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Abstract: SCIFF is a declarative language, based on abductive logic programming, 
that accommodates forward rules, predicate definitions, and constraints over finite domain 
variables. Its abductive declarative semantics can be related to that of deontic operators; 
its operational specification is the sound and complete SCIFF proof procedure, defined as 
a set of transition rules implemented and integrated into a reasoning and verification tool. 
A variation of the SCIFF proof procedure (g-SCIFF) can be used for static verification of 
contract properties. The use of SCIFF for business contract specification and verification 
is demonstrated in a concrete scenario. Encoding of SCIFF contract rules in RuleML ac-
commodates integration of SCIFF with architectures for business contracts.
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Business contracts are an important conceptual abstraction and a practical 
guiding and governance mechanism for cross-organizational collaboration. 
Contracts can, in fact, be considered as the main coordination mechanisms 
for extended enterprises [40]. A business contract architecture is therefore an 
important part of the extended enterprise that aims to provide such function-
alities as contract management and monitoring [41]. The natural requirements 
for a contract management framework are (1) a language with clear semantics 
for specifying contracts and (2) operational procedures that can verify contract 
properties at design time and, as well, the compliance of the parties to the 
contract provisions at runtime.

From a high-level, functional viewpoint, a contract management system is a 
component that is fed the “what“ of the problem by domain expert users and 
takes care of the “how” through a suitable execution model. Computational 
logics offer a broad range of languages and mechanisms that couple declara-
tive (“what is”) specification languages with sound operational (“how to”) 
execution models that need not be disclosed to the user of the specification lan-
guage. For this reason, frameworks based on computational logic, adequately 
extended to support event-based monitoring of business activities associated 
with contracts, should play a key role in contract management systems.

Among the most influential computational logic frameworks for business 
contract representation and reasoning are courteous logic programming and 
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defeasible logic (DL) [30, 35]. The former, in fact, is a variant of the latter [13]. 
These are languages for nonmonotonic reasoning, mainly used in the context 
of business contracts to enable normative reasoning and to identify and resolve 
conflicts arising from events and contract rules, reason about violations, specify 
and enforce reparation obligations, and so on. This article, in the context of 
contract management systems, is mainly concerned with runtime monitoring 
and verification of contracts rather than with the ontological and semantic 
aspects of contract specification. It focuses primarily on the problem of runtime 
evaluation of contract policies—expressions consisting of behavior constraints, 
event patterns, and states—to determine whether the obligations of the par-
ties have been satisfied or there are violations of the contract [41]. The work is 
based on SCIFF, the language and framework based on computational logic 
that was conceived in the context of the Societies Of ComputeeS (SOCS) EU 
Project to specify agent interaction protocols [46]. SCIFF consists of a logic 
language based on abductive logic programming, a sound and complete proof 
procedure [3, 8], and a software tool that implements it, based on an efficient 
inference engine and constraint-solving technology [5]. First-class entities in 
the SCIFF language are events that represent entities (e.g., actions taken), time-
outs associated with deadlines, external events (e.g., messages sent, services 
requested), and expectations, which describe a desired behavior in terms of 
events. Expectations are related to each other and to events by logical expres-
sions called integrity constraints (ICs). ICs express behavior constraints and 
are the main building blocks in the specification of policies. Expectations are 
modeled in SCIFF as abducible predicates, since they model events that may 
happen or that must not happen (but we do not know whether that will be 
the case). They are assumptions about future events, and reasoning on them 
means reasoning on hypotheses, as in abductive reasoning. Expectations are 
related to the deontic concepts commonly used to model normative systems, 
such as obligation, prohibition, and permission, and this permits a deontic 
reading of SCIFF specifications [9].

This paper proposes SCIFF as a language and operational framework with 
which to specify and reason on business contracts. The deontic reading of 
SCIFF specifications is one of the elements that make the SCIFF language a 
good candidate for a contract specification and reasoning language. Reason-
ing on contract specifications (and events) can be done at two different stages 
of contract design and enactment—runtime (as proposed in this paper) and 
design time (as with DL and courteous logic programming). It is important 
to enable these two kinds of verification within the same framework and, if 
possible, use the same specification language so as to minimize translation 
errors and the unavoidable inaccuracy resulting from the use of different lan-
guages. To this end, an extension of SCIFF, called g-SCIFF, has been defined 
to verify protocol properties at design time [7]. This paper shows how it can 
be used to enable design-time reasoning on contracts and the verification of 
contract properties.

Figure 1 summarizes the components of the SCIFF framework that can 
be used in contract specification and verification. The specification is given 
through the knowledge base and a set of integrity constraints. It can then be 
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used for runtime verification of compliance through the SCIFF proof proce-
dure, or for design-time verification by using the g-SCIFF proof procedure.

Contract Specification

A contract in the SCIFF language is specified by means of two components: 
a knowledge base, which declaratively defines domain-specific knowledge 
(e.g., deadlines), and a set of integrity constraints, which describe contract 
clauses and can be seen as forward rules that generate expectations about the 
behavior of the parties to the contract (see Figure 1). A declarative semantics 
based on abductive logic programming determines whether the parties have 
complied with the contract. The use of constraint logic programming (CLP) 
technology makes deadlines easy to specify and efficient to verify [37]. 

Syntax of the SCIFF Language

The SCIFF language is composed of entities for expressing events and ex-
pectations about events, and relationships between events and expectations. 

Representation of the Behavior of Parties

Events are the abstractions used to represent actual behavior.

Definition 1: An event is an atom: 

•	 with predicate symbol H; 
•	 whose first argument is a ground term; and 
•	 whose second argument is a number. 

Figure 1. Contract Specification and Verification in the SCIFF 
Framework
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Intuitively, the first argument is meant to represent the description of the 
happened event, according to application-specific conventions, and the second 
argument is meant to represent the time when the event happened.

In this paper, all events are mapped to communicative events, identified 
by the functor tell. In particular, the description of happened events is of the 
format tell(Sender,Receiver,Content[,Dialog]), where the optional Dialog param-
eter is an identifier of the interaction being described and the other arguments 
have the obvious meaning.

Example 1: 

	 H(tell(telco,c,phonebill(39-051-209-3086,145886,205)),19).	 (1)

says that telco sent to c a phonebill (whose identifier is 145886 and whose 
amount is 205, for the phone number 39-051-209-3086) at time 19.

A negated event is a negative literal not H(...,...), where not represents nega-
tion as failure.

For the purposes of this discussion, history is defined as a set of happened 
events and is denoted with the symbol HAP.

Expectations are the abstractions used to represent the desired events from 
an external viewpoint. They represent the ideal behavior of the system—the ac-
tions that, once performed, will make the system compliant to its specifications. 
The choice of the term “expectation” is intended to stress that events cannot 
be forced to be as we would like them to be, but can only be expected.

Expectations are of two types: 

•	 positive: representing some event that is expected to happen
•	 negative: representing some event that is expected not to happen 

Definition 2: A positive expectation is an atom 

•	 with predicate symbol E, 
•	 whose first argument is a term, and 
•	 whose second argument is a variable or a number. 

