pan, and Min Li�

Abstract: Medical knowledge graphs (MKGs) are the basis for intelligent health care, and they have been in use

in a variety of intelligent medical applications. Thus, understanding the research and application development of

MKGs will be crucial for future relevant research in the biomedical field. To this end, we offer an in-depth review of

MKG in this work. Our research begins with the examination of four types of medical information sources, knowledge

graph creation methodologies, and six major themes for MKG development. Furthermore, three popular models

of reasoning from the viewpoint of knowledge reasoning are discussed. A reasoning implementation path (RIP) is

proposed as a means of expressing the reasoning procedures for MKG. In addition, we explore intelligent medical

applications based on RIP and MKG and classify them into nine major types. Finally, we summarize the current state

of MKG research based on more than 130 publications and future challenges and opportunities.

Key words: medical knowledge graph; knowledge graph construction; knowledge reasoning; intelligent medical

applications; intelligent healthcare

1 Introduction

A knowledge graph (KG)[1, 2] is a semantic network
composed of entities and their relations in the real
world. KGs represent one of the benchmarks in artificial
intelligence research and offer an ideal way to integrate
heterogeneous data resources and enhance knowledge-
based applications. In particular, medical KGs (MKGs)
attract the attention of academics and the healthcare
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industry for their potential in intelligent healthcare
applications[3–10].

MKG research has achieved significant advancements
in most areas. MKGs are constantly built from the
collection and extraction of structured knowledge from
unstructured or semi-structured heterogeneous medical
information resources, such as electronic medical record
(EMR)[11], electronic health record (EHR)[12], clinical
trials[13] and other clinical data[14, 15], medical literature,
textbooks, internet medical resources, shared standard
medical terminology, and open-and-shared medical
knowledge bases[16–20]. MKG construction is steadily
progressing from manual[21] to semi-automatic[22] to
automatic construction[23]. Furthermore, an increasing
number of frameworks and platforms for KG creation
have been proposed[21, 24, 25]. The construction of an
MKG for all fields is very challenging. Therefore, the
main research is currently focused on the direction led
by particular application scenarios[26–30].

MKGs provide computer systems with the cognitive
capacity necessary to support all types of intelligent
applications by combining techniques such as knowledge



202 Big Data Mining and Analytics, June 2023, 6(2): 201–217

representation, logic rules, machine learning, and deep
learning. MKGs have also been applied in various
intelligent medical scenarios, including intelligent and
semantic medical knowledge retrieval[31, 32], auxiliary
diagnosis of diseases[33, 34], clinical education[35, 36],
drug analysis[37, 38], diagnosis and treatment plan
recommendation[39, 40], intelligent question answer and
chatbots[41, 42], intelligent nursing[43], and smart health
management[44–46].

Given their significance in research and a wide range
of applications, we aim to provide a comprehensive
description of MKGs. We begin by reviewing the
creation mechanism of MKGs, including an overview
of medical information sources, construction techniques,
and themes of MKGs. Second, we summarize and
introduce three reasoning models for the implementation
of MKG-based reasoning and provide a reasoning
implementation path (RIP) to define the reasoning
procedures. Afterward, we describe applications based
on MKGs and categorize findings based on application
scenarios. Finally, to address the growing need for
MKGs in intelligent applications, we discuss the
present challenges and opportunities to stimulate further
research in this field.

2 Construction of MKG

2.1 Data sources of MKG

Data resources are crucial for the development of
a trustworthy MKG. The vast amount of accessible
medical data enables the construction of a large-
scale MKG with rich and dependable medical entities
and relations. We classify data sources utilized in
related works into four groups, namely, real-world data,
scientific publications, standard libraries, and open-and-
shared medical knowledge databases.

Real-world data[47] mainly refer to the data from
clinical diagnosis and treatment processes, such as EMR,
EHR, clinical trials, and other clinical data. These data
sources provide essential clinical knowledge and are thus
tapped early on. For example, Wang et al.[48] created a
large and high-quality heterogeneous graph connecting
patients, diseases, and drugs (PDD) in EMRs, and Malik
et al.[23] created an MKG from the electronic health
records of 1025 patients with intracranial aneurysms.

Scientific publications, such as literature, textbooks,
and guidelines, are published by authoritative
institutions, publishers, and researchers. As these
data sources are significantly trustworthy and widely
available, they have been used to construct huge

MKGs or MKGs for specific diseases. For example,
Zhang and Che[49] collected Parkinson’s disease-
related connections from medical literature and
constructed a medical literature KG. Sun et al.[45]

collected 185 796 drug labels from the China Food
and Drug Administration, 3390 types of disease
information from medical textbooks, and information
from 5272 examinations as knowledge sources. Ernst
et al.[50] introduced a well-configured KG, KnowLife,
which is a harvested text from a variety of genres,
including scientific journals, health portals, and online
communities.

