
International Journal of Electronic Commerce / Summer 2008, Vol. 12, No. 4, pp. 9–38.
Copyright © 2008 M.E. Sharpe, Inc. All rights reserved.

1086-4415/2008 $9.50 + 0.00.
DOI 10.2753/JEC1086-4415120401

Expressing and Verifying Business Contracts with
Abductive Logic Programming

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Marco Montali, and Paolo Torroni

Abstract: SCIFF is a declarative language, based on abductive logic programming,
that accommodates forward rules, predicate definitions, and constraints over finite domain
variables. Its abductive declarative semantics can be related to that of deontic operators;
its operational specification is the sound and complete SCIFF proof procedure, defined as
a set of transition rules implemented and integrated into a reasoning and verification tool.
A variation of the SCIFF proof procedure (g-SCIFF) can be used for static verification of
contract properties. The use of SCIFF for business contract specification and verification
is demonstrated in a concrete scenario. Encoding of SCIFF contract rules in RuleML ac-
commodates integration of SCIFF with architectures for business contracts.

KEY WORDS AND PHRASES: Abductive logic programming, business contracts, declara-
tive specifications, g-SCIFF, SCIFF, runtime verification, static verification.

Business contracts are an important conceptual abstraction and a practical
guiding and governance mechanism for cross-organizational collaboration.
Contracts can, in fact, be considered as the main coordination mechanisms
for extended enterprises [40]. A business contract architecture is therefore an
important part of the extended enterprise that aims to provide such function-
alities as contract management and monitoring [41]. The natural requirements
for a contract management framework are (1) a language with clear semantics
for specifying contracts and (2) operational procedures that can verify contract
properties at design time and, as well, the compliance of the parties to the
contract provisions at runtime.

From a high-level, functional viewpoint, a contract management system is a
component that is fed the “what“ of the problem by domain expert users and
takes care of the “how” through a suitable execution model. Computational
logics offer a broad range of languages and mechanisms that couple declara-
tive (“what is”) specification languages with sound operational (“how to”)
execution models that need not be disclosed to the user of the specification lan-
guage. For this reason, frameworks based on computational logic, adequately
extended to support event-based monitoring of business activities associated
with contracts, should play a key role in contract management systems.

Among the most influential computational logic frameworks for business
contract representation and reasoning are courteous logic programming and

This work has been supported in part by the MIUR PRIN 2005 projects Specifica-
tion and Verification of Agent Interaction Protocols and Vincoli e preferenze come
formalismo unificante per l’analisi di sistemi informatici e la soluzione di problemi
reali, and by the MIUR FIRB project Tecnologie Orientate alla Conoscenza per Ag-
gregazioni di Imprese in Internet. The authors thank the anonymous reviewers for
their useful comments on previous versions of this paper.

10 Alberti et al.

defeasible logic (DL) [30, 35]. The former, in fact, is a variant of the latter [13].
These are languages for nonmonotonic reasoning, mainly used in the context
of business contracts to enable normative reasoning and to identify and resolve
conflicts arising from events and contract rules, reason about violations, specify
and enforce reparation obligations, and so on. This article, in the context of
contract management systems, is mainly concerned with runtime monitoring
and verification of contracts rather than with the ontological and semantic
aspects of contract specification. It focuses primarily on the problem of runtime
evaluation of contract policies—expressions consisting of behavior constraints,
event patterns, and states—to determine whether the obligations of the par-
ties have been satisfied or there are violations of the contract [41]. The work is
based on SCIFF, the language and framework based on computational logic
that was conceived in the context of the Societies Of ComputeeS (SOCS) EU
Project to specify agent interaction protocols [46]. SCIFF consists of a logic
language based on abductive logic programming, a sound and complete proof
procedure [3, 8], and a software tool that implements it, based on an efficient
inference engine and constraint-solving technology [5]. First-class entities in
the SCIFF language are events that represent entities (e.g., actions taken), time-
outs associated with deadlines, external events (e.g., messages sent, services
requested), and expectations, which describe a desired behavior in terms of
events. Expectations are related to each other and to events by logical expres-
sions called integrity constraints (ICs). ICs express behavior constraints and
are the main building blocks in the specification of policies. Expectations are
modeled in SCIFF as abducible predicates, since they model events that may
happen or that must not happen (but we do not know whether that will be
the case). They are assumptions about future events, and reasoning on them
means reasoning on hypotheses, as in abductive reasoning. Expectations are
related to the deontic concepts commonly used to model normative systems,
such as obligation, prohibition, and permission, and this permits a deontic
reading of SCIFF specifications [9].

This paper proposes SCIFF as a language and operational framework with
which to specify and reason on business contracts. The deontic reading of
SCIFF specifications is one of the elements that make the SCIFF language a
good candidate for a contract specification and reasoning language. Reason-
ing on contract specifications (and events) can be done at two different stages
of contract design and enactment—runtime (as proposed in this paper) and
design time (as with DL and courteous logic programming). It is important
to enable these two kinds of verification within the same framework and, if
possible, use the same specification language so as to minimize translation
errors and the unavoidable inaccuracy resulting from the use of different lan-
guages. To this end, an extension of SCIFF, called g-SCIFF, has been defined
to verify protocol properties at design time [7]. This paper shows how it can
be used to enable design-time reasoning on contracts and the verification of
contract properties.

Figure 1 summarizes the components of the SCIFF framework that can
be used in contract specification and verification. The specification is given
through the knowledge base and a set of integrity constraints. It can then be

International journal of electronic commerce 11

used for runtime verification of compliance through the SCIFF proof proce-
dure, or for design-time verification by using the g-SCIFF proof procedure.

Contract Specification

A contract in the SCIFF language is specified by means of two components:
a knowledge base, which declaratively defines domain-specific knowledge
(e.g., deadlines), and a set of integrity constraints, which describe contract
clauses and can be seen as forward rules that generate expectations about the
behavior of the parties to the contract (see Figure 1). A declarative semantics
based on abductive logic programming determines whether the parties have
complied with the contract. The use of constraint logic programming (CLP)
technology makes deadlines easy to specify and efficient to verify [37].

Syntax of the SCIFF Language

The SCIFF language is composed of entities for expressing events and ex-
pectations about events, and relationships between events and expectations.

Representation of the Behavior of Parties

Events are the abstractions used to represent actual behavior.

Definition 1: An event is an atom:

•	 with predicate symbol H;
•	 whose first argument is a ground term; and
•	 whose second argument is a number.

Figure 1. Contract Specification and Verification in the SCIFF
Framework

12 Alberti et al.

Intuitively, the first argument is meant to represent the description of the
happened event, according to application-specific conventions, and the second
argument is meant to represent the time when the event happened.

In this paper, all events are mapped to communicative events, identified
by the functor tell. In particular, the description of happened events is of the
format tell(Sender,Receiver,Content[,Dialog]), where the optional Dialog param-
eter is an identifier of the interaction being described and the other arguments
have the obvious meaning.

Example 1:

	 H(tell(telco,c,phonebill(39-051-209-3086,145886,205)),19).	 (1)

says that telco sent to c a phonebill (whose identifier is 145886 and whose
amount is 205, for the phone number 39-051-209-3086) at time 19.

A negated event is a negative literal not H(...,...), where not represents nega-
tion as failure.

For the purposes of this discussion, history is defined as a set of happened
events and is denoted with the symbol HAP.

Expectations are the abstractions used to represent the desired events from
an external viewpoint. They represent the ideal behavior of the system—the ac-
tions that, once performed, will make the system compliant to its specifications.
The choice of the term “expectation” is intended to stress that events cannot
be forced to be as we would like them to be, but can only be expected.

Expectations are of two types:

•	 positive: representing some event that is expected to happen
•	 negative: representing some event that is expected not to happen

Definition 2: A positive expectation is an atom

•	 with predicate symbol E,
•	 whose first argument is a term, and
•	 whose second argument is a variable or a number.

Intuitively, the first argument is meant to represent an event description,
and the second argument is meant to tell at what time the event is expected
(not to be confused with the time when the expectation is generated, which
is not modeled by SCIFF’s declarative semantics). Expectations may contain
variables that leave the expected event not completely specified. Variables in
positive expectations are always existentially quantified: If the time argument
is a variable, for example, this means that the event is expected to happen at
any time. A specific semantics is not associated to time, but instead is treated
an expectation’s time argument like any other variable. This choice simplifies
the SCIFF language’s declarative and operational semantics.

Example 2 The atom

	 E(tell(telco, c, phonebill(39-051-209-3086,Id,Amount)),T).	 (2)

International journal of electronic commerce 13

says that telco is expected to send to c a phonebill (for the number 39-051-209-
3086, with some identifier Id, for some Amount of money) at time T.