Intuitively, the first argument is meant to represent an event description, 
and the second argument is meant to tell at what time the event is expected 
(not to be confused with the time when the expectation is generated, which 
is not modeled by SCIFF’s declarative semantics). Expectations may contain 
variables that leave the expected event not completely specified. Variables in 
positive expectations are always existentially quantified: If the time argument 
is a variable, for example, this means that the event is expected to happen at 
any time. A specific semantics is not associated to time, but instead is treated 
an expectation’s time argument like any other variable. This choice simplifies 
the SCIFF language’s declarative and operational semantics.

Example 2 The atom 

	 E(tell(telco, c, phonebill(39-051-209-3086,Id,Amount)),T).	 (2)
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says that telco is expected to send to c a phonebill (for the number 39-051-209-
3086, with some identifier Id, for some Amount of money) at time T. 

A negated positive expectation is a positive expectation with the explicit nega-
tion operator ¬ applied to it. Variables in negated positive expectations are 
quantified in the same way as those in positive expectations.

Definition 3: A negative expectation is an atom 

•	 with predicate symbol EN, 
•	 whose first argument is a term, and 
•	 whose second argument is a variable or a number. 

Intuitively, the first argument is meant to represent an event description, 
and the second argument is meant to tell at which points in time the event 
is expected not to happen. Like positive expectations, negative expectations 
may contain variables that typically are universally quantified.1 For example, 
if the time argument is a variable, then the event is expected not to happen 
at all times.

Example 3: The atom 

	 EN(tell(telco, c, phonebill(39-051-209-3086,Id,Amount)),T).	 (3)

means that telco is expected not to send c a phonebill (for the number 39-051-
209-3086, with any Id and for any Amount) at any time T.

A negated negative expectation is a negative expectation with the explicit 
negation operator ¬ applied to it. Variables in negated negative expectations 
are quantified in the same way as those in negative expectations.

The syntax of events and expectations is summarized in Table 1 and will 
be used as such in Tables 2 and 3. 

Contract Specifications

A contract specification S is composed of two elements: a knowledge base and 
set of integrity constraints. 

The knowledge base (KBS) is a set of Clauses in which the body can contain 
(besides defined literals) expectation literals and restrictions.2 Intuitively, the 
KBS is used to express declarative knowledge about the specific application 
domain.

The syntax of the knowledge base is given in Table 2 and will also be used 
in Table 3.

A goal in the SCIFF framework has the same role as in the logic program-
ming literature—as a predicate to be entailed. Therefore, the term “goal” 
does not necessarily have the typical connotation (of “common” or “social” 
goal) found in the literature on multiagent systems, although it can be used 
for such a purpose.
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The syntax of the goal is the same as the KBBody of a clause (see Table 2). 
Integrity constraints are implications that are used operationally as forward 

rules, as will be explained further on. Declaratively, they relate the various 
entities in the SCIFF framework (i.e., expectations, events, constraints/restric-
tions) to the predicates in the knowledge base. 

The syntax of ICs is given in Table 3. The Body of an IC can contain conjunc-
tions of all the elements in the language (namely, H, E, and EN literals, defined 
literals, and restrictions). The Head contains a disjunction of conjunctions of 
any of the literals in the language, except for H literals.

Contract specification. Given a knowledge base KBS and a set ICS of integrity 
constraints, the pair <KBS ,ICS> is called a Contract Specification. Intuitively, a 
contract specification is a description of the acceptable, or desirable, histories, 
as defined by its declarative semantics, given formally in the next section.

Declarative Semantics and Mapping into Deontic Logic

Declarative Semantics

The (abductive) declarative semantics of the SCIFF framework is inspired by 
other abductive frameworks, such as the IFF by Fung and Kowalski [29], but 
introduces the concept of fulfillment to express a correspondence between 
expected and actual events. The declarative semantics of a contract specifica-
tion is given for each specific history. A specification grounded in a history is 
called an instance of the contract.

EventLiteral::=[not]Event

Event::=H(GroundTerm,Number)

ExpLiteral::=PosExpLiteral | NegExpLiteral

PosExpLiteral::=[¬]PosExp

NegExpLiteral::=[¬]NegExp

PosExp::=E(Term,Variable | Number)

NegExp::=EN(Term,Variable | Number)

ExistLiteral::=PosExpLiteral | Literal

Literal::=[not]Atom

Table 1. Syntax of Events and Expectations.

Clause::=KBHead←KBBody

KBHead::=Atom

KBBody::=ExtLiteral [ ∧ ExtLiteral ]*[:Restriction [,Restriction]* ]

|true 

ExtLiteral::=Literal | ExpLiteral

Table 2. Syntax of Knowledge Base.
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Definition 4: Contract instance Given a contract specification S and a his-
tory HAP, SHAP represents the pair 〈S,HAP〉, called the HAP-instance of S 
(or simply an instance of S). 

In this way, SHAPi, SHAPf denotes different instances of the same contract speci-
fication S, based on two different histories: HAPi and HAPf, respectively.

An abductive semantics is adopted for the contract instance. Declaratively, 
a ground set EXP of hypotheses should entail the goal and satisfy the integ-
rity constraints. In our case, the set EXP of hypotheses is, in particular, a set 
of ground expectations, positive and negative, possibly negated by explicit 
negation. Note that, by virtue of explicit negation, all such expectations are 
positive abducible literals in abductive logic programming terminology. 

Definition 5: Abductive explanation Given a contract specification S, an 
instance SHAP of S, and a goal G, EXP is an abductive explanation of SHAP 
for goal G if: 

	 Comp(KBS∪HAP∪EXP) ∪CET ∪ TX ⊨ ICS 	 (4)

	 Comp(KBS∪EXP) ∪CET ∪ TX ⊨ G	 (5)

where 

•	 CET is Clark’s Equality Theory [24], where equality (=) is considered 
a special two-valued predicate and the following axioms hold: 

	 1.	 f(X1,…,Xn) = f(Y1,…,Yn) → (X1 = Y1) ∧...∧     (∀f) 
	 2.	 f(X1,…,Xn) ≠ g(Y1,…,Ym) (whenever f and g are distinct or n≠m) 
	 3.	 X≠T (∀ X and T where X is a proper subterm of T) 

•	 Comp represents the three-valued completion of a theory [38], that 
is, the set of the completed definitions of its predicates (intuitively, a 
predicate is true if and only if there exists a clause for it whose body 
is true) interpreted in a three-valued setting (where truth values are 
true, false, and unknown) 

•	 X is the constraint theory [37], that is, the theory defined by the de-
clarative semantics of CLP constraints. 