Standard libraries are a kind of standard and shared
medical terminology and standards, which include
the Medical Subject Headings (MeSH)[16], Unified
Medical Language System (UMLS)[18], International
Classification of Diseases (ICD), SNOMED-CT[17], and
so on; Zhang et al.[29] created an obstetric KG based on
the hierarchical structure of MeSH[16] as the ontology
prototype. Patil et al.[51] developed a concept graph
engine (CG-Engine) and used the UMLS database as its
medical knowledge base.

Open-and-shared medical knowledge databases,
such as FreeBase[52], RepoDB[53], DurgBank[19],
SemMedDB[54], etc., refer to a collection of open
and freely accessible medical knowledge created by
researchers. Teng et al.[55] constructed a KG with
five entity classes (i.e., disease, symptom, medicine,
surgery, and examination) by extracting entities related
to ICD-9 from Freebase. Malas et al.[56] used the
semantic information between drugs and diseases from
the existing KG RepoDB[53], which is a standard drug
repurposing database. Korn et al.[27] built COVID-KOP,
a new knowledge base combining the ROBOKOP[57]

biomedical KG with information from contemporary
biomedical literature on COVID-19 annotated in the
CORD-19 collection.

Several of the data sources mentioned above, such
as the standard library and shared medical knowledge
databases, can be utilized directly to build MKGs.
However, some of them, such as real-world data
and scientific articles, require additional structural
and semantic examination. The proper transformation
and integration of medical information into MKG are
more critical than the acquisition of additional medical
knowledge. Table 1 provides a comprehensive summary
and analysis of medical knowledge sources.

2.2 Methods for constructing MKGs

The most frequently used strategy for MKG creation
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Table 1 Data sources of MKG and related research.
Source type Source Related research

Real-word data

EMR [21, 30, 47, 48, 55, 58–71]
EHR [23, 25, 72–76]
Chinese clinical dataset Levis hypertension [77]
Cancer registry data [15]
Clinically pediatric cases [33]
Clinical trial reports [13, 78, 79]
NHANES data set [14]

Scientific
publications

Literature [4, 10, 13, 25, 27, 37, 46, 49, 50, 58, 78–91]
Textbooks [4, 29, 33, 45]
Internet resource [6, 21, 29, 41, 45, 50, 79, 85, 87, 92, 93]
Guidelines [13, 43, 45, 78, 79]

Standard library

Mesh [16, 29, 46, 50, 58, 79, 85, 90, 94–96]
UMLs [7,18,31,46,49–51,58,59,64,71,79,81–83,86,94–99]
ICD9/10 [45, 46, 48, 55, 59, 66, 67, 70–72, 74, 85]
SNOMED-CT [13, 17, 70, 71, 74, 79, 85, 100, 101]

Open and shared
medical knowledge database

FreeBase [52, 55]
SemMedDB [7, 54, 86, 87, 98, 99]
RepoDB [53, 56]
ROBOKOP [27, 57]
DrugBank [13, 19, 48, 49, 66, 67, 79, 102–105]
KEGG [20, 49, 95, 102, 105]
Google health knowledge graph [59]
SIDER [13, 49, 79, 103, 106]
Cancer/tumor/case dataset [15]
InterPro [102, 107]
UniProt [87, 102, 104, 108]
Gene Ontology [18, 109]
OpenKG.CN [26, 104]
Linked open data [110]
Linked life data [110]
Therapeutic target database [88, 104]
BioGRID [104]
DBpedia/CN-DBpedia [34, 97, 111]

is the extraction of entities and relations from structured
and unstructured resources. Nevertheless, approaches such
as medical concept normalization[112–114], knowledge
fusion[115–117], knowledge completion[99, 118, 119], and
complex knowledge representation[3, 120, 121] are crucial
to ensure the completeness and quality of MKG.
2.2.1 Entity and relation extraction
Earlier studies relied on expert knowledge to generate
feature sets for entity and relation extraction. Zhao
et al.[30] manually collected medical entities and their
modifiers from two EMR datasets. These entities
included but were not limited to the patient’s basic
information, primary complaints, tests, test findings,
diagnosis, and treatment plans. Song et al.[85] constructed
a pediatric KG using manual annotation, knowledge

fusion, and other technologies; they expanded the triplet
form of knowledge to a sextuplet form. Cheng et al.[60]