A negated positive expectation is a positive expectation with the explicit nega-
tion operator ¬ applied to it. Variables in negated positive expectations are
quantified in the same way as those in positive expectations.

Definition 3: A negative expectation is an atom

•	 with predicate symbol EN,
•	 whose first argument is a term, and
•	 whose second argument is a variable or a number.

Intuitively, the first argument is meant to represent an event description,
and the second argument is meant to tell at which points in time the event
is expected not to happen. Like positive expectations, negative expectations
may contain variables that typically are universally quantified.1 For example,
if the time argument is a variable, then the event is expected not to happen
at all times.

Example 3: The atom

	 EN(tell(telco, c, phonebill(39-051-209-3086,Id,Amount)),T).	 (3)

means that telco is expected not to send c a phonebill (for the number 39-051-
209-3086, with any Id and for any Amount) at any time T.

A negated negative expectation is a negative expectation with the explicit
negation operator ¬ applied to it. Variables in negated negative expectations
are quantified in the same way as those in negative expectations.

The syntax of events and expectations is summarized in Table 1 and will
be used as such in Tables 2 and 3.

Contract Specifications

A contract specification S is composed of two elements: a knowledge base and
set of integrity constraints.

The knowledge base (KBS) is a set of Clauses in which the body can contain
(besides defined literals) expectation literals and restrictions.2 Intuitively, the
KBS is used to express declarative knowledge about the specific application
domain.

The syntax of the knowledge base is given in Table 2 and will also be used
in Table 3.

A goal in the SCIFF framework has the same role as in the logic program-
ming literature—as a predicate to be entailed. Therefore, the term “goal”
does not necessarily have the typical connotation (of “common” or “social”
goal) found in the literature on multiagent systems, although it can be used
for such a purpose.

14 Alberti et al.

The syntax of the goal is the same as the KBBody of a clause (see Table 2).
Integrity constraints are implications that are used operationally as forward

rules, as will be explained further on. Declaratively, they relate the various
entities in the SCIFF framework (i.e., expectations, events, constraints/restric-
tions) to the predicates in the knowledge base.

The syntax of ICs is given in Table 3. The Body of an IC can contain conjunc-
tions of all the elements in the language (namely, H, E, and EN literals, defined
literals, and restrictions). The Head contains a disjunction of conjunctions of
any of the literals in the language, except for H literals.

Contract specification. Given a knowledge base KBS and a set ICS of integrity
constraints, the pair <KBS ,ICS> is called a Contract Specification. Intuitively, a
contract specification is a description of the acceptable, or desirable, histories,
as defined by its declarative semantics, given formally in the next section.

Declarative Semantics and Mapping into Deontic Logic

Declarative Semantics

The (abductive) declarative semantics of the SCIFF framework is inspired by
other abductive frameworks, such as the IFF by Fung and Kowalski [29], but
introduces the concept of fulfillment to express a correspondence between
expected and actual events. The declarative semantics of a contract specifica-
tion is given for each specific history. A specification grounded in a history is
called an instance of the contract.

EventLiteral::=[not]Event

Event::=H(GroundTerm,Number)

ExpLiteral::=PosExpLiteral | NegExpLiteral

PosExpLiteral::=[¬]PosExp

NegExpLiteral::=[¬]NegExp

PosExp::=E(Term,Variable | Number)

NegExp::=EN(Term,Variable | Number)

ExistLiteral::=PosExpLiteral | Literal

Literal::=[not]Atom

Table 1. Syntax of Events and Expectations.

Clause::=KBHead←KBBody

KBHead::=Atom

KBBody::=ExtLiteral [∧ ExtLiteral]*[:Restriction [,Restriction]*]

|true

ExtLiteral::=Literal | ExpLiteral

Table 2. Syntax of Knowledge Base.

International journal of electronic commerce 15

Definition 4: Contract instance Given a contract specification S and a his-
tory HAP, SHAP represents the pair 〈S,HAP〉, called the HAP-instance of S
(or simply an instance of S).

In this way, SHAPi, SHAPf denotes different instances of the same contract speci-
fication S, based on two different histories: HAPi and HAPf, respectively.

An abductive semantics is adopted for the contract instance. Declaratively,
a ground set EXP of hypotheses should entail the goal and satisfy the integ-
rity constraints. In our case, the set EXP of hypotheses is, in particular, a set
of ground expectations, positive and negative, possibly negated by explicit
negation. Note that, by virtue of explicit negation, all such expectations are
positive abducible literals in abductive logic programming terminology.

Definition 5: Abductive explanation Given a contract specification S, an
instance SHAP of S, and a goal G, EXP is an abductive explanation of SHAP
for goal G if:

	 Comp(KBS∪HAP∪EXP) ∪CET ∪ TX ⊨ ICS 	 (4)

	 Comp(KBS∪EXP) ∪CET ∪ TX ⊨ G	 (5)

where

•	 CET is Clark’s Equality Theory [24], where equality (=) is considered
a special two-valued predicate and the following axioms hold:

	 1.	 f(X1,…,Xn) = f(Y1,…,Yn) → (X1 = Y1) ∧...∧ (∀f)
	 2.	 f(X1,…,Xn) ≠ g(Y1,…,Ym) (whenever f and g are distinct or n≠m)
	 3.	 X≠T (∀ X and T where X is a proper subterm of T)

•	 Comp represents the three-valued completion of a theory [38], that
is, the set of the completed definitions of its predicates (intuitively, a
predicate is true if and only if there exists a clause for it whose body
is true) interpreted in a three-valued setting (where truth values are
true, false, and unknown)

•	 X is the constraint theory [37], that is, the theory defined by the de-
clarative semantics of CLP constraints.

ICs::=[IC]*

IC::=Body→Head

Body::=(EventLiteral|ExpLiteral)[∧BodyLiteral]*[:Restriction [,Restriction]*]

BodyLiteral::=EventLiteral | ExtLiteral

Head::=HeadDisjunct [∨HeadDisjunct]* |false

HeadDisjunct::=HeadLiteral[∧HeadLiteral]*[:Restriction [,Restriction]*]

HeadLiteral::=Literal | ExpLiteral

Table 3. Syntax of Integrity Constraints (ICs).

16 Alberti et al.

The symbol |= is interpreted in three-valued logics. In particular, if ex-
pectations are interpreted as abducible predicates, we can rely upon a three-
valued model-theoretic semantics as intended meaning, as done, for instance,
in a different context, by Fung and Kowalski [29] and by Denecker and De
Schreye [25].

The following definition implements explicit negation for expectations
[15]:

Definition 6: ¬-consistency A set EXP of expectations is ¬-consistent if and
only if for each (ground) term p and integer t:

	 ¬({E(p,t),¬E(p,t)}⊆EXP)	 (6)

	 ¬({EN(p,t),¬EN(p,t)}⊆EXP)	 (7)

The following two definitions require consistency between positive and
negative expectations—that is, they prevent an event from being expected to
happen and expected not to happen in the same set of expectations.

Definition 7: E-consistency A set EXP of expectations is E-consistent if and
only if for each (ground) term p and integer t:

	 ¬({E(p,t),EN(p,t)}⊆EXP)	 (8)

The following definition establishes a link between happened events and
expectations by requiring positive expectations to be matched by events, and
negative expectations not to be matched by events.

Definition 8: Fulfillment Given a history HAP, a set EXP of expectations
is HAP-fulfilled if and only if ∀p and ∀t

	 E(p,t)∈EXP⇒H(p,t)∈HAP	 (9)

	 EN(p,t)∈EXP⇒H(p,t)∉HAP	 (10)

Otherwise, EXP is HAP-violated.

When all the given conditions (4–10) are met for at least one set of expecta-
tions EXP, the goal is said to be achieved and HAP is compliant to S with respect
to G and EXP; this is written as SHAP⊨EXP G. In particular:

Definition 9: Goal achievement Given an instance SHAP of a contract speci-
fication S and a goal G, if there exists an EXP that is an abductive explana-
tion of SHAP for G, and is ¬-consistent, E-consistent, and HAP-fulfilled, then
G is said to be achieved w.r.t. EXP (and this is written SHAP⊨EXP G). Given
an instance SHAP and a goal G, it is said that G is achieved if ∃EXP such that
G is achieved w.r.t. EXP.

International journal of electronic commerce 17

In the remainder of this article, when the text says that a history HAP is
compliant to a contract specification S, it will mean that HAP is compliant to
S with respect to the goal true. A statement that HAP violates a specification
S will mean that HAP is not compliant to S. When HAP is apparent from the
context, it will often not be mentioned.

Expectations and Deontic Operators

Mapping from deontic operators (obligation, permission, prohibition) to the
expectations of the SCIFF framework was proposed in [9]. Such a mapping
can be used to attribute a deontic meaning to SCIFF-based contract specifica-
tions.