ICs::=[IC]*

IC::=Body→Head

Body::=(EventLiteral|ExpLiteral)[∧BodyLiteral]*[:Restriction [,Restriction]* ]

BodyLiteral::=EventLiteral | ExtLiteral

Head::=HeadDisjunct [ ∨HeadDisjunct ]* |false

HeadDisjunct::=HeadLiteral[∧HeadLiteral]*[:Restriction [,Restriction]* ]

HeadLiteral::=Literal | ExpLiteral

Table 3. Syntax of Integrity Constraints (ICs).
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The symbol |= is interpreted in three-valued logics. In particular, if ex-
pectations are interpreted as abducible predicates, we can rely upon a three-
valued model-theoretic semantics as intended meaning, as done, for instance, 
in a different context, by Fung and Kowalski [29] and by Denecker and De 
Schreye [25]. 

The following definition implements explicit negation for expectations 
[15]:

Definition 6: ¬-consistency A set EXP of expectations is ¬-consistent if and 
only if for each (ground) term p and integer t: 

	 ¬({E(p,t),¬E(p,t)}⊆EXP)	 (6)

	 ¬({EN(p,t),¬EN(p,t)}⊆EXP)	 (7)

The following two definitions require consistency between positive and 
negative expectations—that is, they prevent an event from being expected to 
happen and expected not to happen in the same set of expectations.

Definition 7: E-consistency A set EXP of expectations is E-consistent if and 
only if for each (ground) term p and integer t: 

	 ¬({E(p,t),EN(p,t)}⊆EXP)	 (8)

The following definition establishes a link between happened events and 
expectations by requiring positive expectations to be matched by events, and 
negative expectations not to be matched by events.

Definition 8: Fulfillment Given a history HAP, a set EXP of expectations 
is HAP-fulfilled if and only if ∀p and ∀t 

	 E(p,t)∈EXP⇒H(p,t)∈HAP	 (9)

	 EN(p,t)∈EXP⇒H(p,t)∉HAP	 (10)

Otherwise, EXP is HAP-violated.

When all the given conditions (4–10) are met for at least one set of expecta-
tions EXP, the goal is said to be achieved and HAP is compliant to S with respect 
to G and EXP; this is written as SHAP⊨EXP G. In particular:

Definition 9: Goal achievement Given an instance SHAP of a contract speci-
fication S and a goal G, if there exists an EXP that is an abductive explana-
tion of SHAP for G, and is ¬-consistent, E-consistent, and HAP-fulfilled, then 
G is said to be achieved w.r.t. EXP (and this is written SHAP⊨EXP G). Given 
an instance SHAP and a goal G, it is said that G is achieved if ∃EXP such that 
G is achieved w.r.t. EXP. 
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In the remainder of this article, when the text says that a history HAP is 
compliant to a contract specification S, it will mean that HAP is compliant to 
S with respect to the goal true. A statement that HAP violates a specification 
S will mean that HAP is not compliant to S. When HAP is apparent from the 
context, it will often not be mentioned.

Expectations and Deontic Operators

Mapping from deontic operators (obligation, permission, prohibition) to the 
expectations of the SCIFF framework was proposed in [9]. Such a mapping 
can be used to attribute a deontic meaning to SCIFF-based contract specifica-
tions.

The mapping is shown in Table 4. The first line of the table proposes a cor-
respondence between the deontic notion of prohibition (which requires an 
action not to be performed) and our notion of negative expectation (which 
requires an event not to occur). In fact, the correspondence becomes more ap-
parent if one considers Definition 8, which requires, for a set of expectations 
to be fulfilled, the absence from the history of events of any event matching 
a negative expectation. This definition closely resembles the reduction of the 
prohibition operator proposed by Meyer, where “it is forbidden to perform 
(an action) α in (a state) σ if one performs α in σ one gets into trouble” [39]. 
(In Meyer’s paper, “trouble” means an “undesirable state of affairs,” which 
is a good description of our state of violation).

Reasoning in a similar way, one notes a correspondence between the deontic 
notion of obligation (which requires an action to be performed) and the notion of 
positive expectation (which requires an event to occur), as shown in the second 
line in Table 4. Moreover, since a negative expectation EN(A) has to be read 
as it is expected not A (i.e., as a shorthand for E(not A)), its (explicit) negation, 
¬EN(A), corresponds to permission of A. Finally, due to the logical relations 
among obligation, prohibition, and permission discussed by Sartor [43], the 
fourth line of Table 4 shows how to map permission of a negative action.

A formal support of this mapping is provided in [9], based on the correspon-
dence between the Kripke semantics of deontic operators and the declarative 
semantics of the SCIFF framework.

The correspondence shown in Table 4 illustrates more intuitively the dif-
ference between ¬E(tell(telco,c,phonebill(39-051-209-3086,Id,Amount)),T) and 

Operator	 Abducible

Forb A	 EN(A)
Obl A	 E(A)
Perm A	 ¬EN(A)
Perm NON A	 ¬E(A)

Table 4. Deontic Notions as Expectations.
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EN(tell(telco,c,phonebill(39-051-209-3086,Id,Amount)),T). The intuitive meaning 
of the former is that no phonebill is expected from telco (if this happens, it simply 
was not expected), which corresponds to the negation of the obligation for telco. 
The latter has a different, stronger meaning—it is expected that telco will not 
produce a phonebill (doing so would violate the expectation), corresponding 
to a prohibition for telco.

Sample Contract Specification

A sample specification of a contract in the SCIFF language will now be pre-
sented. The example is a simplified version of a real-life situation, describing 
the activation of a telephone line (carrier) by a customer. The discussion con-
siders the clauses of the contract a user must sign as the building blocks of a 
contract that makes use of expressive combinations of E, EN, and H predicates, 
CLP constraints, and predicates defined in the S. With SCIFF one can give a 
faithful representation of such a contract that is understandable, modular, 
and verifiable. Despite the efforts of the telephone company to make things 
as obscure as possible, we (as customers) will at any time be able to detect, via 
SCIFF, whether the telephone company (telco in the example) has the right to 
interrupt the service or to request a payment from us and whether we have 
the right to complain to telco and not to pay part of the bill. Similarly, telco will 
receive indications about when to send requests for payment and when (not) 
to activate or (not) to deactivate the carrier.

Description of the Contract

The procedures that regulate the concession of a carrier to a customer are 
contained in a contract agreed upon by the parties (telco and the customer). 
The contract states what to do when the customer requests a new carrier, the 
procedures for paying bills and for handling complaints, what obligations/
penalties apply in case of late payments, and how to delegate authority to 
the relevant agent, when necessary, to determine whether the parties have 
complied with all the requirements set forth in the contract. A set of clauses 
is nucleated in the contract, and their specifications are given in the SCIFF 
framework. ICs are reported in Table 5, and the KBS is reported in Table 6. A 
set of clauses about bill and complaint handling was chosen.

After sending a phone bill to a customer, telco cannot send requests for 
payment before a predefined period of time (TWait) has passed. 

1.	 After TWait, either the customer has paid the bill or filed a com-
plaint, or telco is allowed to send a request for payment. 

2.	 After receiving a legitimate request for payment, either the customer 
pays the bill or telco is allowed to deactivate the carrier after a fur-
ther TWait. 