used data mining to mine medical laws, transformed
them into medical knowledge with the assistance of
specialists and then constructed the KG appropriately.
Zhang et al.[29] used a combination of bootstrapping
and support vector machine (SVM) methods to extract
relations between entities to build an obstetric KG.
Sang et al.[80] presented SemaTyP, a technique for
drug discovery based on biomedical KGs. It trains
a logistic regression model by learning the semantic
types of pathways of known medication treatments
in the KG and then uses the model to identify novel
disease-specific pharmacological therapies. Rotmensch
et al.[59] employed maximum likelihood estimation to
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automatically generate KGs using three probabilistic
models: logistic regression, a naive Bayes classifier, and
a Bayesian network with nosy OR gates. A recent study
focused on automated entity and relation extraction using
deep learning techniques[76]. Sun et al.[45] extracted
entities and relations from knowledge sources and then
linked them using a multilevel similarity matching
strategy to ensure the MKG’s quality.

2.2.2 Medical concept normalization (MCN)
MCN aims to map informal medical terms to formal
medical concepts, which is crucial in ensuring an MKG’s
quality. Li et al.[112] studied the efficacy of BERT-
based models in the biological and clinical domains
for entity normalization. They demonstrated that the
methods based on BERT outperformed many state-of-
the-art techniques. Li et al.[47] defined nine types of
entities and utilized ICD-10 as the de facto standard for
disease terminology and ICD-9 for surgical terminology.
They also standardized words for other medical concepts.
Yue et al.[122] developed a disease-centric and physician-
guided annotation method and specification for named
entities and relations. Luo et al.[114] developed a new
manually annotated large-coverage corpus for clinical
concept normalization, and the MCN corpus was shared
with the scientific community as part of a collaborative
effort. Pattisapu et al.[123] trained MCN models using
automatically labeled instances retrieved from patient
discussion forums and then utilized pretrained sentence
encoding models to determine the k-nearest words for
each medical topic.

2.2.3 Knowledge graph completion
KG completion is the process of predicting new or
missing facts based on existing facts, ensuring that the
KG is complete. Yin et al.[124] created and constructed
a diabetic KG from electronic medical information,
and they suggested a paradigm for KG completion via
translation. Biswas et al.[125] completed and predicted
edges in a KG using the ComplEx embedding approach,
which considered all binary relational features (reflexive,
symmetric, and transitive) in the graph. Zhang et
al.[99] predicted drug-repurposing candidates for COVID-
19 using five state-of-the-art neural KG completion
algorithms (i.e., translating embedding (TransE), RotatE,
DistMult, ComplEx, and STELP). Moreover, Zhang and
Che[49] used five KG completion approaches to identify
treatment candidates for Parkinson’s disease: DistMult
and ComplEx for semantic matching models, ConvE and
ConvTransE for neural network models, and TransE for

translational distance models.

2.2.4 Knowledge fusion
Knowledge fusion is used to increase the number of
entities in the final KG and to assure their objective
uniqueness. MKGs combine knowledge from disparate
data sources, whereas knowledge fusion approaches
combine descriptive data of approximately the same
entity or concept from numerous sources. Zhang et
al.[29] collected obstetric disease characteristics using
heterogeneous data from medical specifications, classic
textbooks, and medical internet websites and then
integrated the information using the Simhash–TF-IDF
method. Gong et al.[66] created a very heterogeneous
graph by creating patient–disease and patient–medicine
bipartite graphs using EMRs and connecting them to
ICD-9 and DrugBank MKGs. Zhang and Che[49] ensured
that the same entity had the same name by using the
UMLS identification rather than a specific entity in the
local medical knowledge base. Li et al.[98] fused the
KG in two stages: entity mapping, which utilizes the
standard name as the entity name, and entity alignment,
which calculates the similarity of entity names using
the Jaccard similarity algorithm[126]. Fang et al.[71]

suggested a head-and-tail entity fusion model, which
obtained 97% accuracy while fusing data from diverse
sources. Yan et al.[104] created a COVID-19 KG by
integrating 14 publicly available bioinformatic databases
comprising information on medications, genes, proteins,
viruses, illnesses, and symptoms and their associations.
They utilized the DrugBank ID for each drug, the
National Center for Biotechnology Information gene ID
for each gene, and the MeSH ID for each disease because
they are all standardized. Chen et al.[117] introduced
the MUFFIN multiscale feature fusion deep-learning
model for learning drug representation using drug-self
structural information and KGs with rich biomedical
knowledge.