The mapping is shown in Table 4. The first line of the table proposes a cor-
respondence between the deontic notion of prohibition (which requires an
action not to be performed) and our notion of negative expectation (which
requires an event not to occur). In fact, the correspondence becomes more ap-
parent if one considers Definition 8, which requires, for a set of expectations
to be fulfilled, the absence from the history of events of any event matching
a negative expectation. This definition closely resembles the reduction of the
prohibition operator proposed by Meyer, where “it is forbidden to perform
(an action) α in (a state) σ if one performs α in σ one gets into trouble” [39].
(In Meyer’s paper, “trouble” means an “undesirable state of affairs,” which
is a good description of our state of violation).

Reasoning in a similar way, one notes a correspondence between the deontic
notion of obligation (which requires an action to be performed) and the notion of
positive expectation (which requires an event to occur), as shown in the second
line in Table 4. Moreover, since a negative expectation EN(A) has to be read
as it is expected not A (i.e., as a shorthand for E(not A)), its (explicit) negation,
¬EN(A), corresponds to permission of A. Finally, due to the logical relations
among obligation, prohibition, and permission discussed by Sartor [43], the
fourth line of Table 4 shows how to map permission of a negative action.

A formal support of this mapping is provided in [9], based on the correspon-
dence between the Kripke semantics of deontic operators and the declarative
semantics of the SCIFF framework.

The correspondence shown in Table 4 illustrates more intuitively the dif-
ference between ¬E(tell(telco,c,phonebill(39-051-209-3086,Id,Amount)),T) and

Operator	 Abducible

Forb A	 EN(A)
Obl A	 E(A)
Perm A	 ¬EN(A)
Perm NON A	 ¬E(A)

Table 4. Deontic Notions as Expectations.

18 Alberti et al.

EN(tell(telco,c,phonebill(39-051-209-3086,Id,Amount)),T). The intuitive meaning
of the former is that no phonebill is expected from telco (if this happens, it simply
was not expected), which corresponds to the negation of the obligation for telco.
The latter has a different, stronger meaning—it is expected that telco will not
produce a phonebill (doing so would violate the expectation), corresponding
to a prohibition for telco.

Sample Contract Specification

A sample specification of a contract in the SCIFF language will now be pre-
sented. The example is a simplified version of a real-life situation, describing
the activation of a telephone line (carrier) by a customer. The discussion con-
siders the clauses of the contract a user must sign as the building blocks of a
contract that makes use of expressive combinations of E, EN, and H predicates,
CLP constraints, and predicates defined in the S. With SCIFF one can give a
faithful representation of such a contract that is understandable, modular,
and verifiable. Despite the efforts of the telephone company to make things
as obscure as possible, we (as customers) will at any time be able to detect, via
SCIFF, whether the telephone company (telco in the example) has the right to
interrupt the service or to request a payment from us and whether we have
the right to complain to telco and not to pay part of the bill. Similarly, telco will
receive indications about when to send requests for payment and when (not)
to activate or (not) to deactivate the carrier.

Description of the Contract

The procedures that regulate the concession of a carrier to a customer are
contained in a contract agreed upon by the parties (telco and the customer).
The contract states what to do when the customer requests a new carrier, the
procedures for paying bills and for handling complaints, what obligations/
penalties apply in case of late payments, and how to delegate authority to
the relevant agent, when necessary, to determine whether the parties have
complied with all the requirements set forth in the contract. A set of clauses
is nucleated in the contract, and their specifications are given in the SCIFF
framework. ICs are reported in Table 5, and the KBS is reported in Table 6. A
set of clauses about bill and complaint handling was chosen.

After sending a phone bill to a customer, telco cannot send requests for
payment before a predefined period of time (TWait) has passed.

1.	 After TWait, either the customer has paid the bill or filed a com-
plaint, or telco is allowed to send a request for payment.

2.	 After receiving a legitimate request for payment, either the customer
pays the bill or telco is allowed to deactivate the carrier after a fur-
ther TWait.

3.	 If, upon receiving a request for payment, the customer pays by
TWait, telco is not allowed to deactivate the carrier.

International journal of electronic commerce 19

[IC1]

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
defaultwait(TWait)→

EN(tell(T,C,requestpayment(PhoneNo,BillId,AnyAmnt),D),T2)

:T2 > T1,  T2 < T1 + TWait.

[IC2]

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
defaultwait(TWait)→

E(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T2)

:T2 < T1 + TWait

∨ E(tell(C,T,complain(PhoneNo,BillId,PartlAmnt),D),T3):

T3 < T1 + TWait

∨ ¬EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T4):

T4 > T1 + TWait.

[IC3]

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T2) ∧

¬EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T2) ∧
defaultwait(TWait)→

¬EN(tell(T,C,deactivate(PhoneNo,reason(BillId)),D),T3)

:T3 > T2 + TWait

∨ E(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T4):

T4 < T2 + TWait.

[IC4]

H(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T2) ∧

defaultwait(TWait) ∧ T2 < T1 + TWait→
EN(tell(T,C,deactivate(PhoneNo,reason(BillId)),D),T3).

[IC5]

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(C,T,complain(PhoneNo,BillId,PartlAmnt),D),T2) ∧

defaultwait(TWait) ∧ T2 < T1 + TWait ∧
isadmissiblecomplaint(BillId,PartlAmnt) →

¬E(tell(C,T,pay(PhoneNo,BillId,PartlAmnt,PaymtRcpt),D),T3) ∧
EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T4):T3 > T1

Table 5. ICS in the Contract Between telco (T) and a Customer (C).

KBS:
societygoal.
defaultwait(10).
isadmissiblecomplaint(BillId,PartlAmnt)← listofbills(L1),
    member((BillId,TotalAmnt),L1),
    PartlAmnt<TotalAmnt.
listofbills([(145886,205),(114477,407),(168945,126)]).

Table 6. KBS in the Contract Between telco and a Customer.

20 Alberti et al.

4.	 If by TWait, the customer files an admissible complaint about a re-
ceived bill, the customer is no longer expected to pay for it, and telco
is not allowed to request a payment.

SCIFF Specification of the Contract

Table 5 contains five ICs. Roughly speaking, the first three describe the expected
behavior of telco regarding bill handling, whereas the last two are about the
rights of the customer (C).

The ICs state the following:

•	 By [IC1], after sending a bill at time T1, telco may not send requests
for payments before time T1 + TWait, where TWait is the amount of
time defined by the defaultwait predicate in the KBS.

•	 By [IC2], after telco sends a bill at time T1, one of the following expec-
tations holds: Either C pays the bill in full by T1 + TWait, or C com-
plains about (part of) the bill by T1 + TWait, or telco obtains the right
to send a request for payment at some time T4 later than T1 + TWait.
Note that any complaints C sends after the deadline (T1 + TWait) will
have no impact on the state of affairs in these procedures, since they
will not match with any expectation.

•	 By [IC3], if telco sent a bill, and later a request for payment at a time
when doing so was not prohibited, and if the request for payment
concerns the bill in full, then either C pays the bill or telco gains the
right to deactivate the carrier (although telco is not obliged to do so).

•	 By [IC4], if C has paid the bill by the deadline, then telco cannot
deactivate the carrier. Note that [IC4] takes effect independently of
whether telco actually has the right to send a request for payments.

•	 By [IC5], after complaining about some part of the bill (PartlAmnt), C
is no longer expected to pay the full BillAmnt.

The KBS part of the SCIFF program, shown in Table 6, specifies deadlines,
as in the previous example, and defines what an “admissible complaint” is.
To this end, a predicate isadmissiblecomplaint/2 is defined that relies upon a
database of bills (“list of bills”). In this simplified example, the database is
mimicked by a predicate named listofbills/1. The predicate member/2 used by
isadmissiblecomplaint/2 is predefined in most Prolog distributions. This example
in particular uses the implementation that comes together with [45].

Contract Verification

Two types of verification supported by the SCIFF framework will now be
described. The first is a verification that the parties involved in a contract
are interacting in accordance with the contract terms. The second is a formal
verification of whether a contract has certain properties.

International journal of electronic commerce 21

Runtime Verification

The runtime verification of contracts specified in the SCIFF language is performed
by means of an abductive proof procedure that is itself called SCIFF [8]. After
a review of the SCIFF proof procedure, its behavior will be shown on sample
interactions regulated by the contract described in the preceding section.

The SCIFF Proof Procedure

Since the SCIFF language and its declarative semantics are closely related to
those of the IFF abductive framework, the SCIFF proof procedure is also in-
spired by the IFF proof procedure [29]. SCIFF is a substantial extension of IFF.
In a nutshell, the main differences between the frameworks are as follows:

•	 SCIFF supports the dynamic happening of events—that is, the inser-
tion of new facts in the knowledge base during the computation.