3.	 If, upon receiving a request for payment, the customer pays by 
TWait, telco is not allowed to deactivate the carrier. 
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[IC1] 

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
defaultwait(TWait)→

EN(tell(T,C,requestpayment(PhoneNo,BillId,AnyAmnt),D),T2)

:T2 > T1,  T2 < T1 + TWait.

[IC2] 

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
defaultwait(TWait)→

E(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T2)

:T2 < T1 + TWait

∨ E(tell(C,T,complain(PhoneNo,BillId,PartlAmnt),D),T3):

T3 < T1 + TWait

∨ ¬EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T4):

T4 > T1 + TWait.

[IC3] 

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T2) ∧

¬EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T2) ∧
defaultwait(TWait)→

¬EN(tell(T,C,deactivate(PhoneNo,reason(BillId)),D),T3)

:T3 > T2 + TWait

∨ E(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T4):

T4 < T2 + TWait.

[IC4] 

H(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(C,T,pay(PhoneNo,BillId,BillAmnt,PaymtRcpt),D),T2) ∧

defaultwait(TWait) ∧ T2 < T1 + TWait→
EN(tell(T,C,deactivate(PhoneNo,reason(BillId)),D),T3).

[IC5] 

H(tell(T,C,phonebill(PhoneNo,BillId,BillAmnt),D),T1) ∧
H(tell(C,T,complain(PhoneNo,BillId,PartlAmnt),D),T2) ∧

defaultwait(TWait) ∧ T2 < T1 + TWait ∧
isadmissiblecomplaint(BillId,PartlAmnt) →

¬E(tell(C,T,pay(PhoneNo,BillId,PartlAmnt,PaymtRcpt),D),T3) ∧
EN(tell(T,C,requestpayment(PhoneNo,BillId,BillAmnt),D),T4):T3 > T1

Table 5. ICS in the Contract Between telco (T) and a Customer (C).

KBS: 
societygoal.
defaultwait(10).
isadmissiblecomplaint(BillId,PartlAmnt)← listofbills(L1), 
      member((BillId,TotalAmnt),L1),
      PartlAmnt<TotalAmnt.
listofbills([(145886,205),(114477,407),(168945,126)]).

Table 6. KBS in the Contract Between telco and a Customer.
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4.	 If by TWait, the customer files an admissible complaint about a re-
ceived bill, the customer is no longer expected to pay for it, and telco 
is not allowed to request a payment. 

SCIFF Specification of the Contract

Table 5 contains five ICs. Roughly speaking, the first three describe the expected 
behavior of telco regarding bill handling, whereas the last two are about the 
rights of the customer (C). 

The ICs state the following: 

•	 By [IC1], after sending a bill at time T1, telco may not send requests 
for payments before time T1 + TWait, where TWait is the amount of 
time defined by the defaultwait predicate in the KBS.

•	 By [IC2], after telco sends a bill at time T1, one of the following expec-
tations holds: Either C pays the bill in full by T1 + TWait, or C com-
plains about (part of) the bill by T1 + TWait, or telco obtains the right 
to send a request for payment at some time T4 later than T1 + TWait. 
Note that any complaints C sends after the deadline (T1 + TWait) will 
have no impact on the state of affairs in these procedures, since they 
will not match with any expectation.

•	 By [IC3], if telco sent a bill, and later a request for payment at a time 
when doing so was not prohibited, and if the request for payment 
concerns the bill in full, then either C pays the bill or telco gains the 
right to deactivate the carrier (although telco is not obliged to do so).

•	 By [IC4], if C has paid the bill by the deadline, then telco cannot 
deactivate the carrier. Note that [IC4] takes effect independently of 
whether telco actually has the right to send a request for payments.

•	 By [IC5], after complaining about some part of the bill (PartlAmnt), C 
is no longer expected to pay the full BillAmnt. 

The KBS part of the SCIFF program, shown in Table 6, specifies deadlines, 
as in the previous example, and defines what an “admissible complaint” is. 
To this end, a predicate isadmissiblecomplaint/2 is defined that relies upon a 
database of bills (“list of bills”). In this simplified example, the database is 
mimicked by a predicate named listofbills/1. The predicate member/2 used by 
isadmissiblecomplaint/2 is predefined in most Prolog distributions. This example 
in particular uses the implementation that comes together with [45].

Contract Verification

Two types of verification supported by the SCIFF framework will now be 
described. The first is a verification that the parties involved in a contract 
are interacting in accordance with the contract terms. The second is a formal 
verification of whether a contract has certain properties.
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Runtime Verification

The runtime verification of contracts specified in the SCIFF language is performed 
by means of an abductive proof procedure that is itself called SCIFF [8]. After 
a review of the SCIFF proof procedure, its behavior will be shown on sample 
interactions regulated by the contract described in the preceding section.

The SCIFF Proof Procedure

Since the SCIFF language and its declarative semantics are closely related to 
those of the IFF abductive framework, the SCIFF proof procedure is also in-
spired by the IFF proof procedure [29]. SCIFF is a substantial extension of IFF. 
In a nutshell, the main differences between the frameworks are as follows: 

•	 SCIFF supports the dynamic happening of events—that is, the inser-
tion of new facts in the knowledge base during the computation. 

•	 SCIFF supports universally quantified variables in abducibles. 
•	 SCIFF supports quantifier restrictions. 
•	 SCIFF supports the concepts of fulfillment and violation (see Defini-

tion 8). 

The SCIFF proof procedure is based on a rewriting system that transforms 
one node to another (or to others). In this way, starting from an initial node, 
it defines a proof tree. A node can either be the special node false or can be 
defined by the tuple 

	 T≡〈R,CS,PSIC,PEND,HAP,FULF,VIOL〉.	 (11)

The set of expectations EXP is partitioned into the fulfilled (FULF), violated 
(VIOL), and pending (PEND) expectations. The other elements are: 

•	 R is the resolvent: a conjunction whose conjuncts can be literals or 
disjunctions of conjunctions of literals. 

•	 CS is the constraint store: It contains CLP constraints and quantifier 
restrictions. 

•	 PSIC is a set of implications, called partially solved integrity con-
straints 

•	 HAP is the history of happened events, represented by a set of 
events, plus a closed(HAP) Boolean attribute. 

If one of the elements of the tuple is false, then the tuple is the special node 
false, without successors.

Initial Node and Success

A derivation D is a sequence of nodes 

	 T0 → T1 → . . . → Tn–1 → Tn.
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Given a goal G, a set of integrity constraints ICS, and an initial history HAPi, 
the first node is built in the following way:

	 T0 ≡ 〈{G}, ∅, ICS, ∅, HAPi,∅,∅〉

with closed() = false. The other nodes are obtained by applying the transitions 
described in the next subsection until no further transition can be applied.