2.2.5 KG tools
Research has been consistently focused on the
development of scalable, adaptable, automated, and
easy-to-use domain-based tools or frameworks. Duan et
al.[43] and Zhang et al.[29] constructed and visualized the
entity graph using protégé[24]. Xie et al.[21] developed
an incremental expansion approach for constructing
expandable MKGs based on an EMR. Their architecture
enables the integration of external knowledge gleaned
from medical information websites and the mining
of prospective knowledge associated with new EMRs.
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Alobaidi et al.[25] suggested a novel framework for
automated ontology generation comprising five primary
modules: (1) text processing via compute-on-demand;
(2) medical semantic annotation via n-gram, ontology
linking, and classification algorithms; (3) relation
extraction via graph method and syntactic patterns;
(4) semantic enrichment via rdf mining; (5) a domain
inference engine that generates the formal ontology.
Malik et al.[23] suggested a system for domain-specific
automated knowledge curation; this system enables the
extraction of terms, relations, individual and cohort
graphs, and predictive information. The system has an
accuracy of 78% and a recall of 71%. Weng et al.[77]

investigated an automated MKG creation framework
based on semantic analysis. The framework consists of
a medical ontology constructor, a knowledge component
generator, a constructed knowledge dataset generator,
and a graph model (GM) constructor, all of which
significantly enhance accuracy. DEKGB[61] is also an
expandable framework for MKG; it was used to generate
KGs for specific diseases using pre-existing medical
information and doctor-involved electronic medical
records. Doctors may easily and quickly develop highly
specialized health KGs with the assistance of DEKGB.
Other additional and similar frameworks have been
observed [22, 47, 50, 127–129].

According to the studies above, the KG building
technology has advanced significantly in the biomedical
field, and with the growth of big data, natural
language processing, and deep learning technology,
MKG construction techniques have also expanded. A
certain number of construction tools are emerging to
assist researchers in performing similar and repeated
labor-intensive tasks.

2.3 Constructed MKGs

A variety of subject-oriented MKGs have been
developed for specific objectives using a range of
medical resources and MKG creation methodologies.
In this article, we gather and evaluate the created MKGs
and classify them based on their subjects (Table 2).

We classify the MKGs developed by academics
in recent years into six distinct categories based on
their domain and application scenarios (Table 2). (1)
Integration-oriented MKGs incorporate information
from all medical fields and encompass a large number
of fundamental concepts; they are often expandable. (2)
Disease-oriented MKGs use specific diseases as core
concepts and include medical facts, such as disease–

drug and disease–symptom relations. (3) Drug-oriented
MKGs use specific drugs or drug analysis application
scenarios to generate drug KGs. (4) Department-based
MKGs are formed from department-specific knowledge,
such as disease, symptoms, examinations, and tests from
certain departments, such as obstetrics and pediatrics.
(5) Biomedical-oriented MKGs are constructed from
biological and medical knowledge. (6) Other MKGs
comprise a collection of MKGs that support a variety of
application services.

As shown in Table 2, we additionally gather
information on the scale of MKGs using four indicators:
the number of entity types, relation types, entities,
and facts. The researchers refer to the four indicators
using different names. The term “entity types” refers
to a variety of medical concepts, including diseases,
symptoms, medicine, surgery, therapies, genes, and
tests. Xiu et al.[130] used the term “class” to refer
to entity classes; “class” is a meta term from the
ontology language (Web Ontology Language) and refers
to the concept of objective existence. A “fact” is a
fundamental unit of information expressed in KGs,
and it is often described using the RDF framework,
which is also known as a triplet. However, Li et al.[47]

represented medical knowledge using a quadruplet
structure rather than a triplet structure, and Song et al.[85]

expanded the triplet form of a KG to a sextuplet form.
Varied terminologies have different meanings in various
description situations. Ernst et al.[50] used the term
“relations” to refer to relation types, but Zhu et al.[94]

and Zhang et al.[29] applied the term “relations” to refer
to medical facts. Despite their distinct phrasing, their
objectives were the same. In general, the numbers of
entities, relations, and entity and relation types are highly
correlated with the expression capability of MKGs.
Table 2 also includes the scale of MKGs, which should
inspire the construction and fusion of MKGs for follow-
up studies.

3 Reasoning over MKG

The reasoning over MKG allows the discovery of
new prospective knowledge and relevance prediction
of existing knowledge entities, which are critical for
a wide range of intelligent applications. To facilitate
the description and comparison of various reasoning
approaches, we propose RIP, a novel hierarchical-
structured framework (Fig.1). The RIP can be expressed
as below.
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Table 2 Subjects of MKGs from studies.

