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Abstract

We investigate the benefits that emerge when the fields of constraint programming

and concurrency meet. On one hand, constraints can be use in concurrency theory

to increase the conciseness and the expressive power of concurrent languages from

a pragmatic point of view. On the other hand, problems modeled by using con-

straints can be solved faster and more efficiently using a concurrent system. We

explore both directions providing two separate lines of contribution. Firstly we

study the expressive power of a concurrent language, namely Constraint Handling

Rules, that supports constraints as a primitive construct. We show what features

of this language make it Turing powerful. Then we propose a framework to solve

constraint problems that is intended to be deployed on a concurrent system. For the

development of this framework we used the concurrent language Jolie following the

Service Oriented paradigm. Based on this experience, we also propose an extension

to Service Oriented Languages to overcome some of their limitations and to improve

the development of concurrent applications.
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Chapter 1

Introduction

In this thesis we explore the interactions between constraints and concurrency, two

well know areas of computer science.

Constraint is a ubiquitous concept: in every day life there are a lot of rules

(physical, chemical, economical, and legal) that restrict, limit or regulate the way

we operate and what decisions we take. In computer science constraints can be

very useful not only to model the world but also to discover or verify if instances

satisfy a model. For these reasons the notion of constraints gave birth to a new field

called Constraint Programming that has attracted wide attention since it provides

a concise and elegant way to describe problems and also efficient tools to compute

solutions.

Concurrency is a universal concept too. In every second of our life there are

thousands of events or tasks occurring simultaneously and interacting with each

other. With the evolution of the networks a lot of connected computers are available

and nowadays more and more people think that we are inevitably going towards a

world full of interconnected devices. This network of devices is a concurrent system

and has peculiarities and characteristics that an environment constituted by only

one processing unit does not have. On one hand a concurrent system is usually hard

to use since, in such a system, problems like deadlocks, resources conflicts, security
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emerge. On the other hand a concurrent system can be the only mean to solve

problems requiring huge amounts of resources or modeling complex scenarios in a

simple and clear way.

Starting from the concepts of constraints and concurrency, natural questions

arise: what happens when these two ideas meet ? Is the constraint notion use-

ful in the field of the concurrency theory ? Can Constraint Programming exploit

concurrent system to solve or model new and more complex problems ?

The goal of this thesis is to provide a positive answer to these questions investi-

gating the possible connections between the constraint and concurrency fields. To

do so, in the first part of the thesis, we concentrate on some of the benefits that

the notion of constraint can bring to the field of concurrency theory. Specifically

we focus on Constraint Handling Rules (CHR), i.e. a concurrent language that

supports constraints as first class primitives, and we study the expressive power of

constraints and priorities in such a language. We prove the non Turing complete-

ness of some CHR fragments and a comparison between different variants of CHR

languages using technical tools like well-structured transition systems and language

encodings.

In the second part of the thesis we investigate how concurrent systems can be used

to solve problems modeled by using constraints in a more efficient way. We define

a framework called “Constraints In Clouds” (CiC) that, deployed on a concurrent

system, solves constrain problems in a faster, cheaper and more efficient way. The

CiC framework exploits the fact that different constraint solvers are better at solving

different problem instances, even within the same problem class. It uses machine

learning techniques to predict the best solvers to use for every problem instance

and, following these predictions, decides which solver needs to be used. Its goal is to

employ strategies that minimize the time needed to solve a set of problem instances,

the consumption of computing resources, and the risk of failures.

To develop the CiC framework we adopted a service oriented approach using the

concurrent language Jolie. We chose to follow the service oriented paradigm be-

cause nowadays it is the most used one for programming large, complex, distributed
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or cloud based applications thanks to its modularity, flexibility, extensibility, and

reliability. By using Jolie, however, we observed some of its limitations like the

lack of the broadcast primitives or the impossibility/inefficiency of some transaction

compensations. To overcome these limitations we provide an extension of the Jolie

language that not only contributes to the improvement of service oriented languages,

but allows us a better and more efficient implementation of the CiC framework too.

1.1 Thesis outline and contributions

In this section we briefly describe the overview of the contents of the thesis. Es-

sentially, the thesis is divided into three main parts. The first part (Chapters 2,3)

gives an overview of the constraint and concurrency fields, the second (Chapters

4-6) presents the studies of the expressive power of the concurrent language CHR.

The third part (Chapters 7-10) describes instead the CiC framework with the above

mentioned Jolie extension.

In more details, in

Chapter 2 we give an overview of the Constraint Programming field starting with

an historical background and then focusing on the key Constraint Program-

ming concepts: propagation and search ;

Chapter 3 we give an overview of some topics faced by the concurrency community.

In particular we will define what is a concurrent system and what are the main

approaches used to model and describe it from a formal but also practical point

of view;

Chapter 4 we recall the Constraint Handling Rules language with three of its se-

mantics;

Chapter 5 we present our first contribution. In this chapter we prove that two

fragments of CHR are not Turing powerful using the theory of well-structured

transition systems and a direct approach since classical techniques like encod-

ing into Petri nets or finite state automata could not be used;
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Chapter 6 we present a novel comparison between Turing powerful CHR lan-

guages. By using language encodings we show that priorities in CHR augment

the expressive power of the language while instead the use of dynamic prior-

ities, i.e. priorities that can vary at run time, do not increase the expressive

power obtained using static priorities only;

Chapter 7 we describe the “Constraints In Clouds” (CiC) framework, its main

features, the development of a first prototype using Jolie and some preliminary

tests;

Chapter 8 we investigate the use of machine learning techniques, specifically clas-

sification techniques, to enhance the performance of the CiC framework. We

study the approaches for classifying the run time of constraint solvers and

we simulate strategies that could be adopted within the CiC framework to

empirically evaluate their performances;

Chapter 9 we add the support of broadcast message to Jolie. In particular we

describe a novel approach based on radix trees that handles broadcast messages

with optimal complexity. Broadcast messages can therefore be used to obtain

a more concise and efficient implementation of the CiC framework;

Chapter 10 we extend the Jolie language considering a new mechanism for han-

dling and compensating ongoing transactions that for external or internal rea-

sons have failed. This mechanism allows a more reliable implementation of

the CiC framework and, as a secondary effect, a clearer and efficient handling

of timeouts;

Chapter 11 contains concluding remarks and future directions

Apart for Chapters 5 and 6 that assume the description of the CHR language

provided in Chapter 4, all the remaining chapters are self contained.

All the original contributions of the thesis have been published. In particular

the work presented in Chapter 5 has been published in [49] while Chapters 6,7,8,9,
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and 10 have been published in [48],[73],[72], [85], and [89] respectively. Moreover the

works presented in Chapters 9 and 10 where carried out within the Focus Research

Project: a joint effort between the Institut national de recherche en informatique et

automatique (INRIA) and the University of Bologna.
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Constraint and concurrency

overview

6



Chapter 2

Constraints

A constraint is something that restricts, limits, or regulates. From this notion of con-

straint a new field of computer science has been created: Constraint Programming

(CP).

Constraint Programming has attracted high attention among experts from many

areas because of its potential for solving hard real life problems and because it is

based on a strong theoretical foundation. The success of Constraint Programming

derives from the fact that on one hand it allows to model a problem in a simple way

and in the other hand it provides efficient problem solving algorithms.

There are a lot of surveys on Constraint Programming. One of the best and

complete works on Constraint Programming is [108]. To be short however we will

follow [10]. After giving in Section 2.1 a brief history of Constraint Programming

we will first define what a Constraint Satisfaction Problem is in Section 2.2 and how

these problems are solved in Sections 2.3, 2.4, 2.5, and 2.6. In Section 2.8 and 2.7

we will describe some extensions of Constraint Programming while in Section 2.9

and 2.10 we will present some of its applications and limitations.

2.1 Short history

The earliest ideas leading to CP may be found in the Artificial Intelligence (AI)

dating back to the sixties and seventies. The scene labeling problem [129] where
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the goal is to recognize the objects in a 3D scene by interpreting lines in the 2D

drawings is probably the first constraint satisfaction problem that was formalized.

The main algorithms developed in those years were related to achieving some form

of consistency. Another application for constraints is interactive graphics where Ivan

Sutherland’s Sketchpad [120], developed in the 1960s, was the pioneering system.