•	 SCIFF supports universally quantified variables in abducibles.
•	 SCIFF supports quantifier restrictions.
•	 SCIFF supports the concepts of fulfillment and violation (see Defini-

tion 8).

The SCIFF proof procedure is based on a rewriting system that transforms
one node to another (or to others). In this way, starting from an initial node,
it defines a proof tree. A node can either be the special node false or can be
defined by the tuple

	 T≡〈R,CS,PSIC,PEND,HAP,FULF,VIOL〉.	 (11)

The set of expectations EXP is partitioned into the fulfilled (FULF), violated
(VIOL), and pending (PEND) expectations. The other elements are:

•	 R is the resolvent: a conjunction whose conjuncts can be literals or
disjunctions of conjunctions of literals.

•	 CS is the constraint store: It contains CLP constraints and quantifier
restrictions.

•	 PSIC is a set of implications, called partially solved integrity con-
straints

•	 HAP is the history of happened events, represented by a set of
events, plus a closed(HAP) Boolean attribute.

If one of the elements of the tuple is false, then the tuple is the special node
false, without successors.

Initial Node and Success

A derivation D is a sequence of nodes

	 T0 → T1 → . . . → Tn–1 → Tn.

22 Alberti et al.

Given a goal G, a set of integrity constraints ICS, and an initial history HAPi,
the first node is built in the following way:

	 T0 ≡ 〈{G}, ∅, ICS, ∅, HAPi,∅,∅〉

with closed() = false. The other nodes are obtained by applying the transitions
described in the next subsection until no further transition can be applied.

Definition 10: Successful derivation Given an instance SHAPi of a contract
specification S, and a set HAPf⊇HAPi, there exists a successful derivation
for a goal G if the proof tree with root node T0 has at least one leaf node

	 〈∅,CS,PSIC, PEND, HAPf, FULF, ∅〉

where CS is consistent, and PEND contains only negations of expectations ¬E
and ¬EN. In such a case, we write:

	
S G

HAP EXP
HAP

i

f
| .−

From a nonfailure leaf node N ≡ 〈RN, CSN, PSICN, PENDN, HAPN, FULFN,
VIOLN〉, answers (called expectation answers and including, in particular, the
actual set of expectations required by the declarative semantics according to
Definition 9) can be extracted in a similar way to the IFF proof procedure. To
compute an expectation answer, a substitution σ' is computed such that

•	 σ' replaces all variables in N that are not universally quantified by a
ground term

•	 σ' satisfies all the constraints in the store CSN

If the constraint solver is (theory) complete (i.e., for each set of constraints
c, the solver always returns true or false, and never unknown), then there will
always exist a substitution σ' for each nonfailure leaf node N [37]. If the solver
is incomplete, σ' may not exist. The nonexistence of σ' is discovered during
the answer-extraction phase. In such a case, the node N will be marked as a
failure node, and another nonfailure node can be selected (if there is one).

Definition 11: Expectation answer Let σ = σ'|vars(G) be the restriction of σ' to
the variables occurring in the initial goal G. Let DN = (FULFN ∪ PENDN)σ'.
The pair 〈DN, s〉 is the expectation answer obtained from the node N.

Transitions

The transitions are based on those of the IFF proof procedure [29], enlarged
with those of CLP and with specific transitions accommodating the concepts
of dynamically growing history and consistency of the set of expectations.
The inference rules derived from IFF are:

International journal of electronic commerce 23

Unfolding substitutes an atom p with its definitions in KBS:

	

p l l

p l l

i i

n
i i

m

n mn

1
1 1= ∧ ∧

= ∧ ∧

...

...

...

If the literal p occurs in the resolvent R, then n new nodes are generated.
If p occurs in the body of an IC ≡ p∧B → H, then one node with n ICs is
generated.

	

p l l B H

p l l B H

i i

n
i i

m

n mn

1
1 1= ∧ ∧ ∧ →

= ∧ ∧ ∧ →

...

...

...

Propagation propagates ICs: if a literal p∈∆ and

	 ICi ≡ p1 ∧ B → H

generates a new node with the additional IC

	 (p = p1) ∧ B → H

Splitting distributes conjunctions and disjunctions, making the final formula
in a sum-of-products form.

Case analysis: If ICi ≡ (X = t) ∧ B → H, case analysis generates two nodes,
one with X = t, and ICi ≡ B → H and the other with X≠t and ICi substituted
with true.

Factoring reuses previous hypotheses: If p1, p2 ∈ D, factoring generates two
nodes, one with p1 = p2 and the other with p1 ≠ p2

Rewrite rules for equality: Use the inferences in the Clark equality theory to
perform unification (i.e., p(t1, ..., tn) = p(s1, ..., sn) is replaced with ∀n

i=1ti = si)

Logical simplifications: Try to simplify a formula through equivalences like
A∧false↔false, [A←true]↔A, ….

Additionally, SCIFF-specific inference rules are:

Happening: A new happened event H(t) is added to the set HAP.

Closure: Assumes that no more events can happen (sets the closure flag to
true). Useful for reasoning under the Closed World Assumption.

24 Alberti et al.

Nonhappening: If ICsi ≡ ¬H(X) ∧ B → H, and closure(HAP) = true, performs
constructive negation to derive that ∀X such that ∀H(t)∈HAPX ≠ t, B → H (i.e.,
for each possible instance of H(X) that does not unify with any element of
HAP, B → H holds).

Consistency: If {E(X),EN(Y)}⊆∆ (or {E(X),¬E(Y)}⊆∆ or {EN(X),¬EN(Y)}⊆∆),
imposes X≠Y.

Fulfillment: If H(X)∈HAP and E(Y)∈∆ generates two nodes, one is with X =
Y and the expectation E(Y) fulfilled, and the other is with X ≠ Y.

Violation: If H(X)∈HAP and EN(Y)∈∆ imposes X≠Y.

CLP: Constraint logic programming reasoning.

SCIFF Properties

The most significant formal properties of the SCIFF proof procedure are stated
and proven in [8]. They are briefly restated here.

Termination is proven, as for SLD resolution (Linear resolution with a Selec-
tion function for Definite clauses [14]), for acyclic knowledge bases and bounded
goals and implications. The notion of acyclicity of an abductive logic program is
an extension of the corresponding notion given for SLD resolution. Intuitively,
for SLD resolution a level mapping must be defined such that the head of each
clause has a higher level than the body. For the IFF, since it contains integrity
constraints that are propagated forward, the level mapping should also map
atoms in the body of an IC to higher levels than the atoms in the head. This
should also hold for possible unfoldings of literals in the body of an IC [48].
Similar considerations hold for SCIFF. The level mapping was extended for
considering also CLP constraints. For definitions of boundedness and acyclic-
ity for the contract specification, the reader can refer to [48].

Theorem 1 (Termination of SCIFF): Let G be a query to a contract S =
〈KBs, ICs〉, where KBS, ICS, and G are acyclic w.r.t. some level mapping, and
G and all implications in ICS are bounded w.r.t. the level mapping. Then,
every SCIFF derivation for G for each instance of G is finite, assuming that
happening is not applied.

Moreover, under the following conditions:

	 •	 the number of happened events is finite,
	 •	 happening is applied only when no other transitions can be applied, and
	 •	 nonhappening has higher priority than other transitions,

SCIFF also terminates with dynamically incoming events.

The SCIFF proof procedure uses a constraint solver, so its soundness depends
on the solver. Soundness was proved for a limited solver containing only the
rules for equality and disequality of terms.

International journal of electronic commerce 25

Theorem 2 (Soundness of SCIFF): Given a contract instance SHAPf, if

	
S G

HAP EXP
HAP

i

f
| .−

for some HAPi⊆HAPf, with expectation answer (EXP,σ), then

	
S G

HAP EXPf | .= σ σ

Completeness states that if goal G is achieved under the expectation set
EXP, then a successful derivation can be obtained for G, possibly computing
a set EXP’ of the expectations whose grounding (according to the expectation
answer) is a subset of EXP.

Theorem 3: Given a contract instance SHAP, a (ground) goal G, for any
ground set EXP such that SHAP⊨EXPG, then ∃EXP’ such that S G∆|− ′EXP

HAP with
an expectation answer (EXP’,σ) such that EXP’σ⊆EXP.

Runtime Verification Examples

The following case will be considered: telco sends the bill, and C does not pay.
After TWait time units, telco sends C a request for payment.