Definition 10: Successful derivation Given an instance SHAPi of a contract 
specification S, and a set HAPf⊇HAPi, there exists a successful derivation 
for a goal G if the proof tree with root node T0 has at least one leaf node

	 〈∅,CS,PSIC, PEND, HAPf, FULF, ∅〉

where CS is consistent, and PEND contains only negations of expectations ¬E 
and ¬EN. In such a case, we write: 

	
S G

HAP EXP
HAP

i

f
| .−

From a nonfailure leaf node N ≡ 〈RN, CSN, PSICN, PENDN, HAPN, FULFN, 
VIOLN〉, answers (called expectation answers and including, in particular, the 
actual set of expectations required by the declarative semantics according to 
Definition 9) can be extracted in a similar way to the IFF proof procedure. To 
compute an expectation answer, a substitution σ' is computed such that 

•	 σ' replaces all variables in N that are not universally quantified by a 
ground term 

•	 σ' satisfies all the constraints in the store CSN 

If the constraint solver is (theory) complete (i.e., for each set of constraints 
c, the solver always returns true or false, and never unknown), then there will 
always exist a substitution σ' for each nonfailure leaf node N [37]. If the solver 
is incomplete, σ' may not exist. The nonexistence of σ' is discovered during 
the answer-extraction phase. In such a case, the node N will be marked as a 
failure node, and another nonfailure node can be selected (if there is one).

Definition 11: Expectation answer Let σ = σ'|vars(G) be the restriction of σ' to 
the variables occurring in the initial goal G. Let DN = (FULFN ∪ PENDN)σ'. 
The pair 〈DN, s〉 is the expectation answer obtained from the node N. 

Transitions

The transitions are based on those of the IFF proof procedure [29], enlarged 
with those of CLP and with specific transitions accommodating the concepts 
of dynamically growing history and consistency of the set of expectations. 
The inference rules derived from IFF are: 



International journal of electronic commerce     23

Unfolding substitutes an atom p with its definitions in KBS:
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If the literal p occurs in the resolvent R, then n new nodes are generated. 
If p occurs in the body of an IC ≡ p∧B → H, then one node with n ICs is 
generated. 
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Propagation propagates ICs: if a literal p∈∆ and 

	 ICi ≡ p1 ∧ B → H

generates a new node with the additional IC

	 (p = p1) ∧ B → H

Splitting distributes conjunctions and disjunctions, making the final formula 
in a sum-of-products form. 

Case analysis: If ICi ≡ (X = t) ∧ B → H, case analysis generates two nodes, 
one with X = t, and ICi ≡ B → H and the other with X≠t and ICi substituted 
with true. 

Factoring reuses previous hypotheses: If p1, p2 ∈ D, factoring generates two 
nodes, one with p1 = p2 and the other with p1 ≠ p2 

Rewrite rules for equality: Use the inferences in the Clark equality theory to 
perform unification (i.e., p(t1, ..., tn) = p(s1, ..., sn) is replaced with ∀n

i=1ti = si) 

Logical simplifications: Try to simplify a formula through equivalences like 
A∧false↔false, [A←true]↔A, ….

Additionally, SCIFF-specific inference rules are:

Happening: A new happened event H(t) is added to the set HAP. 

Closure: Assumes that no more events can happen (sets the closure flag to 
true). Useful for reasoning under the Closed World Assumption. 
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Nonhappening: If ICsi ≡ ¬H(X) ∧ B → H, and closure(HAP) = true, performs 
constructive negation to derive that ∀X such that ∀H(t)∈HAPX ≠ t, B → H (i.e., 
for each possible instance of H(X) that does not unify with any element of 
HAP, B → H holds). 

Consistency: If {E(X),EN(Y)}⊆∆ (or {E(X),¬E(Y)}⊆∆ or {EN(X),¬EN(Y)}⊆∆), 
imposes X≠Y. 

Fulfillment: If H(X)∈HAP and E(Y)∈∆ generates two nodes, one is with X = 
Y and the expectation E(Y) fulfilled, and the other is with X ≠ Y. 

Violation: If H(X)∈HAP and EN(Y)∈∆ imposes X≠Y. 

CLP: Constraint logic programming reasoning.

SCIFF Properties

The most significant formal properties of the SCIFF proof procedure are stated 
and proven in [8]. They are briefly restated here. 

Termination is proven, as for SLD resolution (Linear resolution with a Selec-
tion function for Definite clauses [14]), for acyclic knowledge bases and bounded 
goals and implications. The notion of acyclicity of an abductive logic program is 
an extension of the corresponding notion given for SLD resolution. Intuitively, 
for SLD resolution a level mapping must be defined such that the head of each 
clause has a higher level than the body. For the IFF, since it contains integrity 
constraints that are propagated forward, the level mapping should also map 
atoms in the body of an IC to higher levels than the atoms in the head. This 
should also hold for possible unfoldings of literals in the body of an IC [48]. 
Similar considerations hold for SCIFF. The level mapping was extended for 
considering also CLP constraints. For definitions of boundedness and acyclic-
ity for the contract specification, the reader can refer to [48].

Theorem 1 (Termination of SCIFF): Let G be a query to a contract S = 
〈KBs, ICs〉, where KBS, ICS, and G are acyclic w.r.t. some level mapping, and 
G and all implications in ICS are bounded w.r.t. the level mapping. Then, 
every SCIFF derivation for G for each instance of G is finite, assuming that 
happening is not applied.

Moreover, under the following conditions: 

	 •	 the number of happened events is finite, 
	 •	 happening is applied only when no other transitions can be applied, and 
	 •	 nonhappening has higher priority than other transitions, 

SCIFF also terminates with dynamically incoming events. 

The SCIFF proof procedure uses a constraint solver, so its soundness depends 
on the solver. Soundness was proved for a limited solver containing only the 
rules for equality and disequality of terms.
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Theorem 2 (Soundness of SCIFF): Given a contract instance SHAPf, if 

	
S G

HAP EXP
HAP

i

f
| .−

for some HAPi⊆HAPf, with expectation answer (EXP,σ), then 

	
S G

HAP EXPf | .= σ σ

Completeness states that if goal G is achieved under the expectation set 
EXP, then a successful derivation can be obtained for G, possibly computing 
a set EXP’ of the expectations whose grounding (according to the expectation 
answer) is a subset of EXP.

Theorem 3: Given a contract instance SHAP, a (ground) goal G, for any 
ground set EXP such that SHAP⊨EXPG, then ∃EXP’ such that S G∆|− ′EXP

HAP  with 
an expectation answer (EXP’,σ) such that EXP’σ⊆EXP. 

Runtime Verification Examples

The following case will be considered: telco sends the bill, and C does not pay. 
After TWait time units, telco sends C a request for payment.