Sketchpad and its follower were interactive graphics applications that allowed the

user to draw and manipulate constrained geometric figures on the computer’s display.

These systems contribute to developing local propagation methods and constraint

compiling. The main step towards CP was achieved when Gallaire [51] and Jaffar

& Lassez [66] noted that logic programming was just a particular kind of constraint

programming. The basic idea behind Logic Programming is that the user states

what has to be solved instead of how to solve it, which is very close to the idea

of constraints. Therefore the combination of constraints and logic programming is

very natural and Constraint Logic Programming (CLP) makes a nice declarative

environment for solving problems by means of constraints. However, it does not

mean that constraint programming is restricted to CLP. Constraints were integrated

to typical imperative languages like c++ [111] or Java [77] as well.

Constraint Programming has an inner interdisciplinary nature. It combines and

exploits ideas from a number of fields including Artificial Intelligence, Combina-

torial Algorithms, Computational Logic, Discrete Mathematics, Neural Networks,

Operations Research, Programming Languages and Symbolic Computation.

2.2 Constraint Satisfaction Problems

Constraint Satisfaction Problems have been a subject of research in Artificial Intel-

ligence for many years. A Constraint Satisfaction Problem (CSP) is defined as:

• a set of variables X = x1, . . . , xn

• for each variable xi a finite set Di of possible values like naturals, reals or

strings. Di is called domain
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• a set of constraints restricting the values that the variables can simultaneously

take

Example 2.1 Let us show how the famous “send more money” mathematical game

published in the July 1924 issue of Strand Magazine by Henry Dudeney can be mod-

eled. This game is an alphametics, i.e a type of mathematical game consisting of

a mathematical equation among unknown numbers, whose digits are represented by

letters. To solve the game we need to associate to every letter in “send more money”

a different number from 0 to 9 in a way that the sum of “send” and “more” is equal

to “money”. We also require that the leading digit of a multi-digit number is not

zero.

Since we need to find what numbers are associated to every letter we can model

these numbers with variables which domain is the set {0, . . . , 9}. Let be cv the vari-

able associated to the letter c.

The set of constraint to consider are:

• svevnvdv +mvovrvev = mvovnvevyv

• cv 6= c′v if c 6= c′

• sv 6= 0

• mv 6= 0

A solution to a CSP is a labeling, i.e. an assignment of a value from its domain

to every variable, in such a way that all constraints are satisfied at once. We may

want to find:

• just one solution, with no preference

• all solutions

• an optimal, or at least a good solution, given some objective function defined

in terms of some or all of the variables
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Solutions to a CSP can be found by searching (systematically) through the possi-

ble assignments of values to variables. Search methods divide into two broad classes,

those that traverse the space of partial solutions (or partial value assignments), and

those that explore the space of complete value assignments (to all variables) stochas-

tically.

2.3 CSP Solving - Systematic search

From the theoretical point of view, solving CSP is trivial using systematic explo-

ration of the solution space. Even if systematic search methods without additional

improvements look very simple and non-efficient, they are important and worth

mentioning because they make the foundation of more advanced and efficient algo-

rithms.

The basic constraint satisfaction algorithm that searches the space of complete

labellings, is called generate-and-test. The idea is simple: a complete labeling of

variables is generated and, consequently, if this labeling satisfies all the constraints

then the solution is found, otherwise, another labeling is generated. The generate-

and-test algorithm is a weak generic algorithm that is used if everything else failed.

Its efficiency is poor because of non-informed generator and late discovery of incon-

sistencies. Consequently, there are two ways to improve its efficiency:

• the generator of valuations is smart, i.e. it generates the complete valuation

in such a way that the conflict found by the test phase is minimized

• the generator is merged with the tester, i.e. the validity of the constraint

is tested as soon as its respective variables are instantiated. This method is

used by the backtracking approach. Backtracking [87] is a method of solving

CSP by incrementally extending a partial solution that specifies consistent

values for some of the variables, towards a complete solution, by repeatedly

choosing a value for another variable consistent with the values in the current

partial solution. Clearly, whenever a partial instantiation violates a constraint,
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backtracking is able to eliminate a subspace from the Cartesian product of all

variable domains. Consequently, backtracking is strictly better than generate-

and-test. However, its running complexity for most nontrivial problems is still

NP-hard.

There are three major drawbacks of the standard backtracking:

1. thrashing, i.e. repeated failure due to the same reason

2. redundant work, i.e. conflicting values of variables are not remembered

3. late detection of the conflict, i.e. conflict is not detected before it really occurs

We will now present some of the improvements of backtracking studied in the

literature.

2.4 CSP Solving - Consistency Techniques

One alternative approach for solving CSP is based on removing inconsistent values

from variables’ domains till the solution has been founded. These methods are called

consistency techniques. There are several consistency techniques [76, 83] but most

of them are not complete, i.e they can not be used alone to solve a CSP completely.

The names of basic consistency techniques are derived from the graph notions. The

CSP is usually represented as a constraint graph or hypergraph (sometimes called

constraint network) where nodes correspond to variables and edges / hyperedges are

labeled by constraints.

The simplest consistency technique is referred to as a node consistency. It re-

moves values from variable domains that are inconsistent with unary constraints on

respective variables. The most widely used consistency technique is called arc con-

sistency. This technique removes values from variables domains that are inconsistent

with binary constraints. There exist several arc consistency algorithms starting from

AC-1 based on repeated revisions of arcs till a consistent state is reached or some

domain become empty. The most popular among them are AC-3 and AC-4.
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Even more inconsistent values can be removed by path consistency techniques.

Path consistency is a property similar to arc consistency, but considers pairs of

variables instead of only one. A pair of variables is path-consistent with a third

variable if each consistent evaluation of the pair can be extended to the other variable

in such a way that all binary constraints are satisfied. There exist several path

consistency algorithms like PC-1 and PC-2 but, compared to algorithms for arc

consistency, they need an extensive representation of constraints that is memory

consuming.

All above mentioned consistency techniques are covered by a general notion of

k-consistency [39] and strong k-consistency. A constraint graph is k-consistent if for

every system of values for k − 1 variables satisfying all the constraints among these

variables, there exist a value for arbitrary k-th variable such that the constraints

among all k variables are satisfied. A constraint graph is strongly K-consistent if it

is j-consistent for all j ≤ k. We have that:

• node consistency is equivalent to strong 1-consistency

• arc consistency is equivalent to strong 2-consistency

• path consistency is equivalent to strong 3-consistency

Algorithms exist for making a constraint graph strongly k-consistent for k > 2 but

in practice they are rarely used because of efficiency issues.

Although these algorithms remove more inconsistent values than any arc-con-

sistency algorithm they do not eliminate the need for search in general. Restricted

forms of these algorithms removing a similar amount of inconsistencies with a greater

efficiency have been proposed. For example directional arc consistency revises each

arc only once, requires less computation than AC-3 and less space than AC-4 but

is still able to achieve full arc consistency in some problems. It is also possible to

weaken the path consistency in a similar way.
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2.5 Constraint Propagation

Both systematic search and consistency techniques can be used alone to completely

solve the CSP but this is rarely done in practice. A combination of both approaches

is more commonly used. To avoid some problems of backtracking like thrashing or

redundant work, look back schemes were proposed. Backjumping [52] for instance

is a method to avoid thrashing. The control of backjumping is exactly the same

as backtracking except when backtracking takes place. Both algorithms pick one

variable at a time and look for a value for this variable making sure that the new

assignment is compatible with values committed so far. However, if backjumping

finds an inconsistency, it analyses the situation in order to identify the source of

inconsistency. It uses the violated constraints as guidance to find out the conflicting

variable. If all the values in the domain are explored then the backjumping algorithm

backtracks to the most recent conflicting variable. This is a main difference from

the backtracking algorithm that backtracks to the immediate past variable.

Another look back schema called backchecking [63] avoids redundant work. Back-

checking and its evolution backmarking are useful algorithms for reducing the num-

ber of compatibility checks. If the algorithm finds that some label Y/b is incom-

patible with any recent label X/a then it remembers this incompatibility. As long

as X/a is still committed, the Y/b will not be considered again. Backmarking is an

improvement over backchecking since it reduces the number of compatibility checks

by remembering for every label the incompatible recent labels and avoids repeating

compatibility checks which have already been performed.