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 33).	 (12)

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

This sequence of events (12) generates a set of fulfilled expectations. After
the first message at time 19 (the notification of the phonebill), [IC2] generates
three alternative and equally plausible sets of expectations: Either C is expected
to pay before time 29, or C is expected to complain before time 29, or telco
has the right (¬EN) to issue a request for payment after time 29. In all cases,
because of [IC1], telco does not have the right to send a request for payment
before time 29. The first two alternatives become invalid at time 29 due to the
expired deadline. The message requestpayment at time 33 is acceptable accord-
ing to the contract and gives telco explicit right to deactivate the carrier any
time later than 43. In particular, by [IC3] an alternative is generated: In one
case telco has the right to deactivate the carrier after time 43, in the other case
C is expected to pay. Because of [IC4], the last message, in which C notifies
the payment to telco, has as a side effect that telco loses its right to deactivate
the carrier at any time in connection to the bill No. 145886.

As the second example shows (13), a violation can be generated if telco
deactivates the carrier. In that case, SCIFF detects a violation because the
fourth message violates the contract, and in particular [IC4], by which telco
is expected not to deactivate the carrier if C pays within 10 time units after
receipt of telco’s request for payment.

26 Alberti et al.

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 33).	
(13)

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

	 H(tell(telco, c, deactivate(39-051-209-3086,reason(145886)),d1), 38).

A third example will now be considered. Like the other examples, it starts
with telco sending C a bill. C complains at time 33, which unfortunately is past
the deadline of 10 time units after the bill. The complaint, although not spe-
cifically disallowed by the contract, does not change the state of expectations
in the system, since no IC fires. In particular, [IC5] says that if C complains
before the deadline, C is no longer expected to pay the amount complained
about, and telco loses the right to send requests for payment concerning either
the amount C complained about or the full amount of the bill. But [IC5] (as
well as the other ICs) does not say what happens in case of a late complaint,
so telco exercises its right to send C a request for payment. The only option
for C is either to pay or to have the carrier deactivated. C pays, and telco no
longer has a right to deactivate the line, which incidentally makes the second
option (have the carrier deactivated) inconsistent, besides fulfilling all the
expectations of the first branch (14).

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(c, telco, complain(39-051-209-3086,145886,150),d1), 33).	
(14)

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 34).

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

In the last example, telco as usual sends C a bill. However, this time C sends
a complaint before the deadline. C complains about the amount of €150 out of
€205. The complaint is judged admissible (as shown in the example with the
isadmissiblecomplaint predicate). In consequence, if telco sends C a request for
payment (14), it violates the contract. Due to [IC5], telco can no longer issue a
request for payment. Unfortunately, telco does so at time 34, and consequently
SCIFF detects the violation of [IC5].

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(c, telco, complain(39-051-209-3086,145886,150),d1), 24).	 (15)

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 34).

Design-Time Property Verification

An extension of the SCIFF proof procedure, called g-SCIFF, has been developed
to verify contract properties [7]. g-SCIFF is briefly reviewed below, followed
by a demonstration of its use to refute a formal property that is not possible
with the contract described in the second section.

International journal of electronic commerce 27

The g-SCIFF Proof Procedure

Besides verifying whether a history is in compliance with a contract, g-SCIFF
is able, given a contract, to generate a compliant history. This is achieved by
(1) considering H events as abducibles and allowing variables in them, and
(2) adding a new transition to those of SCIFF, which, when a positive expecta-
tion E(p,t) is added to the set of expectations, generates an event H(p,t) that
fulfills it. g-SCIFF has been proved sound [6], which means that the histories
it generates (in case of success) are guaranteed to be compliant to the interac-
tion contracts while entailing the goal. Note that the histories generated by
g-SCIFF are not, in general, a collection only of ground events, like the HAP
sets given as an input to SCIFF. They can, in fact, contain variables, which
means that they represent classes of event histories.

In order to use g-SCIFF for verification, the property to be verified is ex-
pressed as a conjunction of literals. Thus, to verify whether a formula f is a
property of a contract P, the contract is expressed in our language and ¬f as
a g-SCIFF goal. Then, either

•	 g-SCIFF returns success, generating a history HAP. Thanks to the
soundness of g-SCIFF, HAP entails ¬f while being compliant to P: f
is not a property of P, HAP (and its groundings) being a counterex-
ample; or

•	 g-SCIFF returns failure, suggesting that f is a property of P.3

Design-Time Property Verification Example

This section shows the refutation, by means of g-SCIFF, of a simple property
of the contract described earlier. For simplicity, details related to the manage-
ment of restrictions and defined predicates will not be shown.

The property is: “if a phone bill is sent, then the customer will pay for it.” Using
our formalism for events, the property can be written as follows:

	 H(tell(T,C,phonebill(N,I,A),D), Tb)	 (16)
	 → H(tell(C,T,pay(N,I,A,R),D), Tp)

The negation of the property is:

	 H( tell( T, C, phonebill(N, I, A), D), Tb)	 (17)
	 ∧¬H( tell( C, T, pay(N,I,A,R),D), Tp)

Therefore, a history that entails Equation (17) is a counterexample of the
property to be verified. To try and find such a history, one writes the follow-
ing g-SCIFF goal:

	 G= E( tell( T, C, phonebill(N,I,A),D), Tb)	 (18)
	 ∧EN( tell( C, T, pay(N,I,A,R),D), Tp)

28 Alberti et al.

In general, a history that achieves a goal (see Definition 9) will necessarily
include events that are expected to happen, and not include events that are
expected not to happen, in the goal. Thus, in this case, a history that achieves
G will entail Equation (17).

To begin, g-SCIFF is run with G as a goal. g-SCIFF imposes the first expec-
tation of the goal,

	 E(tell( T, C, phonebill(N,I,A),D), Tb),

which generates the following event:

	 H(tell( T, C, phonebill(N,I,A),D), Tb)

which in turn, due to the first IC in Table 5, generates the expectation

	 EN(tell(T,C,requestpayment(N,I,A),D),T2)

and, due to the second, one of

	 E(tell(C,T,pay(N,I,A,PR),D),T2): T2<Tb+10

	 E(tell(C,T,complain(N,I,PA),D),T3) : T3<Tb+10

	 ¬EN(tell(T,C,requestpayment(N,I,A),D),T4) : T4<Tb+10.

The E-consistency requirement (Definition 7) rules out the first alternative,
because of the negative (EN) expectation imposed by the goal (see Equation
(18)); so the second branch is explored, and the event

	 H(tell(C,T,complain(N,I,PA),D),T3)

is generated.
Due to the fifth IC in Table 5, the following expectations are generated:

	 ¬E(tell(C,T,pay(N,I,PA,PR),D),T3)

and

	 EN(tell(T,C,requestpayment(N,I,BillAmnt),D),T4)

and finally g-SCIFF terminates and returns success, with the history

	 HAP={H(tell(T,C,phonebill(N,I,A),D), Tb),

	 H(tell(C,T,complain(N,I,PA),D),T3)}

Thanks to the soundness of g-SCIFF, any grounding of HAP is a counter-
example of the property that was to be proved, and it is also compliant to

International journal of electronic commerce 29

the contract. Thus, it shows that the contract does not enjoy the property. In
particular, it shows that a customer can avoid being expected to pay by filing
a complaint.

Rule Mark-Up

An architecture and a formal framework that enable Web services to reason on
publicly available SCIFF-based specifications is proposed in [11]. In particular,
it is possible for a Web service to verify whether it can interact with another
and achieve a goal. An interested party could fruitfully perform such a step
before agreeing on a contract with another party. Obviously, this requires a
formalism that makes it practical to exchange SCIFF-based specifications.

RuleML is a suitable mark-up language for exchanging rules on the Web
[1]. RuleML 0.9 contains mark-ups for expressing important concepts of the
SCIFF proof procedure. In particular, SCIFF is a rule engine able to distinguish
and use both backward and forward rules. Backward rules are used to plan,
reason on events, and perform proactive reasoning. Forward rules are used
for reactive reasoning and to quickly perform actions in response to occurred
events. Both are seamlessly integrated in SCIFF. RuleML 0.9 contains a direction
attribute that can be attached to rules. Because it is based on abduction, SCIFF
can deal both with explicit negation and with negation by default that have
appropriate tagging in RuleML. The present work only uses standard RuleML
syntax. In future work, it might be interesting to distinguish between defined
and abducible predicates, or between expectations and events.

SCIFF was implemented in SICStus Prolog. SICStus contains an imple-
mentation of the PiLLoW library [23], which makes it easy to perform http
requests, as well as to implement services on the Web. SICStus also contains
an XML parser that made it possible to easily implement the RuleML parser.
The RuleML parser is freely available on the SCIFF Web site [44].