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 33).	 (12)

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

This sequence of events (12) generates a set of fulfilled expectations. After 
the first message at time 19 (the notification of the phonebill), [IC2] generates 
three alternative and equally plausible sets of expectations: Either C is expected 
to pay before time 29, or C is expected to complain before time 29, or telco 
has the right (¬EN) to issue a request for payment after time 29. In all cases, 
because of [IC1], telco does not have the right to send a request for payment 
before time 29. The first two alternatives become invalid at time 29 due to the 
expired deadline. The message requestpayment at time 33 is acceptable accord-
ing to the contract and gives telco explicit right to deactivate the carrier any 
time later than 43. In particular, by [IC3] an alternative is generated: In one 
case telco has the right to deactivate the carrier after time 43, in the other case 
C is expected to pay. Because of [IC4], the last message, in which C notifies 
the payment to telco, has as a side effect that telco loses its right to deactivate 
the carrier at any time in connection to the bill No. 145886.

As the second example shows (13), a violation can be generated if telco 
deactivates the carrier. In that case, SCIFF detects a violation because the 
fourth message violates the contract, and in particular [IC4], by which telco 
is expected not to deactivate the carrier if C pays within 10 time units after 
receipt of telco’s request for payment.
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	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 33).	
(13)

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

	 H(tell(telco, c, deactivate(39-051-209-3086,reason(145886)),d1), 38).

A third example will now be considered. Like the other examples, it starts 
with telco sending C a bill. C complains at time 33, which unfortunately is past 
the deadline of 10 time units after the bill. The complaint, although not spe-
cifically disallowed by the contract, does not change the state of expectations 
in the system, since no IC fires. In particular, [IC5] says that if C complains 
before the deadline, C is no longer expected to pay the amount complained 
about, and telco loses the right to send requests for payment concerning either 
the amount C complained about or the full amount of the bill. But [IC5] (as 
well as the other ICs) does not say what happens in case of a late complaint, 
so telco exercises its right to send C a request for payment. The only option 
for C is either to pay or to have the carrier deactivated. C pays, and telco no 
longer has a right to deactivate the line, which incidentally makes the second 
option (have the carrier deactivated) inconsistent, besides fulfilling all the 
expectations of the first branch (14).

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(c, telco, complain(39-051-209-3086,145886,150),d1), 33).	
(14)

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 34).

	 H(tell(c, telco, pay(39-051-209-3086,145886,205,1674521),d1), 37).

In the last example, telco as usual sends C a bill. However, this time C sends 
a complaint before the deadline. C complains about the amount of €150 out of 
€205. The complaint is judged admissible (as shown in the example with the 
isadmissiblecomplaint predicate). In consequence, if telco sends C a request for 
payment (14), it violates the contract. Due to [IC5], telco can no longer issue a 
request for payment. Unfortunately, telco does so at time 34, and consequently 
SCIFF detects the violation of [IC5]. 

	 H(tell(telco, c, phonebill(39-051-209-3086,145886,205),d1), 19).

	 H(tell(c, telco, complain(39-051-209-3086,145886,150),d1), 24).	 (15)

	 H(tell(telco, c, requestpayment(39-051-209-3086,145886,205),d1), 34).

Design-Time Property Verification

An extension of the SCIFF proof procedure, called g-SCIFF, has been developed 
to verify contract properties [7]. g-SCIFF is briefly reviewed below, followed 
by a demonstration of its use to refute a formal property that is not possible 
with the contract described in the second section. 
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The g-SCIFF Proof Procedure

Besides verifying whether a history is in compliance with a contract, g-SCIFF 
is able, given a contract, to generate a compliant history. This is achieved by 
(1) considering H events as abducibles and allowing variables in them, and 
(2) adding a new transition to those of SCIFF, which, when a positive expecta-
tion E(p,t) is added to the set of expectations, generates an event H(p,t) that 
fulfills it. g-SCIFF has been proved sound [6], which means that the histories 
it generates (in case of success) are guaranteed to be compliant to the interac-
tion contracts while entailing the goal. Note that the histories generated by 
g-SCIFF are not, in general, a collection only of ground events, like the HAP 
sets given as an input to SCIFF. They can, in fact, contain variables, which 
means that they represent classes of event histories.

In order to use g-SCIFF for verification, the property to be verified is ex-
pressed as a conjunction of literals. Thus, to verify whether a formula f is a 
property of a contract P, the contract is expressed in our language and ¬f as 
a g-SCIFF goal. Then, either 

•	 g-SCIFF returns success, generating a history HAP. Thanks to the 
soundness of g-SCIFF, HAP entails ¬f while being compliant to P: f 
is not a property of P, HAP (and its groundings) being a counterex-
ample; or 

•	 g-SCIFF returns failure, suggesting that f is a property of P.3

Design-Time Property Verification Example

This section shows the refutation, by means of g-SCIFF, of a simple property 
of the contract described earlier. For simplicity, details related to the manage-
ment of restrictions and defined predicates will not be shown.

The property is: “if a phone bill is sent, then the customer will pay for it.” Using 
our formalism for events, the property can be written as follows:

	 H(tell(T,C,phonebill(N,I,A),D), Tb)	 (16)
	 → H(tell(C,T,pay(N,I,A,R),D), Tp)

The negation of the property is:

	 H( tell( T, C, phonebill(N, I, A), D), Tb)	 (17)
	 ∧¬H( tell( C, T, pay(N,I,A,R),D), Tp)

Therefore, a history that entails Equation (17) is a counterexample of the 
property to be verified. To try and find such a history, one writes the follow-
ing g-SCIFF goal:

	 G= E( tell( T, C, phonebill(N,I,A),D), Tb)	 (18)
	 ∧EN( tell( C, T, pay(N,I,A,R),D), Tp)
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In general, a history that achieves a goal (see Definition 9) will necessarily 
include events that are expected to happen, and not include events that are 
expected not to happen, in the goal. Thus, in this case, a history that achieves 
G will entail Equation (17).

To begin, g-SCIFF is run with G as a goal. g-SCIFF imposes the first expec-
tation of the goal,

	 E(tell( T, C, phonebill(N,I,A),D), Tb),

which generates the following event:

	 H(tell( T, C, phonebill(N,I,A),D), Tb)

which in turn, due to the first IC in Table 5, generates the expectation

	 EN(tell(T,C,requestpayment(N,I,A),D),T2)

and, due to the second, one of

	 E(tell(C,T,pay(N,I,A,PR),D),T2): T2<Tb+10

	 E(tell(C,T,complain(N,I,PA),D),T3) : T3<Tb+10 

	 ¬EN(tell(T,C,requestpayment(N,I,A),D),T4) : T4<Tb+10.

The E-consistency requirement (Definition 7) rules out the first alternative, 
because of the negative (EN) expectation imposed by the goal (see Equation 
(18)); so the second branch is explored, and the event

	 H(tell(C,T,complain(N,I,PA),D),T3)

is generated.
Due to the fifth IC in Table 5, the following expectations are generated:

	 ¬E(tell(C,T,pay(N,I,PA,PR),D),T3)

and

	 EN(tell(T,C,requestpayment(N,I,BillAmnt),D),T4)

and finally g-SCIFF terminates and returns success, with the history

	 HAP={H(tell(T,C,phonebill(N,I,A),D), Tb),

	 H(tell(C,T,complain(N,I,PA),D),T3)}

Thanks to the soundness of g-SCIFF, any grounding of HAP is a counter-
example of the property that was to be proved, and it is also compliant to 
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the contract. Thus, it shows that the contract does not enjoy the property. In 
particular, it shows that a customer can avoid being expected to pay by filing 
a complaint.