All look back schemes share the disadvantage of late detection of the conflict.

Indeed, they solve the inconsistency when it occurs but they do not prevent the

inconsistency to occur. For this reason look ahead schemes were proposed. For

instance forward checking, the simplest example of look ahead strategy, performs

arc-consistency between pairs of a non instantiated variable and an instantiated one

removing temporarily the values that the non instantiated variable can not assume.

It maintains the invariance that for every unlabeled variable there exists at least
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one value in its domain that is compatible with the values of instantiated/labeled

variables. Even though forward checking does more work than backtracking when

each assignment is added to the current partial solution, it is almost always a better

choice than chronological backtracking.

Further future inconsistencies are removed by the partial look ahead method.

While forward checking performs only the checks of constraints between the current

variable and the not defined variables, the partial look ahead extends this consistency

checking even to variables that have not direct connection with labeled variables,

using directional arc consistency. The approach that uses full arc-consistency after

each labeling step is called (full) look ahead.

2.6 Stochastic and Heuristic Algorithms

In the last few years, greedy local search strategies have become popular. These

algorithms alter incrementally inconsistent value assignments to all the variables.

They use a “repair” or “hill climbing” metaphor to move towards more and more

complete solutions. To avoid getting stuck at “local minimum” they are equipped

with various heuristics to randomize the search but this stochastic nature generally

avoids the guarantee of “completeness” provided by the systematic search methods.

Hill-climbing is probably the most famous algorithm of local search [87]. It starts

from a randomly generated labeling of variables and, at each step, it changes a value

of some variable in such a way that the resulting labeling satisfies more constraints.

If a strict local minimum is reached then the algorithm restarts using other randomly

generated states. The algorithm stops as soon as a global minimum has been found,

i.e. all constraints are satisfied, or some resource (e.g. time, memory) is exhausted.

To avoid exploring the whole neighborhood of a state the min-conflicts heuristic

was proposed [92]. This heuristic chooses randomly any conflicting variable, i.e. the

variable that is involved in any unsatisfied constraint, and then picks a value which

minimizes the number of violated constraints (break ties randomly). If no such value

exists, it picks randomly one value that does not increase the number of violated
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constraints. Because the pure min-conflicts algorithm cannot go beyond a local-

minimum, some noise strategies were introduced. Among them worth presenting is

the random walk heuristics [112] that for a given conflicting variable picks randomly

a value with probability p and applies the min-conflicts heuristic with probability

1− p. The hill-climbing algorithm using the random-walk heuristic is also known as

Steepest-Descent-Random-Walk.

Tabu search is another method to avoid cycling and getting trapped in local mini-

mum [54, 55]. It is based on the notion of tabu list, a special short term memory that

maintains a selective history, composed of previously encountered configurations or,

more generally, pertinent attributes of such configurations. A simple tabu search

strategy consists in preventing configurations of tabu list from being recognized for

the next k iterations. Such a strategy prevents algorithm from being trapped in

short term cycling and allows the search process to go beyond local optima.

2.7 Constraint Optimization

In many real-life applications, we do not want to find any solution but a good

solution. The quality of solutions is usually measured by an application dependent

function called objective function. The goal is to find a solution that satisfies all the

constraints and minimize or maximize the objective function. Such problems are

referred to as Constraint Optimization Problems (COP). A Constraint Optimization

Problem consists of a standard CSP and an optimization function that maps every

solution to a numerical value.

The most used algorithm for finding optimal solutions is called branch and bound

[81]. It needs a heuristic function mapping a partial labeling to a numerical value

that represents an under estimate (in case of minimization) of the objective function

for the best complete labeling obtained from the partial labeling. The branch and

bound algorithm searches for solutions in a depth first manner and behaves like

chronological backtracking except that, as soon as a value is assigned to the variable,

the heuristic function is applied to the partial labeling. If case the under estimate
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obtained exceeds the bound of the best solution encountered so far the sub-tree

under the partial labeling is pruned.

The efficiency of branch and bound is determined by two factors: the quality of

the heuristic function and whether a good bound is found early. Observations of real-

life problems show improving a good solution is usually the most computationally

expensive part of the solving process.

Note that the branch and bound algorithm can be used to find sub-optimal

solutions too. For instance the algorithm can compute all the solution and return a

solution that reaches an acceptable bound even though this solution is not proved

to be optimal.

2.8 Constraint Programming Extensions

Problems in which it is not possible to satisfy all the constraints are called over-

constrained. Several approaches were proposed to handle these problems. Here

we present two of these approaches, namely Partial Constraint Satisfaction and

Constraint Hierarchies.

Partial Constraint Satisfaction [40] involves finding a solution to a CSP prob-

lem where some constraints are “weaken” to permit additional acceptable value

combinations. Formally a Partial Constraint Satisfaction problem is defined as a

standard CSP with some evaluation function that maps every labeling of variables

to a numerical value. The goal is to find a labeling with the best value of the eval-

uation function. A Partial Constraint Satisfaction problem looks like a COP with

the difference that the satisfaction of all the constraint is not required. In fact,

the global satisfaction is described by the evaluation function and constraints are

used as a guide to find an optimal value of the evaluation function. Many standard

algorithms like backjumping, backmarking, arc-consistency, forward checking and

branch and bound were customized to work with Partial Constraint Satisfaction

problems.
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Constraint hierarchies [20] is another approach of handling over-constrained

problems. The constraint is weakened explicitly here by specifying its strength

or preference. It allows one to specify not only the constraints that are required to

hold, but also weaker constraints (usually called soft constraints) . Intuitively, the

hierarchy does not permit to the weakest constraints to influence the result at the ex-

pense of dissatisfaction of a stronger constraint. Currently two groups of constraint

hierarchy solvers can be identified, namely refining method and local propagation.

While the refining methods solve the constraints starting from the strongest level

and continuing to weaker levels, the local propagation algorithms gradually solve

constraint hierarchies by repeatedly selecting uniquely satisfiable constraints.

2.9 Applications

Constraint programming has been successfully applied to many areas as diverse as

DNA structure analysis, time-tabling for hospitals or industry scheduling. It proved

to be well adapted for solving real-life problems because many application domains

evoke constraint descriptions naturally.

Assignment problems were perhaps the first type of industrial application that

were solved with the constraint tools. A typical example is the stand allocation for

airports, where aircraft must be parked on the available stand during the stay at

airport or counter allocation for departure halls. Another example is berth allocation

to ships in the harbor or refinery berth allocation.

Another typical constraint application area is personnel assignment where work

rules and regulations impose difficult constraints. The important aspect in these

problems is the requirement to balance work among different persons. Systems like

Gymnaste were developed for production of rosters for nurses in hospitals, for crew

assignment to flights or stuff assignment in railways companies.

Successful applications for finite domain constraint are the once that solve schedul-

ing problems, where, again, constraints express naturally the real life limitations.

Constraint based software is used for well-activity scheduling, forest treatment schedul-
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ing, production scheduling in plastic industry or for planning production of military

and business jets. The usage of constraints in Advanced Planning and Scheduling

systems is increasing due to current trends of on-demand manufacturing.

Another large area of constraint application is network management and con-

figuration. These problems include planning of cabling of the telecommunication

networks in the building or electric power network reconfiguration for maintenance

scheduling without disrupting customer services. Another example is optimal place-

ment of base stations in wireless indoor telecommunication networks [47]. There

are many other areas that have been tackled using constraints. Recent applica-

tions of constraint programming were used in computer graphics, natural language

processing, database systems, molecular biology, business applications, electrical

engineering and transport problems.

2.10 Limitations

Since many problems solved by CP are NP-hard problems, the identification of re-

strictions that make the problem tractable is very important for both the theoretical

and the practical points of view. Unfortunately, the efficiency of constraint programs

is still unpredictable and the intuition is usually the most important part of deciding

when and how to use constraints. A common problem for CP users is the stability

of the constraint model. Even small changes in a program or in the data can lead

to a dramatic change in performance. The process of performance debugging for a

stable execution over a variety of input data is currently not well understood.