Related Work

The reduction of deontic concepts such as obligations and prohibitions has
been the subject of extensive research. Among the most influential approaches
are Anderson’s, by which A is obligatory if its absence produces a state of
violation [12], and Meyer’s, by which an action A is prohibited if performed it
produces a state of violation [39]. These two reductions strongly resemble our
definition of fulfillment (Definition 8), which requires positive (resp. negative)
expectations to have (resp. not to have) a corresponding event.

Several authors have studied “sub-ideal” situations—namely, how to man-
age situations in which some of the norms are not respected.

For instance, van der Torre and Tan show the relation between diagnostic
reasoning and deontic logic, importing the principle of parsimony from diag-
nostic reasoning into their deontic system, in the form of a requirement to
minimize the number of violations [47]. In particular, given the specification of
a normative system (as a set of formulae that tell when a norm is violated) and

30 Alberti et al.

a state of affairs, they define a minimal (with respect to inclusion) set of norms
such that the violation of those norms is consistent with the specification and
the state of affairs. The SOCS social framework currently distinguishes only
between empty and nonempty sets of violations, and does not define minimal
sets. However, it would be possible to do so by taking the minimal, with respect
to inclusions, among the sets of expectations that are consistent with a social
specification and a history, but possibly not fulfilled by the history. This will
probably be our approach when we tackle the management of violations (by
means of sanctions and recovery procedures) in future work.

Prakken and Sergot propose a solution to the problem and paradoxes
stemming from earlier logical representations of contrary-to-duty obligations
(CTDs), meaning obligations that become active when other obligations are
violated [42]. They do so by introducing a new operator OB (A), meaning that
A is obligatory given the subideal context B. The semantics of this operator is
of the Kripke type but differs from the standard modal logic because of the
accessibility relation: In that work, the accessible worlds are the best alterna-
tives, given the truth of B. In the “mainstream” of our research, we do not
support CTDs. However, a modified version of our framework provides a
simplified language and does support alternative obligations at different levels
of priority [10]. A further step could be to integrate priority levels in the main
SOCS social framework.

Deontic operators have not only been used to model normative concepts
related to agent interaction in institutional contexts, but they are also part of
agent programming languages. Notably, in IMPACT, agent programs make
use of permission, obligation, and prohibition operators, with a semantics
intuitively similar to that used in deontic logics, but with the purpose of deter-
mining possible courses of action that an agent may take in a given situation
[16, 27]. In this respect, the IMPACT and SCIFF models have similarities even if
their purposes and expressivity are different. The main difference is that agent
programs in IMPACT express and determine the behavior of a single agent,
whereas the goal of the SCIFF framework is to express rules of interaction and
norms that cannot really determine and constrain the behavior of the single
agents participating in a society, since agents are autonomous.

Governatori uses defeasible logics with deontic operators of obligation and
permission to define contracts [30]. He proposes the introduction in RuleML
of new tags for identifying obligations and permission, and creates graded
violations and corresponding ideal and subideal states. In SCIFF, explicit
permission is generally not used, because everything is allowed by default.
Typically, when an action is expected not to happen, EN is stated explicitly.
There are connections between EN and ¬P of deontic logics (studied in [9]),
so it might be possible to use the same tags proposed by Governatori (e.g.,
<neg><Permission> to represent EN).

Governatori also introduces an operator ⊗ to address recovery from viola-
tion [30]. For example, A⇒OB⊗OC means that A implies that B is obligatory;
but if OB is violated, C becomes obligatory. In SCIFF, recovery expectations can
be inserted as an alternative in each of the rules: A⇒OB⊗OC could be written
in SCIFF as H(A) → E(B) ∨ E(C). Interestingly, Governatori also proposes an
inference rule that derives recovery rules from the other rules of the contract

International journal of electronic commerce 31

(from A→OB and ¬B→OC derives A→OB⊗OC) [30]. This is an interesting
line of research that in future work will also be applied to SCIFF.

Governatori and Milosevic discuss the need for contract verification and
contract monitoring to check how parties fulfill their policies [31, 32]. Both
these issues are addressed by the adoption of a formal specification language
for contracts. The system they propose, and their Business Contract Language
(BCL) in particular, is based on the formalism for the representation of CTDs.
The formal representation they adopt for contracts is based upon a proposi-
tional logic language, with the deontic operators of obligation, permission,
and contrary-to-duty. Each condition or policy of a contract is represented by
a rule where the antecedent is a literal or a modal literal (built with the deontic
operators of permission and obligation, possibly negated), and the conclusion
of the rule is a CTD expression. Contract analysis then reduces the contract
to a normal form that makes explicit all the contract conditions that can be
generated/derived from the given specification. The procedure for generating
normal forms is expressed in terms of inference rules that merge two rules
in a new clause through the violations of conditions (e.g., when the former
rule mentions an obligation O A in its conclusion and the latter rule has the
negation ¬A in its antecedent, then their conclusions are composed in order to
build a CTD formula for A). Normal forms are then a sort of partial evaluation
of specification rules, in the logic of violation, aiming at producing rules with
CTD formulas in their conclusions that summarize all the possible violations
and recovery actions implicitly specified by the original (logic) representation
of a contract. On generated normal forms, they can therefore detect conflicts
arising from, for example, obligation of A and ¬A, or occurrence of A and ¬A
in conclusions without any CTD for A neither ¬A.

Governatori et al. also consider the problem of checking the compliance of
a business process expressed in the Business Process Modeling Notation to
a business contract expressed in the aforementioned language [22, 33]. They
define ideal, subideal, and nonideal situations to reflect decreasing degrees of
compliance, and use these terms to characterize a business process with respect
to a contract. Business processes are outside the focus of this paper, but we have
proposed an approach to the definition of compliance of agents to interaction
protocols and Web services to choreographies that is similar to that of Gover-
natori et al. and also provides an automatic verification procedure [2, 4].

Although our proposed language does not support CTDs, it is first-order
and supports the deontic operators of permission and obligation (and their
negation, as discussed in [9]). The proposed approach exploits SCIFF at run-
time for contract monitoring (e.g., conflicts and contradictions are detected
at runtime by the notions of E-consistency and ¬-consistency). More general
contract properties (beside the absence of conflicts) can be also statically
verified by g-SCIFF. In particular, g-SCIFF generates every possible compli-
ant history that satisfies a given goal and a contract specified in the SCIFF
language. Each generated history can be considered as a set of obligations
in the approach of Governatori and Milosevic [31, 32], since g-SCIFF turns
obligations into events.

The problem of representing violations and CTD formulas using first-order
logic has also been studied by Herrestad, who discusses several solutions and

32 Alberti et al.

their limits [36]. Our concept of positive and negative expectations, together
with an explicit time representation, supports quite well the representation
of deontic operators. However, our representation of CTD formulas does not
fully support the idea of “suboptimal worlds” as discussed by Herrestad [36],
since recovery actions are actually represented as plain alternatives to duties.
Future research will also address this issue. A solution might consist in extend-
ing our declarative semantics with the concept of preference.

An interesting extension would be to equip the SCIFF language with CTD
expressions to occur in the head of ICs. In particular, when dealing with CTD
expressions, one needs to select preferred models, such that the expectations
in the recovery branch are imposed only if the normal branch is not fulfilled.
One way to state such preferential reasoning is through qualitative choice
logic [19]. This issue will be investigated in future work.

Boella and van der Torre discuss how a normative system can be seen as a
normative agent, equipped with mental attitudes about which other agents
can reason, choosing either to fulfill their obligations or to face the possible
sanctions [18]. Conceptually, the social infrastructure in the SOCS model could
be viewed as an agent whose knowledge base is the society specification,
whose mental attitude is a set of expectations and whose reasoning process
is the SCIFF proof procedure.

The ability to reason with time and deadlines is a distinguishing feature of
the SCIFF language. Temporal aspects in normative positions have been the
focus of previous work, such as [34] and [20]. In [34], Governatori et al. show
how the analysis of normative conditionality and normative positions has to
include temporal aspects in order to capture a number of important concepts.
They propose a framework with temporalized normative positions in which
literals may be labeled by time instants like SCIFF events, and assuming linear
and discrete time. In this way it is possible to model deadlines and timeouts.
Following a different approach from ours, Governatori et al. use the event
calculus to deal with time. Broerson et al. investigate the deontic logic of
deadlines by introducing an operator O(ρ≤δ), which means, intuitively, that
the action ρ ought to be brought about before (or at the same time) another
event δ happens [20]. They model time by means of Computation Tree Logic
temporal logic. We can express a similar concept by means of an integrity
constraint H(d, Td) → E(r, Tr) ∧ Tr ≤ Td, which says that if δ has happened,
than ρ is expected to have happened before (or at the same time).