Subjects MKG
Scale of MKGs

# entity types # relation types # entities # facts

Integrative
oriented

Knowlife KG[50] 7 13 50 000 609 322
MKG[47] 9 - 22 508 579 094
HG[31] – 14 400 000 200 000

SMR KG[66] 4 4 367 201 1 707 609

Disease
oriented

CLKG[127] – – 200 000 1 000 000
Geriatric KG[26] 6 7 – –

Depression KG[79] – – – 8 892 722
Knee osteoarthritis KG[65] 8 10 2518 29 972

SemKG[92] 5 4 – –
DSTKG[130] 7 16 9868 11 005

Cancer KG[15] – – – 90 673 527
KGHC[98] 10 22 5028 13 296

Rare disease KG[94] 10 42- 3 819 623 84 223 681
COVID-KOP[27] – – 45 300 5 532 000

DRKF KG[49] – 43 12 497 165 901
LT-D DB[51] 3 11 – –
KDKG [13] – – – 10 146 311

StrokeKG[91] 9 30 46 000 157 000
KGPA[71] 11 10 – –

Drug
oriented

WATRIMed KG[131] 472 75 – –
Drug KG[6] 4 3 5828 70 382

ADRs KG[28] 4 3 12 473 154 239
KEGG MED[102] 2 1 5229 12 112

TBKG[37] 4 6 – –
MCKG[96] 2 6 8014 123 890

TCM-KG[60] [4] 127 58 10 000 1 000 000

Department
oriented

Obstetric-KG[29] 4 22 625 3863
PMKG[85] – – 22 023 23 434

Biomedical
oriented

PharmKG[132] 3 29 – 50 000
Bio KG[81] 3 3 6827 16 912

ROBOKOP KG[57] 43 157 9 399 969 254 940 828
Integrated KG[82] – 171 3 527 423 68 413 238

BioKGLM[87] 5 11 502 100 96 500 000

Others

EMKN[30] 5 3 – –
EBDPKG [72] – – 1989 10 380

EMR-based KG[58] 4 6 634 000 14 000 000 000
SHKG[74] 8 3 28 518 5591

Symptom KG[100] 3 2 5080 1521
PDD[48] 3 3 58 030 4 244 856

DeepPS KG[67] 7 7 42 613 1 888 950
G Coder KG[55] 6 9 1560 20 000

FWA-KG[45] 7 – 1 616 549 5 963 444

[RM]: [ALG1]![ALG2]![ALGn] : [TARGET]
where “RM” denotes the reasoning model, “ALGn”
refers to the n-step algorithms or processing method
of the path, and “TARGET” indicates the objective
of the reasoning methods, which can be “retrieval”,
“entity prediction”, “relation prediction”, “ranking”,

etc. For example, Chai[92] embedded the KG
and transformed each element in it into a vector
representation using TransE; then, they used stochastic
gradient descent (SGD) to obtain the final graph
embedding representation. Next, they predicted the
connection between pathology and disease using dual
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Fig. 1 Reasoning framework based on MKG.

BiLSTM. We may characterize its RIP as follows based
on the foregoing explanation.
KRL: TransE! SGD! BiLSTM: relation prediction

We classify reasoning models into three broad
categories: reasoning based on semantic patterns
(SP), reasoning based on graph model (GM), and
reasoning based on knowledge representation learning
(KRL). The following sections are used to examine the
intricacies of each reasoning model and outline a partial
implementation path for each model (Fig. 1).

3.1 Reasoning based on SP

The KG is modeled as a semantic relation network.
The links between symbols are its core. We can
perform KG utilization analysis using semantic relations
and semantic rules. Hasan et al.[15] constructed a
KG prototype using the Louisiana Tumor Registry
dataset. The dataset was utilized to efficiently query
and explore data from a variety of perspectives (surgery,
chemotherapy, radiation therapy, and hormone therapy).
As a result, the query runtime performance increased
significantly by up to 76%. Liu et al.[33] structured the
expertise of domain experts as (If. . . Then. . . ) rules

in a hybrid KG and proposed two types of rules to
check the available disease labels, namely, the sufficient
and required condition rules. Then, they employed
medical book knowledge to detect disease labels in
predicted label sets, where the differential diagnosis
tag captures the conditions for a disease’s ultimate
diagnosis. Bakal and Kavuluru[86] predicted therapy
relations using semantic graph patterns on biological
knowledge networks. Shi et al.[74] investigated the
complicated semantics between objects by utilizing
the linkages between medical terminology and chain
inference techniques. They performed reasoning on
semantic health knowledge graph (SHKG) using first-
order predicate logic, followed by forward and reverse
chaining over the KG. Papageorgiou et al.[3] created
EYE, a general-purpose reasoning engine, to tackle
the challenge of formalizing medical information for
decision support. EYE takes advantage of probabilistic
and fuzzy impact processes embedded in the semantic
web. Malik et al.[23] suggested predictive criteria for
subarachnoid hemorrhage prediction using a healthcare
domain-specific knowledge network. Sun et al.[45]

created the rules for identifying suspected claims using



208 Big Data Mining and Analytics, June 2023, 6(2): 201–217

MKG reasoning.
SP-based reasoning is popular in early research.