Another problem is choosing the right constraint satisfaction technique for a

particular problem. Sometimes fast blind search like chronological backtracking is

more efficient than more expensive constraint propagation and vice versa.

A particular problem in many constraint models is the cost optimization. Some-

times, it is very difficult to improve an initial solution, and a small improvement

takes much more time than finding the initial solution.
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Finally constraint programs can add constraints dynamically but they do not

support the on-line constraint solving required for instance in a changing environ-

ment. For instance the possibility of deleting a constraint at runtime has been

considered by some extensions like the ones described in [124] but this kind of op-

eration are yet too costly to be performed.
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Chapter 3

Concurrency

Concurrency in computer science is a property of systems in which more than one

execution context can be active at the same time. We can think of a concurrent

system as a system where computations are logically or physically executed at the

same time and are potentially interacting with each other.

Concurrency can be divided in two broad classes: physical or logical. We talk

about physical concurrency when there is a real simultaneous execution (two or more

computation units are required), logical when instead the concurrent execution are

physically executed sequentially but the users perceive the executions as concurrent.

In Section 3.1 and 3.2 we overview different types of concurrent systems and what

problems arise when we are dealing with them. In Section 3.3 we will introduce two

of the most famous mathematical models that have been developed for modeling

concurrent computation while in Section 3.4 we will define what languages are cur-

rently used for developing concurrent applications. Finally in Section 3.5 we will

introduce Service Oriented Computing, a new promising approach for concurrency

emerged in the last few years following the expansion of the Web.

3.1 Concurrent system

We can distinguish concurrent system into three big families: single cores, parallel,

and distributed.
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3.1.1 Single core systems

Systems with only one computation unit can be considered concurrent systems if

they allow the sequentialization of concurrent activities in a way that the devel-

oper, the application or the user can consider the activities as they are running

simultaneously. In these days basically every single core computer can be consid-

ered a concurrent system since the interrupt mechanism and the operating system

scheduler allow the user to consider the system “logically” concurrent.

A single core system is the simplest kind of concurrent system. However since

they have only one computational unit they do not support physical concurrency.

3.1.2 Parallel systems

Parallel systems are composed by tightly-coupled computation units that work and

are perceived as a single computer. Usually computation units share a common

memory and the network that connects them is reliable, fast and with a large band-

width.

While in the past the improvements of the performances were obtained increasing

the frequencies of the microprocessors now the current trend of semiconductor chip

makers is to integrate in the same chip more than one CPU. These are the simplest

parallel system that can be think of. The two most known chip maker factories

(Intel and Amd) are competing to increase the number of CPU on the same package

and in the future we will have even 100 processing units per package.

More powerful parallel systems are instead the supercomputers used in research

laboratories. They are at the front line of current processing capacity and they are

obviously used to solve problems that require a huge computation power such as

protein folding predictions, weather simulations, aerodynamic research, and nuclear

test simulations.

The architecture of a supercomputer has varied through time. Starting from

systems in which a few number of the same processors where connected together

(symmetric multiprocessor or SMP) now the most powerful supercomputers have
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more than 100 thousands computing units. They usually cost millions of dollars

to deploy and million of dollars to run (you can imagine what can be the power

consumption of 100 thousand computation units). 1

3.1.3 Distributed system

We usually talk about a distributed system when a system is composed by a bunch

of computational units that can not be perceived as a unique computer. In this

case we do not require a fast and reliable net connecting the computing units, nor

their tightly-coupling or theirs presence in one site (e.g. a distributed system can

be spread all over the world).

In the recent years a distributed system is often been called “cloud”, world that

is used in the buzzword “cloud computing”. There is no precise definition of what

cloud or cloud computing is. One of the possible simplest definition describes a

cloud computing as a group of technologies that allow the use of hardware and

software distributed over a network. Hence, the cloud is hardware and software

distributed over a network. Another possible definition is that cloud computing is

a paradigm shift whereby details are abstracted from the users who no longer have

need of control over the technology infrastructure.

Since in the computer science world there is an ongoing interest in cloud and

cloud computing we would like to spend some more time presenting this concept

reporting one of the more precise definition of cloud computing that we have found.

The following definitions have been provided by the National Institute of Standards

and Technology (http://csrc.nist.gov).

Definition 3.1 (Cloud computing) Cloud computing is a model for enabling con-

venient, on-demand network access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

1A list of the most powerful supercomputers can be found at http://www.top500.org/

http://csrc.nist.gov
http://www.top500.org/
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interaction. This cloud model promotes availability and is composed of five essential

characteristics, three service models, and four deployment models.

Essential Characteristics:

• On-demand self-service. A consumer can unilaterally provision computing ca-

pabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service’s provider.

• Broad network access. Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick

client platforms (e.g., mobile phones, laptops, and PDAs).

• Resource pooling. The provider’s computing resources are pooled to serve mul-

tiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

There is a sense of location independence in that the customer generally has no

control or knowledge over the exact location of the provided resources but may

be able to specify location at a higher level of abstraction (e.g., country, state,

or datacenter). Examples of resources include storage, processing, memory,

network bandwidth, and virtual machines.

• Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in

some cases automatically, to quickly scale out and rapidly released to quickly

scale in. To the consumer, the capabilities available for provisioning often

appear to be unlimited and can be purchased in any quantity at any time.

• Measured Service. Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user

accounts). Resource usage can be monitored, controlled, and reported providing

transparency for both the provider and consumer of the utilized service.

Service Models:
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• Cloud Software as a Service (SaaS). The capability provided to the consumer

is to use the provider’s applications running on a cloud infrastructure. The

applications are accessible from various client devices through a thin client

interface such as a web browser (e.g., web-based email). The consumer does

not manage or control the underlying cloud infrastructure including network,

servers, operating systems, storage, or even individual application capabilities,

with the possible exception of limited user-specific application configuration

settings.

• Cloud Platform as a Service (PaaS). The capability provided to the consumer

is to deploy onto the cloud infrastructure consumer-created or acquired applica-

tions created using programming languages and tools supported by the provider.

The consumer does not manage or control the underlying cloud infrastructure

including network, servers, operating systems, or storage, but has control over

the deployed applications and possibly application hosting environment config-

urations.

• Cloud Infrastructure as a Service (IaaS). The capability provided to the con-

sumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The consumer

does not manage or control the underlying cloud infrastructure but has con-

trol over operating systems, storage, deployed applications, and possibly limited

control of select networking components (e.g., host firewalls).

Deployment Models:

• Private cloud. The cloud infrastructure is operated solely for an organization.

It may be managed by the organization or a third party and may exist on

premise or off premise.

• Community cloud. The cloud infrastructure is shared by several organizations

and supports a specific community that has shared concerns (e.g., mission,
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security requirements, policy, and compliance considerations). It may be man-

aged by the organizations or a third party and may exist on premise or off

premise.

• Public cloud. The cloud infrastructure is made available to the general public

or a large industry group and is owned by an organization selling cloud services.

• Hybrid cloud. The cloud infrastructure is a composition of two or more clouds

(private, community, or public) that remain unique entities but are bound to-

gether by standardized or proprietary technology that enables data and appli-

cation portability (e.g., cloud bursting for load-balancing between clouds).

3.2 Concurrent system problems

When we are dealing with a concurrent system we face problems that have no match

in the sequential world. The main challenge is solving race conditions that arise when

there is a common resource that is required simultaneously by two or more processes

but can be obtained by only one of them.

Race conditions cause

• pour performances. If a task gets the resource then the others tasks should

wait until the resource becomes available.

• non determinism. Sometimes the status of a system depends on the order in

which the tasks have used the resource

A good practice for a concurrent system developer is to avoid race conditions

whenever this is possible. Unfortunately some race conditions can not be avoided

like, for instance, in parallel system with shared memory where it is impossible to

avoid race conditions on the memory resource in the most general case. Even when

the dual approach of shared memory, namely message passing, the problem can not

be avoided since there will be race conditions over the network resource.