The SCIFF framework can capture, in a computational setting, the concept
of (conditional) obligation with deadline presented by Dignum et al., with an
explicit mapping of time [26]. Dignum et al. write: Oa(r < d – p) to state that if
the precondition p becomes valid, the obligation becomes active. The obliga-
tion expresses the fact that a is expected to bring about the truth of r before a
certain condition d holds.

For instance, if

	 P = H(tell(S,a,request(G),D,T))

	R = H(tell(a,S,answer(G),D,T’)),T’ > T

International journal of electronic commerce 33

	 D = T’ > T + 2

then Oa(r < d – p) can be mapped into a IC:

	 H(tell(S,a,request(G),D),T) → E(tell(a,S,answer(G),D),T’), T’>T, T’≤T+2.

Many of the works that have used the event calculus (EC) for the purpose
of reasoning over the effects of events are very close to this paper. In particular,
it is especially related to the work by Farrell et al. [28]. They are principally
concerned with the representation of contracts and particularly their norma-
tive state, in terms of obligation, power, and permission. The effects of con-
tract events on the normative state of a contract are specified using an XML
formalization of the event calculus. This representation may be used to track
the state of the agreement, according to a narrative of contract events similar
to our concept of history.

The present work is similar to the work of Farrell et al. in that SCIFF can
be seen as a generic language for expressing backward and forward rules and
reasoning about (conformance) properties of a specific where the representa-
tion of contracts is just one application.

The work differs from Farrell et al. in that it shows that being able to describe
contracts as logical theories is extremely useful not only for tracking, but also
for proving general or specific properties of the contracts by using the same
formalism. Artikis, Sergot, and Pitt adopt a similar approach by using a formal-
ization in terms of transition systems and model checking techniques [17].

Conclusions

This paper proposes the use of the SCIFF framework, originally developed
for agent interaction protocols, to specify and verify business contracts. The
proposal was supported intuitively by showing a deontic reading of SCIFF
specifications. The specification of sample business contract clauses was given
in the SCIFF language.

The paper demonstrates how verification is performed in the SCIFF frame-
work, in particular, runtime verification by means of the SCIFF proof proce-
dure, and design-time property verification with the g-SCIFF proof procedure.
It also shows how SCIFF rules can be encoded in RuleML in order to enable
potential contract parties to reason on contracts in advance.

Future work will be devoted to experimentation with the SCIFF framework
on real-world contracts, testing both the expressiveness of the SCIFF language
and the effectiveness of the proof procedures used for verification. We are
also working on a formal completeness result (possibly for restricted cases)
for g-SCIFF. On the language side, it would be interesting to explore recov-
ery from violations, possibly with a mechanism similar to contrary-to-duty
obligations, and to extend the SCIFF language to accommodate other legal
reasoning concepts, such as power and immunity (e.g., such as Hohfeldian
power and immunity).

34 Alberti et al.

Notes

1. For a complete treatment of quantification in the SCIFF language, the inter-
ested reader is referred to [8].

2. In the SCIFF language, restrictions can be considered as CLP constraints that
can also be applied to universally quantified variables with the semantics defined
by Bürckert [21].

3. If we had a completeness result for g-SCIFF, this would indeed be a proof and
not only a suggestion.

References

1. Adi, A.; Stoutenburg, S.; and Tabet, S. (eds.), Rules and Rule Markup Lan-
guages for the Semantic Web: First International Conference. LNCS, vol. 3791.
Berlin: Springer-Verlag, 2005.

2. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; and Mello, P. A verifi-
able logic-based agent architecture. In F. Esposito, Z.W. Rás, D. Malerba,
and G. Semeraro (eds.), Foundations of Intelligent Systems: 16th International
Symposium. LNAI, vol. 4203. Berlin: Springer-Verlag, 2006, pp. 188–197.

3. Alberti, M.; Gavanelli, M.; Lamma, E.; Mello, P.; and Torroni, P. The
SCIFF abductive proof procedure. In S. Bandini and S. Manzoni (eds.),
Proceedings of the 9th Congress of the Italian Association for Artificial Intelligence.
LNAI, vol. 3673. Berlin: Springer-Verlag, 2005, pp. 135–147.

4. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; and Mon-
tali, M. An abductive framework for a-priori verification of Web services. In
A. Bossi and M. Maher (eds.), Proceedings of the Eighth Symposium on Prin-
ciples and Practice of Declarative Programming. New York: ACM Press, 2006,
pp. 39–50.

5. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; and Torroni,
P. Compliance verification of agent interaction. A logic-based tool. Applied
Artificial Intelligence, 20, 2–4 (February/April 2006), 133–157.

6. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; and Tor-
roni, P. On the automatic verification of interaction protocols using g-SCIFF.
Technical Report DEIS-LIA-04-004. LIA Series, no. 72. University of Bolo-
gna, 2005.

7. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; and Torroni,
P. Security protocols verification in abductive logic programming. A case
study. In O. Dikenelli, M-P Gleizes, and A. Ricci (eds.), ESAW 2005 Post-Pro-
ceedings. LNAI, vol. 3963. Berlin: Springer-Verlag, 2006, pp. 106–124.

8. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; and Torroni,
P. Verifiable agent interaction in abductive logic programming: The SCIFF
framework. ACM Transactions on Computational Logic, 9, 4 (2008), forthcom-
ing.

9. Alberti, M.; Gavanelli, M.; Lamma, E.; Mello, P.; Sartor, G.; and Torroni,
P. Mapping deontic operators to abductive expectations. Computational and
Mathematical Organization Theory, 12, 2–3 (October 2006), 205–225.
10. Alberti, M.; Chesani, F.; Daolio, D.; Gavanelli, M.; Lamma, E.; Mello, P.;
and Torroni, P. Specification and verification of agent interaction protocols

International journal of electronic commerce 35

in a logic-based system. Scalable Computing: Practice and Experience, 8, 1
(2007), 1–13.
11. Alberti, M.; Chesani, F.; Gavanelli, M.; Lamma, E.; Mello, P.; Montali, M.;
and Torroni, P. Policy-based reasoning for smart Web service interaction.
In A. Polleres, S. Decker, G. Gupta, and J. de Bruijn (eds.), Proceedings of the
1st International Workshop on Applications of Logic Programming in the Seman-
tic Web and Semantic Web Services. CEUR Workshop Proceedings, vol. 196.
Aachen: RWHT, 2006, pp. 87–102.
12. Anderson, A. A reduction of deontic logic to alethic modal logic. Mind,
67 (1958), 100–103.
13. Antoniou, G.; Maher, M.J.; and Billington, D. Defeasible logic versus
logic programming without negation as failure. Journal of Logic Program-
ming, 42, 1 (2000), 47–57.
14. Apt, K.R., and Bezem, M. Acyclic programs. New Generation Computing,
9, 3/4 (1991), 335–364.
15. Apt, K.R., and Bol, R.N. Logic programming and negation: A survey.
Journal of Logic Programming, 19/20 (1994), 9–71.
16. Arisha, K.A.; Ozcan, F.; Ross, R.; Subrahmanian, V.S.; Eiter, T.; and
Kraus, S. IMPACT: A platform for collaborating agents. IEEE Intelligent Sys-
tems, 14, 2 (March/April 1999), 64–72.
17. Artikis, A.; Sergot, M.J.; and Pitt, J. An executable specification of an
argumentation protocol. In G. Sartor (ed.), Proceedings of the 9th International
Conference on Artificial Intelligence and Law. New York: ACM, 2003, pp. 1–11.
18. Boella, G., and van der Torre, L.W.N. Attributing mental attitudes to
normative systems. In J.S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo (eds.), Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems. New York: ACM Press, 2003, pp.
942–943.
19. Brewka, G.; Benferhat, S.; and Le Berre, D. Qualitative choice logic. Arti-
ficial Intelligence, 157, 1–2 (2004), 203–237.
20. Broersen, J.; Dignum, F.; Dignum, V.; and Meyer, J-J. Designing a deontic
logic of deadlines. In A. Lomuscio and D. Nute (eds.), DEON. LNCS, vol.
3065. Berlin: Springer-Verlag, 2004, pp. 43–56.
21. Bürckert, H.J. A resolution principle for constrained logics. Artificial
Intelligence, 66, 2 (1994), 235–271.
22. Business Process Modeling Notation Web site. www.bpmn.org.
23. Cabeza Gras, D., and Hermenegildo, M.V. Distributed WWW program-
ming using (Ciao-)Prolog and the PiLLoW library. Theory and Practice of
Logic Programming, 1, 3 (2001), 251–282.
24. Clark, K.L. Negation as failure. In H. Gallaire and J. Minker (eds.), Logic
and Data Bases. New York: Plenum Press, 1978, pp. 293–322.
25. Denecker M., and De Schreye, D. SLDNFA: an abductive procedure for
abductive logic programs. Journal of Logic Programming, 34, 2 (1998), 111–167.
26. Dignum, V.; Meyer, J.J.; Dignum, F.; and Weigand, H. Formal specifi-
cation of interaction in agent societies. In M.G. Hinchey, J.L. Rash, W.F.
Truzkowski, C. Rouff, and D. Gordon-Spears (eds.), Proceedings of the Second
Goddard Workshop on Formal Approaches to Agent-Based Systems. LCNS, vol.
2699. Berlin: Springer, 2002, pp. 37–52.