On the premise of accurate rules, this method has
high reasoning accuracy and strong interpretability.
However, with the gradual improvement of the
scale and complexity of MKG, the efficiency and
complexity of reasoning based on this pattern have
also gradually improved, which makes this method less
computationally efficient. In addition, when noise exists
in data, misleading reasoning easily occurs.

3.2 Reasoning based on GM

The KG is a way of representing and organizing graph-
based knowledge. Each vertex represents an entity in
this specific graph, and each edge indicates the direct
link between two entities. Given these properties, graph
theory-based algorithms may be used effortlessly in
knowledge reasoning[133]. Patil et al.[51] developed a CG-
Engine that treats MKGs as graphs. The graph’s edges
are weighted, and the disease’s risk value is calculated
by computing the comprehensive weight value of the
edge connected to each disease node. Finally, the
diseases are classified based on their risk value. Liu
et al.[93] created an MKG as a collection of vertices and
edges and independently calculated the distance between
two vertices and the weights of entity characteristics.
To enhance classification performance, we adjust the
noise labels in training examples using a combination
of weight modification and polishing. Goodwin and
Harabagiu[58] modeled the MKG as a factorized Markov
network, a probabilistic graphical model that enabled
them to compute the probability distribution across all
possible clinical scenarios and treatments for patients.
Bean et al.[6] employed a matrix to represent the scaled
features for each drug node in the drug KG and a binary
classifier to produce a score for each drug of each
predictor type.

GM-based reasoning also has the problem of the rapid
increases in computational complexity with the scale
growth of KGs. In addition, multiple semantic relations,
which generally have directionality, may exist between
two entity KGs. In this case, using graph expressions to
support the semantics of a KG is often difficult, resulting
in the loss of accuracy during reasoning.

3.3 Reasoning based on KRL

Although symbolic representation enables quantitative
reasoning based on statistical probability, its inclusion
in machine learning models that execute numerical
operations is challenging. KRL aims to convert objects

of interest (entities and relations in KG) into a continuous
low-dimensional vector space[75, 134] to efficiently
measure the semantic correlations between entities
and relations and to significantly improve knowledge
acquisition, fusion, and inference performance. The
KRL model of TransE has demonstrated remarkable
outcomes in KG reasoning research. Zhao et al.[30]

identified four distinct types of medical entities from
records and built a medical knowledge network based
on EMRs (EMKN). They developed KRL methods to
capture a certain degree of similarity between entities
by embedding them in a low-dimensional dense vector
space using the latent factor models (LFMs) and TransE
models. Chai[92] employed the TransE to embed each
element into a vector representation and the SGD to
obtain the final graph embedding representation. Then,
they predicted the connection between pathology and
diseases using dual BiLSTM. Finally, the data associated
with recognized pathological diseases were utilized for
training the BiLSTM-based illness diagnostic model.
Li et al.[47] employed PrTransH to learn embedding
vectors from the generated quadruplet-based MKG
because it can embed the probability of a single fact into
the embedding vectors. Finally, the graph embedding
technique was used on a neural network challenge
for disease-specific prescription prediction. Biswas et
al.[125] used a technique known as tensor factorization.
Dai et al.[8] established a new framework for KG
embedding by incorporating adversarial autoencoders
(AAEs) for drug-drug interaction (DDI) tasks based on
Wasserstein distances and the Gumbel-Softmax. They
added AAEs to KG representation learning and used
Gumbel-Softmax and Wasserstein distance to tackle the
problem of vanishing gradients on discrete data.

KRL-based reasoning is a popular method at present.
This method can effectively transform the entities and
relations in a KG into multi-dimensional vectors, which
is convenient for computer calculation and significantly
improves reasoning performance. Neural networks and
deep learning algorithms can be applied effectively to
learn to express objects in a KG. However, this method
lacks deep expression capability and interpretability for
the semantics of KGs.

However, combining various reasoning models is also
a successful strategy; Yan et al.[104] employed motif-
based graph analysis (GM-based) and KG embedding
(KRL-based) to compute the scores for candidate drugs
independently and then combine them using a linear
function.
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4 Intelligent Applications of MKG

MKG research and application have successfully
demonstrated that these graphs can provide a wide
variety of decision analysis services and applications
for intelligent healthcare. The application cases include
intelligent medical information retrieval, disease
diagnosis, intelligent clinical education, drug analysis,
intelligent question and answering and chatbots,
intelligent nursing, and health management. In Table 3,
we assess and categorize the major applications of
MKGs.