Chapter 3. Concurrency 27

The problem of race conditions has been widely studied in the literature and

a lot of techniques have been developed to deal with it. Usually we use the term

mutual exclusion to describe algorithms that are used to avoid the simultaneous use

of a common resource. Starting from the 60s, even hardware was design to allow

the use of mutual exclusion algorithms that can be divided into two categories:

• busy-wait solutions in which a process repeatedly checks to see if the resource

is available. Examples of these solutions are Dekker’s algorithm and Peterson’s

algorithm

• hardware supported solutions like locks, mutex, semaphores and monitors

Mutual exclusion algorithms should be used carefully since when many forms of

mutual exclusion are used it is possible to have negative side-effects.

One of the most encountered problems is the deadlock that happens when two

or more processors are waiting for the other to finish, and thus neither of them ever

finish. A simple deadlock between two processes p1 and p2 happens for instance

when p1 needs a resource possessed by p2 which in turns need a resource held by p1.

Other side-effects of the use of mutual exclusion algorithms is starvation and

priority inversion. The former happens when a process never gets sufficient resources

to run to completion while the latter happens when a process with higher priority

waits for a lower-priority process.

Minimizing race condition is a very important task for a concurrent system de-

veloper. This however is not easy and sometimes a lot of knowledge of the system

need to be used to obtain good performances out of a concurrent system. For exam-

ple, concurrent algorithms have been sometimes optimized paying attention to the

distribution and the latency of the memories of a concurrent system.

3.3 Mathematical models

Concurrency theory has been an active field of research in theoretical computer

science and a lot of models have been proposed for modeling and understanding
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concurrent systems. We will describe two of the most studied approach, namely

Petri Nets and Process algebras.

3.3.1 Petri Net

Petri net is one of the most popular and old formal model for the representation

and analysis of concurrent system. It is due to C.A. Petri, who introduced it in his

doctoral dissertation in 1962. 2

A Petri net is a directed graph with two types of nodes, namely places and

transitions. The arcs run from a place to a transition or vice versa, never between

places or between transitions. The places from which an arc runs to a transition

are called the input places of the transition. The places to which arcs run from

a transition are called the output places of the transition. Places may contain a

natural number of tokens.

We say that a transition may fire whenever there is a token in all its input arcs.

When a transition is fired it consumes those tokens and places a token at the end

of all output arcs. Execution of Petri nets is nondeterministic, i.e when multiple

transitions are enabled at the same time, any one of them may fire.

Petri nets are still used today in a lot of different fields of human knowledge.

Their simple formal definition allows the modeling of concurrent systems. Moreover

a lot of interesting proprieties like the possibility of reaching a certain state were

proven to be decidable. Petri nets can therefore be very useful not only for modeling

a system but also to prove that some propriety of the system is decidable.

3.3.2 Process calculus

Process calculi (the plural of process calculus) or process algebras are a family of lan-

guages for modeling concurrent systems. The history of process algebra traces back

2Actually Petri nets were originally invented for describing chemical processes in August 1939

when Petri was only 13 year old
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to the early 70s when it was found that it was difficult to use the methods of deno-

tational, operational or axiomatic semantics to describe the semantics of programs

containing a parallel operator. To solve this problem new innovative languages, the

process calculi, have been created. The first and the most famous process calculus

is CCS introduced by Milner in 1980. Among the languages proposed after CCS we

should mention CSP and the more recent π-calculus and ambient calculus.

It is quite impossible to describe every process algebra presented so far. We can

therefore only focus on some features that, as pointed out in [104], all process calculi

have in common. These features are:

• the primitive elements of the language are process that describe the behavior

of the system

• the representation of interactions between independent processes is described

as communications rather than modification of shared variables

• a small collection of primitives and operators are used to describe processes

and systems. The basic operators, always present in some form are:

– parallel composition

– operator for sending and receiving data

– sequentialization

– recursion or process replication

• algebraic laws are defined for the process operators. These laws allow process

expressions to be manipulated using equational reasoning

3.4 Concurrent programming

Concurrent programming encompasses the programming languages and algorithms

used in concurrent systems. Concurrent programming is usually considered to be
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more general than parallel programming because it can involve arbitrary and dy-

namic patterns of communication and interaction, whereas parallel systems generally

have a predefined and well-structured communication patterns. The basic goals of

concurrent programming include correctness, performance and robustness. Concur-

rent systems such as operating systems are generally designed to operate indefinitely

and not terminate unexpectedly.

As mentioned in [12] the main challenge for designing a concurrent programs is

to ensure the correct sequencing of the interactions between different computational

processes and coordinate the access to resources that are shared among processes.

For some particular and simple concurrent systems it is possible to have a de-

veloping framework that allows the programmer to write a program like in the

sequential case. The developing framework can distribute the work on the concur-

rent system to improve the performances (see for instance the OpenMP project at

http://openmp.org/wp/). Having this kind of developing tools on one hand facil-

itates the writing of the code but, on the other hand, the lack of flexibility makes

sometimes impossible to reach optimal performances. In these cases, in order to

improve the performances, programming languages that use language constructs for

concurrency need to be used.

Today, the most commonly used programming languages that have specific con-

structs for concurrency are Java and C#. Both of these languages fundamentally use

a shared-memory concurrency model, with locking provided by monitors or message-

passage. Of the languages that use a message-passing concurrency model, Erlang is

probably the most widely used in industry at present.

Unfortunately only few of other concurrent languages have been used in indus-

tries. Indeed, the majority of concurrent languages have been developed as re-

search languages. A non exhaustive list of languages with concurrency operators

is: ActorScript, Ada, Concurrent Haskell, Concurrent ML, Concurrent Pascal, Go,

MultiLisp, Linda, occam, occam-π, Oz, and Scala.

Note that concurrent programs can also be executed sequentially on a single

processor by interleaving the execution steps of each computational process.

http://openmp.org/wp/
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3.5 Service Oriented Computing

According to the W3C Working Group, a service is “an abstract resource that

represents a capability of performing tasks that form a coherent functionality from

the point of view of providers entities and requesters entities. To be used, a service

must be realized by a concrete provider agent.” 3

Service-oriented computing (SoC) [61] is an emerging paradigm for programming

distributed systems in which services are first class entities that can be composed

to obtain more complex services for developing massively distributed applications.

In SoC interactions are no longer based on fixed or programmed exchanges

of products with specific parties but on the provisioning of services by external

providers that are procured on the fly. The processes of discovery and selection of

services are not coded (at design time) but performed by the middleware according

to some user functional and non-functional requirements. The process of binding

the client application and the selected service is not performed by skilled software

developers but by the middleware.

In this setting, there is a need to rethink the way we engineer software applica-

tions, moving from the typical static scenario in which components are assembled

to build a (more or less complex) system that is delivered to a customer, to a more

dynamic scenario in which (smaller) applications are developed to run on such global

computers and respond to business needs by interacting with services and resources

that are globally available.

SoC brings to the front many aspects that have already been tackled in component-

based development (see for instance [34]). However, differently from the component-

based view that encompass a fixed system of components, SoC considers an evolving

universe of software applications that service providers publish so that they can be

discovered by (and bound to) business activities as they execute. For instance, if

documents need to be exchanged as part of a loan application, the bank may rely

on an external courier service instead of imposing a fixed one. In this case, a courier

3This definition is available at http://www.w3.org/TR/ws-gloss/

http://www.w3.org/TR/ws-gloss/
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service would be discovered for each loan application that is processed taking into

account the address to which the documents need to be sent, speed of delivery,

reliability, and so on.

The added flexibility provided by SoC comes at a price: dynamic interactions

impose the overhead of selecting the co-party at each invocation since the choice

between invoking a service and calling a component is a decision that needs to be

taken according to a given goal.

To develop a service-oriented architecture following the SoC paradigm two dif-

ferent approaches can be used:

• orchestration. When a new functionality is required a new service is created.

Like the conductor of an orchestra controls and conducts the musicians this

new service controls the other services to obtain the desired functionality;

• choreography. In this context we can compare the services as dancers. Like the

dancers move all together to create a choreography the services work together

to obtain the desired features of the system.

Some languages have been proposed for the orchestration approach. The most

used and wildly known orchestrating language is Business Process Execution Lan-

guage (BPEL), an OASIS standard executable language for specifying interactions

with Web Services (see http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.

pdf for the last specification).

Another language worth mentioning is Jolie [94], the first full-fledged program-

ming language based upon the service-oriented programming paradigm. In Jolie

everything is a service. It can be used to create new services from scratch and/or

compose existing ones using ad hoc primitives.