Rule Mark-Up

An architecture and a formal framework that enable Web services to reason on 
publicly available SCIFF-based specifications is proposed in [11]. In particular, 
it is possible for a Web service to verify whether it can interact with another 
and achieve a goal. An interested party could fruitfully perform such a step 
before agreeing on a contract with another party. Obviously, this requires a 
formalism that makes it practical to exchange SCIFF-based specifications.

RuleML is a suitable mark-up language for exchanging rules on the Web 
[1]. RuleML 0.9 contains mark-ups for expressing important concepts of the 
SCIFF proof procedure. In particular, SCIFF is a rule engine able to distinguish 
and use both backward and forward rules. Backward rules are used to plan, 
reason on events, and perform proactive reasoning. Forward rules are used 
for reactive reasoning and to quickly perform actions in response to occurred 
events. Both are seamlessly integrated in SCIFF. RuleML 0.9 contains a direction 
attribute that can be attached to rules. Because it is based on abduction, SCIFF 
can deal both with explicit negation and with negation by default that have 
appropriate tagging in RuleML. The present work only uses standard RuleML 
syntax. In future work, it might be interesting to distinguish between defined 
and abducible predicates, or between expectations and events.

SCIFF was implemented in SICStus Prolog. SICStus contains an imple-
mentation of the PiLLoW library [23], which makes it easy to perform http 
requests, as well as to implement services on the Web. SICStus also contains 
an XML parser that made it possible to easily implement the RuleML parser. 
The RuleML parser is freely available on the SCIFF Web site [44].

Related Work

The reduction of deontic concepts such as obligations and prohibitions has 
been the subject of extensive research. Among the most influential approaches 
are Anderson’s, by which A is obligatory if its absence produces a state of 
violation [12], and Meyer’s, by which an action A is prohibited if performed it 
produces a state of violation [39]. These two reductions strongly resemble our 
definition of fulfillment (Definition 8), which requires positive (resp. negative) 
expectations to have (resp. not to have) a corresponding event.

Several authors have studied “sub-ideal” situations—namely, how to man-
age situations in which some of the norms are not respected.

For instance, van der Torre and Tan show the relation between diagnostic 
reasoning and deontic logic, importing the principle of parsimony from diag-
nostic reasoning into their deontic system, in the form of a requirement to 
minimize the number of violations [47]. In particular, given the specification of 
a normative system (as a set of formulae that tell when a norm is violated) and 
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a state of affairs, they define a minimal (with respect to inclusion) set of norms 
such that the violation of those norms is consistent with the specification and 
the state of affairs. The SOCS social framework currently distinguishes only 
between empty and nonempty sets of violations, and does not define minimal 
sets. However, it would be possible to do so by taking the minimal, with respect 
to inclusions, among the sets of expectations that are consistent with a social 
specification and a history, but possibly not fulfilled by the history. This will 
probably be our approach when we tackle the management of violations (by 
means of sanctions and recovery procedures) in future work.

Prakken and Sergot propose a solution to the problem and paradoxes 
stemming from earlier logical representations of contrary-to-duty obligations 
(CTDs), meaning obligations that become active when other obligations are 
violated [42]. They do so by introducing a new operator OB (A), meaning that 
A is obligatory given the subideal context B. The semantics of this operator is 
of the Kripke type but differs from the standard modal logic because of the 
accessibility relation: In that work, the accessible worlds are the best alterna-
tives, given the truth of B. In the “mainstream” of our research, we do not 
support CTDs. However, a modified version of our framework provides a 
simplified language and does support alternative obligations at different levels 
of priority [10]. A further step could be to integrate priority levels in the main 
SOCS social framework.

Deontic operators have not only been used to model normative concepts 
related to agent interaction in institutional contexts, but they are also part of 
agent programming languages. Notably, in IMPACT, agent programs make 
use of permission, obligation, and prohibition operators, with a semantics 
intuitively similar to that used in deontic logics, but with the purpose of deter-
mining possible courses of action that an agent may take in a given situation 
[16, 27]. In this respect, the IMPACT and SCIFF models have similarities even if 
their purposes and expressivity are different. The main difference is that agent 
programs in IMPACT express and determine the behavior of a single agent, 
whereas the goal of the SCIFF framework is to express rules of interaction and 
norms that cannot really determine and constrain the behavior of the single 
agents participating in a society, since agents are autonomous.

Governatori uses defeasible logics with deontic operators of obligation and 
permission to define contracts [30]. He proposes the introduction in RuleML 
of new tags for identifying obligations and permission, and creates graded 
violations and corresponding ideal and subideal states. In SCIFF, explicit 
permission is generally not used, because everything is allowed by default. 
Typically, when an action is expected not to happen, EN is stated explicitly. 
There are connections between EN and ¬P of deontic logics (studied in [9]), 
so it might be possible to use the same tags proposed by Governatori (e.g., 
<neg><Permission> to represent EN).

Governatori also introduces an operator ⊗ to address recovery from viola-
tion [30]. For example, A⇒OB⊗OC means that A implies that B is obligatory; 
but if OB is violated, C becomes obligatory. In SCIFF, recovery expectations can 
be inserted as an alternative in each of the rules: A⇒OB⊗OC could be written 
in SCIFF as H(A) → E(B) ∨ E(C). Interestingly, Governatori also proposes an 
inference rule that derives recovery rules from the other rules of the contract 
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(from A→OB and ¬B→OC derives A→OB⊗OC) [30]. This is an interesting 
line of research that in future work will also be applied to SCIFF.

Governatori and Milosevic discuss the need for contract verification and 
contract monitoring to check how parties fulfill their policies [31, 32]. Both 
these issues are addressed by the adoption of a formal specification language 
for contracts. The system they propose, and their Business Contract Language 
(BCL) in particular, is based on the formalism for the representation of CTDs. 
The formal representation they adopt for contracts is based upon a proposi-
tional logic language, with the deontic operators of obligation, permission, 
and contrary-to-duty. Each condition or policy of a contract is represented by 
a rule where the antecedent is a literal or a modal literal (built with the deontic 
operators of permission and obligation, possibly negated), and the conclusion 
of the rule is a CTD expression. Contract analysis then reduces the contract 
to a normal form that makes explicit all the contract conditions that can be 
generated/derived from the given specification. The procedure for generating 
normal forms is expressed in terms of inference rules that merge two rules 
in a new clause through the violations of conditions (e.g., when the former 
rule mentions an obligation O A in its conclusion and the latter rule has the 
negation ¬A in its antecedent, then their conclusions are composed in order to 
build a CTD formula for A). Normal forms are then a sort of partial evaluation 
of specification rules, in the logic of violation, aiming at producing rules with 
CTD formulas in their conclusions that summarize all the possible violations 
and recovery actions implicitly specified by the original (logic) representation 
of a contract. On generated normal forms, they can therefore detect conflicts 
arising from, for example, obligation of A and ¬A, or occurrence of A and ¬A 
in conclusions without any CTD for A neither ¬A.