As shown in Table 3, we categorize and highlight
recent achievements in MKGs based on application
scenarios. In addition, for each application, the
accompanying MKG and RIP information are included
to aid in comprehension of the implementation
techniques. The “-” in the third column indicates that
the associated MKG was not stated nor discussed in the
research. Notably, some researchers did not name their
developed MKGs specifically. Thus, we name them after
their application scenario or system framework, followed
by a “KG” suffix, for example, “FWA KG,” “DeepPS
KG,” or “DSQA KG.”

As the data indicate, disease diagnosis and drug analysis
are research hotspots. The use of disease diagnosis is
mostly focused on the identification of particular diseases
and offering prediction results for them. For example,
the applications based on MKGs can provide diagnostic
services for pediatric[33] and geriatric[26] diseases. Certain
prevalent specialist diseases, such as type 2 diabetes,
thyroid disease, subarachnoid hemorrhage, and sepsis,
have garnered significant study attention. Diagnoses of
uncommon and common disorders are equally critical
for clinical outcomes. The primary study directions in
drug analysis include the prediction of adverse drug
reactions, prediction of drug interactions, novel drug
development, drug reuse, medication recommendation,
and drug safety. The development of drugs for COVID-
19 is also an important research topic [104, 143, 144]. The
RIPs in Table 3 demonstrate the application mechanisms
of MKGs for reasoning, utilizing both innovative (HKDP,
MedSim, KGETM, TriModel, etc.) and traditional
(SVM, Word2Vec, logistic regression, TransE, CNN,
Bayesian, etc.) approaches for the three reasoning
models.

5 Discussion

In 2012, Google introduced the notion of a KG to

strengthen its search engine and other applications. The
core concept is to use ontologies to model entities
and relations in the actual world to assist machines in
intelligently comprehending them. We gather over 130
publications on KGs in the biomedical sector from Web
of Science, PubMed, Elsevier/ScienceDirect, IEEE/IET
Electronic Library, SpringerLink, and many others.
Fig. 2 illustrates the research trends and directions for
MKG based on literature analysis. As illustrated in
Fig. 2a, scholars have embraced and implemented the
notion of KGs in the medical field since its introduction.
The amount of related literature produced annually
is rising, and the idea of MKG is well recognized
and continually evolves as its usefulness is steadily
demonstrated via real-world applications. In Fig. 2b,
we investigate and statistically analyze three major
research directions, namely, (1) MKG construction,
which focuses on the source and benchmark of medical
knowledge, and construction techniques, systems, and
tools; (2) reasoning techniques, which primarily consist
of a range of reasoning methods based on KGs and
deep learning, big data, machine learning, graph theory
algorithms, logic and rule inference, and so on; (3)
intelligent applications, which focus on a variety of smart
application scenarios, including disease detection, drug
analysis, cdss, and health management. A recent study
statistically indicated the three directions as research
hotspots.

6 Challenge and Outlook

Although MKGs have made significant advancements,
the constant expansion of medical data and the rising
need for intelligence have introduced a number of new
challenges.

(1) Large-scale heterogeneous medical data[145].
Fusing information from disparate data sources into
a shared, actual, and unified medical ontology is an
ongoing research area.

(2) Medical domain complexity. Given the
complicated medical information, conveying objective
medical facts using specific SPs, particularly the
sequential MKG, which is critical for clinical diagnosis
and therapy, is difficult. However, a limited number of
studies have been conducted on this subject.

(3) Accurate KRL. KRL is commonly used to
describe the semantic properties of MKGs, but it is
insufficiently accurate, particularly for complicated KGs
with numerous relations, attributes, and entity kinds.

(4) Diversification of MKGs. Numerous MKGs have
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Table 3 Intelligent applications based on MKG and RIP.
Scenario Application Related MKG Related RIP

Intelligent
retrieval

COVID-19 related literature retrieval[32] CORD-19 NEKG, CORD-19 AKG SP: query: retrieve
TCM retrieval[4] TCM KG SP: query: retrieve
Medical text retrieval[31] HG KRL: KGE: retrieve

Disease
diagnosis

Pediatric disease prediction[33] Hybrid-KG GM: HKDP: classification
Geriatric disease reasoning[26] Geriatric KG SP: logic&rule inference: relation prediction
Rare disease diagnosis[34] – SP: entity feature! SVM: classification
Thyroid disease diagnosis[92] SemKG KRL: KGE! BLSTM: Classification
Predicate type 2 diabetes (T2D)[63] T2D KG GM: logistic regression! graph weighting:

relation prediction & visualization
Predicate the severity of sepsis[135] – KRL: self-attentation ! BiLSTM!