Few languages that follow the choreography approach have been proposed in-

stead. Among them the most famous one is certainly Web Services Choreography

Description Language (WS-CDL) which is, still today, a W3C candidate recommen-

dation (see http://www.w3.org/2002/ws/chor/ for more informations).

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.w3.org/2002/ws/chor/
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More informations regarding SoC can be retrieved consulting the results of the

Sensoria Project (http://www.sensoria-ist.eu/) which has studied this topic in

detail from a practical and theoretical point of view.

http://www.sensoria-ist.eu/
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Chapter 4

Constraint Handling Rules

The idea of approaching hard combinatorial optimization problems through a combi-

nation of search and constraint solving appeared first in logic programming. Despite

the continued support of logic programming for constraint programmers, research

efforts were initiated to import constraint technologies into other paradigms. Nowa-

days constraints can for instance be easily used in imperative languages. However

constraints are equally well suited for modeling and supporting concurrency. In par-

ticular, concurrent computation can be seen for instance as agents that communicate

and coordinate through a shared constraint store [50].

Importing constraint in existing languages raises some concerns:

• how easy is to use the new language ?

• how expressive is the new language ?

• how extensible is the new language ?

Each concern is intrinsically linked to the host language and has a direct impact on

potential end-users. It is desirable to obtain a declarative reading of a high-level

model statement that exploits the facilities of the host language. Extensibility is

also crucial since it is important to support the addition of user-defined constraints

and user-defined search procedures.

In this chapter we first provide in Section 4.1 a brief overview of different con-

current languages having constraints as primitive building blocks. Among all the
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concurrent languages with constraints we present in detail the language Constraint

Handling Rule (CHR). In particular in Sections 4.3 and 4.5 we recall the CHR syntax

and two of its semantics that will be considered in Chapters 5 and 6 . In Section 4.6

we describe an extension of CHR that increase the expressive power of CHR adding

rules priorities.

4.1 Brief Background

At the end of the 1980s, concurrent constraint programming integrated ideas from

Concurrent Logic Programming [113] and constraint logic programming (CLP) [67]:

• Maher [84] proposed the ALPS class of committed-choice languages

• a concurrent logic language based on Ueda’s GHC [122] was used in the

Japanese Fifth-Generation Computing Project

• Saraswat [110] introduced the ask-and-tell metaphor for constraint operations

and the concurrent constraints (CC) language framework that permits both

don’t-care and don’t-know non-determinism

• Smolka proposed a concurrent programming model Oz that subsumes func-

tional and object-oriented programming [115]

Implemented concurrent constraint logic programming languages include AKL,

CIAO, CHR, and Mozart (successor of Oz).

In concurrent constraint programming (CCP) the processes communicate via a

shared constraint store. The main difference with respect to imperative program-

ming languages concerns the notion of store, which represents the state of a system.

In CCP, rather than containing variable instantiations, the store is a constraint that

specifies partial information about the possible values the variables can take at any

stage of the computation. Processes can interact with each other by adding a con-

straint if it is consistent with the store (tell action). Alternatively, a process can

check if the store entails (implies) a given constraint (ask action) and, if this is not
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the case, it remains blocked until some concurrent process adds enough informa-

tion to the store. Hence, as computation proceeds, more and more information is

accumulated and the store is monotonically refined.

Several extensions of the pure CCP paradigm have been proposed. In timed

CCP [109, 28, 103], processes cannot wait indefinitely for an event and, in case a

timeout occurs, they must take an alternative action. The Soft CCP model [16]

generalizes CCP to handle soft constraints: the novel idea is to parametrize tell and

ask primitives with a preference level that is used to determine their success, failure

or suspension.

Recently, some efforts have been made to enrich nominal process calculi like

the π-calculus [90, 91] with primitives for constraint handling. An example of this

extension is the concurrent constraint π-calculus [21].

4.2 Constraint Handling Rules: notation

In this thesis we focus our attention to one of these concurrent constraint language:

Constraint Handling Rule (CHR). CHR [43, 42, 15, 41] is a committed-choice declar-

ative language which has been originally designed for writing constraint solvers and

which is nowadays a general purpose language.

We chose to study this language because it has constraints as first class primi-

tives, it is simple and it has been implemented over logic, imperative and functional

languages (see http://www.cs.kuleuven.be/~dtai/projects/CHR/ for more de-

tails on the implementations).

In this chapter we will give an overview of CHR syntax and its operational

semantics following [43, 33].

We first need to distinguish the constraints handled by an existing solver, called

built-in (or predefined) constraints, from those defined by the CHR program, called

user-defined (or CHR) constraints. Therefore we assume a signature Σ on which

program terms are defined and two disjoint sets of predicate symbols Πb for built-in

and Πu for user-defined constraints.

http://www.cs.kuleuven.be/~dtai/projects/CHR/
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Definition 4.1 (Built-in constraint) A built-in constraint p(t1, . . . , tn) is an a-

tomic predicate where p is a predicate symbol from Πb and t1, . . . , tn are terms over

the signature Σ.

For built-in constraints we assume a (first order) theory CT which describes their

meaning.

Definition 4.2 (User-defined constraint) A user-defined (or CHR) constraint

p(t1, . . . , tn) is an atomic predicate where p is a predicate symbol from Πu and

t1, . . . , tn are terms over the signature Σ.

We use c, d to denote built-in constraints, h, k to denote CHR constraints and

a, b, f, g to denote both built-in and user-defined constraints (we will call these gen-

erally constraints). The capital versions of these notations will be used to denote

multisets of constraints. We also denote by false any inconsistent conjunction of

constraints and with true the empty multiset of built-in constraints.

We will use “,” rather than ∧ to denote conjunction and we will often consider

a conjunction of atomic constraints as a multiset of atomic constraints. We prefer

to use multisets rather than sequences (as in the original CHR papers) because our

results do not depend on the order of atoms in the rules. In particular, we will use

this notation based on multisets in the syntax of CHR.

The notation ∃V φ, where V is a set of variables, denotes the existential closure

of a formula φ w.r.t. the variables in V , while the notation ∃−V φ denotes the

existential closure of a formula φ with the exception of the variables in V which

remain unquantified. Fv(φ) denotes the free variables appearing in φ. Finally, we

denote by t̄ and X̄ a sequence of terms and of distinct variables, respectively.

In the following, if t̄ = t1, . . . tm and t̄′ = t′1, . . . t
′
m are sequences of terms then

the notation p(t̄) = p′(t̄′) represents the set of equalities t1 = t′1, . . . , tm = t′m if

p = p′, and it is undefined otherwise. This notation is extended in the expected way

to multiset of constraints. Moreover we use ++ to denote sequence concatenation

and ] for multi-set union.
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We follow the logic programming tradition and indicate the application of a

substitution σ to a syntactic object t by σt.

To distinguish between different occurrences of syntactically equal constraints

a CHR constraints can be labeled by a unique identifier. The resulting syntactic

object is called identified CHR constraint and is denoted by k#i, where k is a CHR

constraint and i is the identifier. We also use the functions defined as chr(k#i) =

k and id(k#i) = i, possibly extended to sets and sequences of identified CHR

constraints in the obvious way.

4.3 CHR program

A CHR program is defined as a sequence of three kinds of rules: simplification, prop-

agation and simpagation rules. Intuitively, simplification rewrites constraints into

simpler ones, propagation adds new constraints which are logically redundant but

may trigger further simplifications, simpagation combines in one rule the effects of

both propagation and simplification rules. For simplicity we consider simplification

and propagation rules as special cases of a simpagation rule. The general form of a

simpagation rule is:

r @Hk\Hh ⇐⇒ D | B

where r is a unique identifier of a rule, Hk and Hh (the heads) are multi-sets of

CHR constraints, D (the guard) is a possibly empty multi-set of built-in constraints

and B is a possibly empty multi-set of (built-in and user-defined) constraints. If

Hk is empty then the rule is a simplification rule. If Hh is empty then the rule is a

propagation rule. At least one of Hk and Hh must be non empty.