Governatori et al. also consider the problem of checking the compliance of 
a business process expressed in the Business Process Modeling Notation to 
a business contract expressed in the aforementioned language [22, 33]. They 
define ideal, subideal, and nonideal situations to reflect decreasing degrees of 
compliance, and use these terms to characterize a business process with respect 
to a contract. Business processes are outside the focus of this paper, but we have 
proposed an approach to the definition of compliance of agents to interaction 
protocols and Web services to choreographies that is similar to that of Gover-
natori et al. and also provides an automatic verification procedure [2, 4].

Although our proposed language does not support CTDs, it is first-order 
and supports the deontic operators of permission and obligation (and their 
negation, as discussed in [9]). The proposed approach exploits SCIFF at run-
time for contract monitoring (e.g., conflicts and contradictions are detected 
at runtime by the notions of E-consistency and ¬-consistency). More general 
contract properties (beside the absence of conflicts) can be also statically 
verified by g-SCIFF. In particular, g-SCIFF generates every possible compli-
ant history that satisfies a given goal and a contract specified in the SCIFF 
language. Each generated history can be considered as a set of obligations 
in the approach of Governatori and Milosevic [31, 32], since g-SCIFF turns 
obligations into events.

The problem of representing violations and CTD formulas using first-order 
logic has also been studied by Herrestad, who discusses several solutions and 
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their limits [36]. Our concept of positive and negative expectations, together 
with an explicit time representation, supports quite well the representation 
of deontic operators. However, our representation of CTD formulas does not 
fully support the idea of “suboptimal worlds” as discussed by Herrestad [36], 
since recovery actions are actually represented as plain alternatives to duties. 
Future research will also address this issue. A solution might consist in extend-
ing our declarative semantics with the concept of preference.

An interesting extension would be to equip the SCIFF language with CTD 
expressions to occur in the head of ICs. In particular, when dealing with CTD 
expressions, one needs to select preferred models, such that the expectations 
in the recovery branch are imposed only if the normal branch is not fulfilled. 
One way to state such preferential reasoning is through qualitative choice 
logic [19]. This issue will be investigated in future work.

Boella and van der Torre discuss how a normative system can be seen as a 
normative agent, equipped with mental attitudes about which other agents 
can reason, choosing either to fulfill their obligations or to face the possible 
sanctions [18]. Conceptually, the social infrastructure in the SOCS model could 
be viewed as an agent whose knowledge base is the society specification, 
whose mental attitude is a set of expectations and whose reasoning process 
is the SCIFF proof procedure.

The ability to reason with time and deadlines is a distinguishing feature of 
the SCIFF language. Temporal aspects in normative positions have been the 
focus of previous work, such as [34] and [20]. In [34], Governatori et al. show 
how the analysis of normative conditionality and normative positions has to 
include temporal aspects in order to capture a number of important concepts. 
They propose a framework with temporalized normative positions in which 
literals may be labeled by time instants like SCIFF events, and assuming linear 
and discrete time. In this way it is possible to model deadlines and timeouts. 
Following a different approach from ours, Governatori et al. use the event 
calculus to deal with time. Broerson et al. investigate the deontic logic of 
deadlines by introducing an operator O(ρ≤δ), which means, intuitively, that 
the action ρ ought to be brought about before (or at the same time) another 
event δ happens [20]. They model time by means of Computation Tree Logic 
temporal logic. We can express a similar concept by means of an integrity 
constraint H(d, Td) → E(r, Tr) ∧ Tr ≤ Td, which says that if δ has happened, 
than ρ is expected to have happened before (or at the same time).

The SCIFF framework can capture, in a computational setting, the concept 
of (conditional) obligation with deadline presented by Dignum et al., with an 
explicit mapping of time [26]. Dignum et al. write: Oa(r < d – p) to state that if 
the precondition p becomes valid, the obligation becomes active. The obliga-
tion expresses the fact that a is expected to bring about the truth of r before a 
certain condition d holds.

For instance, if

	 P = H(tell(S,a,request(G),D,T))

	R  = H(tell(a,S,answer(G),D,T’)),T’ > T
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	 D = T’ > T + 2

then Oa(r < d – p) can be mapped into a IC:

	 H(tell(S,a,request(G),D),T) → E(tell(a,S,answer(G),D),T’), T’>T, T’≤T+2.

Many of the works that have used the event calculus (EC) for the purpose 
of reasoning over the effects of events are very close to this paper. In particular, 
it is especially related to the work by Farrell et al. [28]. They are principally 
concerned with the representation of contracts and particularly their norma-
tive state, in terms of obligation, power, and permission. The effects of con-
tract events on the normative state of a contract are specified using an XML 
formalization of the event calculus. This representation may be used to track 
the state of the agreement, according to a narrative of contract events similar 
to our concept of history.

The present work is similar to the work of Farrell et al. in that SCIFF can 
be seen as a generic language for expressing backward and forward rules and 
reasoning about (conformance) properties of a specific where the representa-
tion of contracts is just one application.

The work differs from Farrell et al. in that it shows that being able to describe 
contracts as logical theories is extremely useful not only for tracking, but also 
for proving general or specific properties of the contracts by using the same 
formalism. Artikis, Sergot, and Pitt adopt a similar approach by using a formal-
ization in terms of transition systems and model checking techniques [17].

Conclusions

This paper proposes the use of the SCIFF framework, originally developed 
for agent interaction protocols, to specify and verify business contracts. The 
proposal was supported intuitively by showing a deontic reading of SCIFF 
specifications. The specification of sample business contract clauses was given 
in the SCIFF language.

The paper demonstrates how verification is performed in the SCIFF frame-
work, in particular, runtime verification by means of the SCIFF proof proce-
dure, and design-time property verification with the g-SCIFF proof procedure. 
It also shows how SCIFF rules can be encoded in RuleML in order to enable 
potential contract parties to reason on contracts in advance.

Future work will be devoted to experimentation with the SCIFF framework 
on real-world contracts, testing both the expressiveness of the SCIFF language 
and the effectiveness of the proof procedures used for verification. We are 
also working on a formal completeness result (possibly for restricted cases) 
for g-SCIFF. On the language side, it would be interesting to explore recov-
ery from violations, possibly with a mechanism similar to contrary-to-duty 
obligations, and to extend the SCIFF language to accommodate other legal 
reasoning concepts, such as power and immunity (e.g., such as Hohfeldian 
power and immunity).
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Notes

1. For a complete treatment of quantification in the SCIFF language, the inter-
ested reader is referred to [8].

2. In the SCIFF language, restrictions can be considered as CLP constraints that 
can also be applied to universally quantified variables with the semantics defined 
by Bürckert [21].

3. If we had a completeness result for g-SCIFF, this would indeed be a proof and 
not only a suggestion.
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