KGE! attentation: classification
Identify potential migraine biomarkers[82] – SP: extract compounds! filter&rank:

ranking
Multi-disease diagnosis[136] CEMRs KG KRL: RNKN: classification
Decision support for UTI[3] – SP: EYE(BBNs&FCMs): ranking
Provide personalized disease ranking[51] LT-D DB GM: CG-Engine: ranking
Predicate subarachnoid hemorrhage[23] – SP: rule&logic: relation prediction

Clinical
education

Predict outcomes to questions on the
SIDES platform[35]

OntoSIDES KRL: KGE: ranking

Disease diagnosis in a medical training
system[36]

– KRL: KGE: classification

Drug
analysis

Prediction of unknown ADRs[6] ADRs GM: graph weighting! machine learning
algorithm: classification

ADR discovery[37] TBKG GM: graph weighting ! Navie Bayes:
relation prediction

Prediction of ADRs[28] ADRs KG KRL: Word2Vec ! logistic regression:
classification

Therapeutic substitution of antibiotics[103] DrugBank KRL: MedSim: similarity analysis
Combined drug therapies[78] – SP: rules! filter! automated algorithm:

relation prediction
Herb recommendation[137] TCM KG KRL: KGETM&HC-KGETM: entity

prediction
Prediction of DDIs[38] DrugBank GM: similarity measures ! logistic

regression: relation prediction
Drug-drug interaction prediction[8] DeepDDI, Decagon KRL: AAEs: relation prediction &

classification
Analysis of neglected influencing factors
of statin-induced myopathy[110]

LOD, LLD SP: SPARQL query: other analysis

Drug discovery[80] SemKG GM: path exploration! logistic regression:
ranking

Drug efficacy screening[138] Guney, EMC GM: path exploration ! random forest:
classification

Drug repurposing[139] DTINet KRL: DDTE: entity prediction
Drug repurposing[56] RepoDB GM: extract paths ! random forest:

classification
Drug repurposing against Parkinson’s
disease[49]

DRKF KG KRL: KGE! SVM: classification

Drug repurposing for COVID-19[99] SemMedDB KRL: KGE: entity prediction
Drug-drug similarity(DDS)[140] KGDDS KG KRL: KGE! similarity compute: similarity

analysis
Safe medicine recommendation[66] SMR KG KRL: KGE: ranking
Prediction of drug target proteins[102] KGEE MED KRL: KGE (TriModel)!relation prediction

(to be continued)
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Table 4 Intelligent applications based on MKG and RIP.
(continued)

Scenario Application Related MKG Related RIP

CDSS
A data-intensive CDSS platform[39] IDS KG SP: rule inference: other analysis
Intelligent diagnose assistant system[74] SHKG SP: semantic inference: other analysis
Medical aided diagnosis system[40] – KRL:! KGE (TransR)! LSTM: other

analysis

Medical
Q&A

and chatbot

Medical question answering[58] – SP: probabilistic inference: ranking
An online medical chatbot system[41] – SP: extract entity! query: retrieve
A QA system for smart health[64] DSQA KG SP: generate QA pairs! query: retrieve
Medical question answering system[42] – SP: query: retrieve

Intelligent
nursing

Eldercare[43] – SP: query: other analysis
Balance reactive care and proactive
care[72]

EBDPKG SP: Bayesian: classification

Health
management

Dietary supplements (DSs)[44] iDISK SP: Web App! query: visualization&
KBQA

Health risk prediction[14] HKG GM: optimisation algorithm: classification
Predicting the status of health risks[46] KB-HIG KRL: graph weighting!Word2Vec:

classification
Estimating personalized risk ranking[51] LT-D DB KRL: CG-Engine: ranking

Others

Fraud, waste, and abuse (FWA)
detection[45]

FWA KG SP: rule inference: relation prediction

Deep patient similarity[67] DeepPS KG KRL: KGE! CNN: similarity
Automated ICD coding[55] G Coder KG KRL: SDNE! attentation! FGM:

classification
Semantic enhancement[11, 87, 141, 142] – –

been synthesized. However, their description framework,
ontology model, medical terminologies, semantic
identities, and storage technologies are all distinct,
which results in extremely difficult further reuse, linking,
and sharing.

(5) Graph of common sense knowledge. MKGs should
consider not only medical knowledge but also common
sense. Knowledge of common sense is critical because
it serves as the foundation for cognitive competence.

The advancement of KG approaches in the medical
industry has resulted in the creation of an increasing
number of application scenarios and intelligent services.
Students, doctors, patients, clinical administrators, and
researchers in the medical profession will progressively
profit from the application scenarios offered. We hope
that MKG research will result in the development of
a human-inspired artificial intelligence system capable
of integrating generic, common-sense, and domain-
specific information with societal values and norms and
individual cognitive models.
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