In the following when the guard D is empty or true we omit D |. Also the names

of rules are omitted when not needed. For a simplification rule we omit Hk\ while

we write a propagation rule as Hk ⇒ D | B. A CHR goal is a multi-set of (both

user-defined and built-in) constraints. An example of a CHR program is shown in

Figure 4.1. This program implements the less or equal predicate, assuming that we

have only the equality predicate in the available built-in constraints. The first rule,
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reflexivity leq(X, Y )⇐⇒ X = Y | true
antisymmetry leq(X, Y ), leq(Y,X)⇐⇒ X = Y

transitivity leq(X, Y ), leq(Y, Z)⇒ leq(X,Z)

Figure 4.1: A program for defining ≤ in CHR

a simplification, deletes the constraint leq(X, Y ) if X = Y . Analogously the second

rule deletes the constraints leq(X, Y ) and leq(Y,X) adding the built-in constraint

X = Y . The third rule of the program is a propagation rule and it is used to add a

constraint leq(X,Z) when the two constraints leq(X, Y ) and leq(Y, Z) are found.

4.4 Traditional operational semantics

The theoretical operational semantics of CHR, denoted by ωt, is given in [33] as

a state transition system T = (Conf ,
ωt→P ): Configurations in Conf are tuples of

the form 〈G,S,B, T 〉n, where G is the goal (a multi-set of constraints that remain

to be solved), S is the CHR store (a set of identified CHR constraints), B is the

built-in store (a conjunction of built-in constraints), T is the propagation history

(a set of sequence of identifiers used to store the rule instances that have fired)

and n is the next free identifier (it is used to identify new CHR constraints). The

propagation history is used to avoid trivial non termination that could be introduced

by repeated application of the same propagation rule. The transitions of ωt are

shown in Table 4.1.

Given a program P , the transition relation
ωt→P⊆ Conf × Conf is the least

relation satisfying the rules in Table 4.1. The Solve transition allows to update

the constraint store by taking into account a built-in constraint contained in the

goal. The Introduce transition is used to move a user-defined constraint from

the goal to the CHR constraint store, where it can be handled by applying CHR

rules. The Apply transition allows to rewrite user-defined constraints (which are

in the CHR constraint store) by using rules from the program. As usual, in order to
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Solve 〈(c,G), S, C, T 〉n
ωt→P 〈G,S, c∧C, T 〉n where c is a built-

in constraint

Introduce 〈(k,G), S, C, T 〉n
ωt→P 〈G, {c#n} ∪ S,C, T 〉n+1 where k

is a CHR constraint

Apply 〈G,H1∪H2∪S,C, T 〉n
ωt→P 〈(B,G), H1∪S, θ∧D∧C, T ∪

{t}〉n where P contains a (renamed apart) rule

r @H ′1\H ′2 ⇐⇒ D | B

and there exists a matching substitution θ s.t.

chr(H1) = θH ′1, chr(H2) = θH ′2, CT |= C →
∃−Fv(C)(θ ∧D) and t = id(H1) ++ id(H2) ++ [r] /∈ T

Table 4.1: Transitions of ωt

avoid variable name clashes, this transition assumes that all variables appearing in a

program clause are fresh ones. The Apply transition is applicable when the current

store (B) is strong enough to entail the guard of the rule (D), once the parameter

passing has been performed. Note also that, as previously mentioned, the condition

id(H1) ++ id(H2) ++ [r] /∈ T avoids repeated application of the same propagation

rule and therefore trivial non-termination.

An initial configuration has the form 〈G, ∅, true, ∅〉1 while a final configuration

has either the form 〈G,S, false, T 〉k, when it is failed, or the form 〈∅, S, B, T 〉k, when

it is successfully terminated because there are no applicable rules.

Given a goal G, the operational semantics that we consider observes the non

failed final stores of terminating computations. This notion of observable is the

most used in the CHR literature and is captured by the following.

Definition 4.3 [Qualified answers [43]] Let P be a program and let G be a goal.

The set QAP (G) of qualified answers for the query G in the program P is defined
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as:

QAP (G) = {∃−Fv(G)(K ∧ d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωt→P

∗
〈∅, K, d, T 〉n

ωt9P}

We also consider the following different notion of answer, obtained by compu-

tations terminating with a user-defined constraint which is empty. We call these

observables data sufficient answers slightly deviating from the terminology of [43]

(a goal which has a data sufficient answer is called a data-sufficient goal in [43]).

Definition 4.4 [Data sufficient answers] Let P be a program and let G be a goal.

The set SAP (G) of data sufficient answers for the query G in the program P is

defined as:

SAP (G) = {∃−Fv(G)(d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωt→P

∗
〈∅, ∅, d, T 〉n}

Both previous notions of observables characterize an input/output behaviour,

since the input constraint is implicitly considered in the goal. Clearly in general

SAP (G) ⊆ QAP (G) holds, since data sufficient answers can be obtained by setting

K = ∅ in Definition 4.3.

4.5 Abstract operational semantics

The first CHR operational semantics defined in [43] differs from the traditional

semantics ωt. Indeed this original, so called, abstract semantics denoted by ωa,

allows the firing of a propagation rules an infinite number of times. For this reason

ωa can be seen as the abstraction of the traditional semantics where the propagation

history is not considered. In Table 4.2 we have reported the transaction of the ωa

semantics following the structure of the theoretical semantics using configurations

without a propagation history set.
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Solve 〈(c,G), S, C, T 〉n
ωa→P 〈G,S, c∧C, T 〉n where c is a built-

in constraint

Introduce 〈(k,G), S, C, T 〉n
ωa→P 〈G, {c#n} ∪ S,C, T 〉n+1 where k

is a CHR constraint

Apply 〈G,H1∪H2∪S,C, T 〉n
ωt→P 〈(B,G), H1∪S, θ∧D∧C, T ∪

{t}〉n where P contains a (renamed apart) rule

r @H ′1\H ′2 ⇐⇒ D | B

and there exists a matching substitution θ s.t.

chr(H1) = θH ′1, chr(H2) = θH ′2, CT |= C →
∃−Fv(C)(θ ∧D)

Table 4.2: Transitions of ωa

Given a program P , the transition relation
ωa→P⊆ Conf×Conf is the least relation

satisfying the rules in Table 4.2.

Initial and final configurations can be defined analogously to those of ωt seman-

tics. In the same way we can define the observables: qualified and data sufficient

answers.

4.6 CHR with priorities

De Koninck et al. [75] extended CHR with user-defined priorities. This new lan-

guage, denoted by CHRωp , provides an high level alternative for controlling program

execution, that is more appropriate to needs of CHR programmers than other low

level approaches.

The syntax of CHR with priorities is compatible with the syntax of CHR. A
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1 :: source(V ) =⇒ dist(V, 0)

1 :: dist(V,D1)\dist(V,D2)⇐⇒ D1 ≤ D2|true
D + 2 :: dist(V,D), edge(V,C, U) =⇒ dist(U,D + C)

Figure 4.2: A program for computing the shortest path in CHRωp

simpagation rule has now the form

p :: r @Hk\Hh ⇐⇒ D | B

where r , Hk, Hh, D,B are defined as in the CHR simpagation rule in Section 4.3,

while p is an arithmetic expression, with Fv(p) ⊆ (Fv(Hk) ∪ Fv(Hh)), which ex-

presses the priority of rule r. If Fv(p) = ∅ then p is a static priority, otherwise it is

called dynamic.

The formal semantics of CHRωp , defined by [75], is an adaptation of the tradi-

tional semantics to deal with rule priorities. Formally this semantics, denoted by ωp,

is a state transition system T = (Conf ,
ωp→P ) where P is a CHRωp program while

configurations in Conf , as well as the initial and final configurations, are the same as

those introduced for the traditional semantics in Section 4.4. The transition relation
ωp→P⊆ Conf ×Conf is the least relation satisfying the rules in Table 4.3. The Solve

and Introduce transitions are equal to those defined for the traditional semantics.

The Apply transition instead is modified in order to take into account priorities.

In fact, a further condition is added imposing that a rule can be fired only if no

other rule that can be applied has a smaller value for the priority annotation (as

usual in many systems, smaller values correspond to higher priority; For simplicity

in the following we will use the terminology “higher” or “lower” priority rather than

considering the values).