36 Alberti et al.

27. Eiter, T.; Subrahmanian, V.S.; and Pick, G. Heterogeneous active agents,
I: Semantics. Artificial Intelligence, 108, 1–2 (March 1999), 179–255.
28. Farrell, A.D.H.; Sergot, M.J.; Sallé, M.; and Bartolini, C. Using the event
calculus for tracking the normative state of contracts. International Journal of
Cooperative Information Systems, 14, 2–3 (2005), 99–129.
29. Fung, T.H., and Kowalski, R.A. The IFF proof procedure for abductive
logic programming. Journal of Logic Programming, 33, 2 (November 1997),
151–165.
30. Governatori, G. Representing business contracts in RuleML. International
Journal of Cooperative Information Systems, 14, 2–3 (2005), 181–216.
31. Governatori, G., and Milosevic, Z. Dealing with contract violations:
Formalism and domain specific language. In M.J. van Sinderen, M.W.A.
Steen, M.M. Lankhorst, M. Alesky, and P.C.K. Hung (eds.), Proceedings of the
Enterprise Distributed Object Computing Conference. Los Alamitos, CA: IEEE
Computer Society, 2005, pp. 46–57.
32. Governatori, G., and Milosevic, Z. A formal analysis of a business con-
tract language. International Journal of Cooperative Information Systems, 15, 4
(2006), 659–685.
33. Governatori, G.; Milosevic, Z.; and Sadiq, S. Compliance checking
between business processes and business contracts. In P.C.K. Hung, Q. Li,
and D. Sparrow (eds.), Proceedings of the 10th IEEE International Enterprise
Distributed Object Computing Conference. Los Alamitos, CA: IEEE Computer
Society, 2006, pp. 221–232.
34. Governatori, G.; Rotolo, A.; and Sartor, G. Temporalised normative posi-
tions in defeasible logic. In G. Sartor and A. Gardner (eds.), Proceedings of
the 10th International Conference on Artificial Intelligence and Law. New York:
ACM Press, 2005, pp. 25–34.
35. Grosof, B.N.; Labrou, Y.; and Chan, H.Y. A declarative approach to busi-
ness rules in contracts: Courteous logic programs in xml. In S. Feldman
and M. Wellman (eds.), ACM Conference on Electronic Commerce. New York:
ACM Press, 1999, pp. 68–77.
36. Herrestad, H. Norms and formalization. In A.R. Susskind (ed.), Proceed-
ings of the 3rd International Conference on Artificial Intelligence and Law. New
York: ACM Press, 1991, pp. 175–184.
37. Jaffar, J., and Maher, M.J. Constraint logic programming: A survey. Jour-
nal of Logic Programming, 19-20 (1994), 503–582.
38. Kunen, K. Negation in logic programming. Journal of Logic Programming,
4 (1987), 289–308.
39. Meyer, J.J. A different approach to deontic logic: Deontic logic viewed as
a variant of dynamic logic. Notre Dame Journal of Formal Logic, 29, 1 (1988),
109–136.
40. Milosevic, Z. Enterprise aspects of open distributed systems. Ph.D.
dissertation, University of Queensland, Computer Science Department,
October 1995.
41. Milosevic, Z.; Gibson, S.; Linington, P.F.; Cole, J.; and Kulkarni, S. On de-
sign and implementation of a contract monitoring facility. In B. Benatallah,
C. Godart, and M.-C. Shan (eds.), Proceedings of the First International Work-

International journal of electronic commerce 37

shop on Electronic Contracting. Los Alamitos, CA: IEEE Computer Society,
2004, pp. 62–70.
42. Prakken, H.; and Sergot, M. Contrary-to-duty obligations. Studia Logica,
57, 1 (1996), 91–115.
43. Sartor, G. Legal Reasoning: A Cognitive Approach to the Law. Berlin: Spring-
er, 2005.
44. SCIFF abductive proof procedure, 2005. http://lia.deis.unibo.it/
research/sciff/.
45. SICStus prolog user manual, release 3.12.7, October 2006. www.sics.
se/isl/sicstus/.
46. Societies Of ComputeeS (SOCS): A computational logic model for the
description, analysis and verification of global and open societies of het-
erogeneous computees. IST2001-32530, 2002-2005. http://lia.deis.unibo.
it/research/socs/.
47. van der Torre, L.W.N., and Tan, Y.-H. Diagnosis and decision making in
normative reasoning. Artificial Intelligence and Law, 7, 1 (1999), 51–67.
48. Xanthakos, I. Semantic integration of information by abduction. Ph.D.
dissertation, Imperial College London, 2003. www.doc.ic.ac.uk/~ix98/PhD.
zip).

Marco Alberti (marco.alberti@unife.it) received his M.Eng. in electronic engineer-
ing (2001) and Ph.D. in information engineering (2005) from the University of Ferrara,
where he is currently a research fellow in the Department of Engineering. His research
interests are abductive logic programming, constraint logic programming, multi-agent
systems, and normative systems.

Federico Chesani (fchesani@deis.unibo.it) received his Ph.D. in computer science
from the University of Bologna, where he is currently a research assistant in the Depart-
ment of Electronics, Informatics, and Systems. His research interests include abduction
and computational logic, verification techniques and specification languages, applied
to multi-agent systems and service-oriented computing. He is a member of the Italian
Interest Group on Logic Programming (GULP).

Marco Gavanelli (marco.gavanelli@unife.it) is a researcher in the Department
of Engineering, Ferrara University. He received his laurea degree in computer science
engineering from the University of Bologna, and his Ph.D. in information engineer-
ing from the University of Modena and Reggio Emilia. His interests are in constraint
logic programming languages, abductive reasoning, multi-criteria optimization, and
reformulation of combinatorial problems. He is member of the Italian Association for
Artificial Intelligence (AI*IA) and the Association of Logic Programming, and is coor-
dinator of the former’s interest group on Knowledge Representation and Automated
Reasoning.

Evelina Lamma (evelina.lamma@unife.it) received her degree in electronic engi-
neering and her Ph.D. in computer science (1990) from the University of Bologna. She
is a full professor in the Faculty of Engineering of the University of Ferrara, where
she teaches artificial intelligence and foundations of computer science. Her research
focuses on programming languages (logic languages, modular and object-oriented
programming), artificial intelligence, knowledge representation, multi-agent systems,
machine learning, and data mining. She has participated in several national and inter-
national research projects, and was responsible for the research group of the Depart-
ment of Engineering of the University of Ferrara in the context of the UE V Framework

38 Alberti et al.

Program—Global Computing Action. She also coordinates her department’s Ph.D.
program in engineering science.

Paola Mello (pmello@deis.unibo.it) received her degree in electronic engineering
(1982) and her Ph.D. in computer science (1989) from the University of Bologna, where
she is currently a full professor in the Faculty of Engineering, teaching artificial intel-
ligence and foundations of computer science. Her research focuses on programming
languages (logic languages, modular and object-oriented programming), artificial intel-
ligence, knowledge representation and knowledge-based systems, intelligent agents
and multi-agent systems, and machine learning. She has participated in several national
and international research projects, and was responsible for the research group of the
Department of Engineering, Information and Systems (DEIS) of the University of Bo-
logna in the context of the UE V Framework Program—Global Computing Action.

Marco Montali (mmontali@deis.unibo.it) studied informatics engineering in the
Engineering Faculty of the University of Bologna, and received his master’s degree in
2005, with a thesis about a graphical language for the specification and formalization
of business processes. Since 2006 he is a Ph.D. candidate in the Department of Elec-
tronics, Informatics, and Systems at the University of Bologna. His research focuses
on the application of computational logic approaches to the declarative specification
and verification of business processes and services.

Paolo Torroni (paolo.torroni@unibo.it) is an assistant professor in computer
engineering in the University of Bologna’s Department of Electronic Engineering.
His research interests include the use of logic in computer science and AI, particu-
larly declarative and logic programming, hypothetical reasoning, argumentation, and
agent-based systems. He received his Ph.D. in computer science from the University
of Bologna in 2002. He is a member of the DALT and CLIMA steering committees and
secretary of the Italian Interest Group on Logic Programming (GULP).