An example of a CHRωp program (from [75]) is shown in Figure 4.2. This

program can be used to compute the length of the shortest path between a source

node and all the other nodes in the graph. We assume that the source node n is

defined by using the constraint source(n) and that the graph is represented by using
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Solve 〈(c,G), S, C, T 〉n
ωp→P 〈G,S, c∧C, T 〉n where c is a built-

in constraint

Introduce 〈(k,G), S, C, T 〉n
ωp→P 〈G, {c#n} ∪ S,C, T 〉n+1 where k

is a CHR constraint

Apply 〈∅, H1∪H2∪S,C, T 〉n
ωp→P 〈B,H1∪S, θ∧D∧C, T ∪{t}〉n

where P contains a (renamed apart) rule

p :: r @H ′1\H ′2 ⇐⇒ D | B

and there exists a matching substitution θ s.t.

chr(H1) = θH ′1, chr(H2) = θH ′2, CT |= C →
∃−Fv(C)(θ∧D), θp is a ground arithmetic expression and

t = id(H1) ++ id(H2) ++ [r] /∈ T . Furthermore no rule

of priority p′ and substitution θ′ exists with θ′p′ < θp

for which the above conditions hold

Table 4.3: Transitions of ωp

the constraints edge(V,C, U) for every edge of length C between two nodes V, U .

When the program terminates we obtain a constraint dist(U,C) iff the length of the

shortest path between the source node and U is C.

The qualified and data sufficient answers for CHRωp can be defined analogously

to those of the standard language:

Definition 4.5 [Qualified answers] Let P be a CHRωp program and let G be a goal.

The set QAP (G) of qualified answers for the query G in the program P is defined

as:

QAP (G) = {∃−Fv(G)(K ∧ d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωp→P

∗
〈∅, K, d, T 〉n

ωp9P}
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Definition 4.6 [Data sufficient answers] Let P be a CHRωp program and let G be

a goal. The set SAP (G) of data sufficient answers for the query G in the program

P is defined as:

SAP (G) = {∃−Fv(G)(d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωp→P

∗
〈∅, ∅, d, T 〉n}



Chapter 5

Non Turing powerful fragments of CHR

Given the spread of small computing device it can be very useful to implement a

language like CHR that runs concurrently in a given environment. In the 2009 CHR

working week held in Ulm we discussed the possibility of studying and implementing

a simple version of CHR that can run on a huge amount of small devices like smart

phones or in parallel using a multi parallel graphics accelerator like nVidia CUDA1.

Using the full CHR language has been considered too complex to run on such simple

devices and therefore the study of the expressive power of CHR fragments can help

us to decide which is the right sublanguage to implement.

In the last few years, several papers have been devoted to investigate the ex-

pressivity of CHR, however very few decidability results for fragments of CHR have

been obtained. Three main aspects affect the computational power of CHR: the

number of atoms allowed in the heads, the nature of the underlying signature on

which programs are defined, and the constraint theory, defining the meaning of

built-ins. Some results in [32] indicate that when restricting to single headed rules

the computational power of CHR decreases. However, these results consider Turing

complete fragments of CHR, hence they do not establish any decidability result.

Indeed, single headed CHR is Turing-complete [32], provided that the host language

allows functors and supports unification. On the other hand, when allowing mul-

1More information regarding these two ongoing projects can be found at http://www.uni-ulm.

de/en/in/pm/teaching/tasks/cp-and-chr.html

http://www.uni-ulm.de/en/in/pm/teaching/tasks/cp-and-chr.html
http://www.uni-ulm.de/en/in/pm/teaching/tasks/cp-and-chr.html
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tiple heads, even restricting to a host language which allows only constants does

not allow to obtain any decidability property, since also with this limitation CHR

is still Turing complete [116, 32]. The only (implicit) decidability results concern

propositional CHR, where all constraints have arity 0, and CHR without functors

and without unification, since these languages can be translated to (colored) Petri

Nets [13].

Given this situation, when looking for decidable properties it is natural to con-

sider further restrictions of the above mentioned CHR language which allows the

only built-in = (interpreted in the usual way as equality on the Herbrand universe)

and which, similarly to Datalog, is defined over a signature which contains no func-

tion symbols of arity > 0.

In this chapter we will study the decidability of termination for two CHR dialects

which, similarly to the Datalog like languages, are defined by using a signature which

does not allow function symbols (of arity > 0). Both languages allow the use of the

= built-in in the body of rules, thus are built on a host language that supports

unification. However each imposes one further restriction. The first CHR dialect

allows only range-restricted rules, that is, it does not allow the use of variables in

the body or in the guard of a rule if they do not appear in the head. We show,

using the theory of well-structured transition systems [38, 6], that the existence

of an infinite computation is decidable in this dialect. The second dialect instead

limits the number of atoms in the head of rules to one. We prove that in this case,

the existence of a terminating computation is decidable. In this case we provide a

direct proof, since no reduction to Petri Nets can be used (the language introduces

an infinite states system) and well-structured transition system can not be used

(they do not allow to prove this kind of decidability properties). These results show

that both dialects are strictly less expressive2 than Turing Machines. It is worth

noting that the language (without function symbols) without these restrictions is as

expressive as Turing Machines.

2As we clarify later, “less expressive” here means that there exists no termination preserving

encoding of Turing machines in the considered language.



Chapter 5. Non Turing powerful fragments of CHR 49

5.1 Notation

As mentioned before, the computational power of CHR depends on several aspects,

including the number of atoms allowed in the heads, the underlying signature Σ on

which programs are defined, and the constraint theory CT , defining the built-ins.

In particular the language under consideration in this chapter is the CHR defined

over a signature which contains no function symbol of arity > 0 and interpreted using

the ωa semantics. We will indicate this language as CHRωa(C).

We will also use the notation CHRωa(P ) to denote the language where all con-

straints have arity zero (i.e. Σ = ∅). Finally CHRωa(F ) indicates the CHR language

which allows functor symbols and the = built-in. Note that this last language is

the signature used in most of the current CHR implementation. Indeed the host

language of the majority of CHR implementations is Prolog and therefore the usual

signature supports arbitrary Herbrand terms and unification.

The number of atoms in the heads also affects the expressive power of the lan-

guage. We use the notation CHR1, possibly combined with the notation above, to

denote single-headed CHR, where heads of rules contain one atom.

5.2 Range-restricted CHRωa(C)

In this section we consider the (multi-headed) range-restricted CHRωa(C) language

described in the introduction. We call a CHR rule range-restricted if all the variables

which appear in the body and in the guard appear also in the head of a rule. More

formally, if V ar(X) denotes the variables used in X, the rule r @Hk\Hh ⇐⇒ D | B
is range-restricted if V ar(B) ∪ V ar(D) ⊆ V ar(Hk, Hh) holds. A CHR language is

called range-restricted if it allows range-restricted rules only.

We prove that in range-restricted CHRωa(C) the existence of an infinite com-

putation is a decidable property. This shows that this language is less expressive

than Turing Machines and than CHRωa(C). Our result is based on the theory of

well-structured transition systems (WSTS) and we refer to [38, 6] for this theory.

Here we only provide the basic definitions on WSTS, taken from [38].
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Recall that a quasi-order (or, equivalently, preorder) is a reflexive and transitive

relation. A well-quasi-order (wqo) is defined as a quasi-order ≤ over a set X such

that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j such that

xi ≤ xj.

A transition system is defined as usual, namely it is a structure TS = (S,→),

where S is a set of states and →⊆ S × S is a set of transitions. We define Succ(s)

as the set {s′ ∈ S | s→ s′} of immediate successors of s. We say that TS is finitely

branching if, for each s ∈ S, Succ(s) is finite. Hence we have the key definition.

Definition 5.1 (Well-structured transition system with strong compatibility)

A well-structured transition system with strong compatibility is a transition system

TS = (S,→), equipped with a quasi-order ≤ on S, such that the two following

conditions hold:

1. ≤ is a well-quasi-order;

2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all

transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

The next theorem is a special case of a result in [38] and will be used to obtain

our decidability result.

Theorem 5.1 Let TS = (S,→,≤) be a finitely branching, well-structured transition

system with strong compatibility, decidable ≤ and computable Succ(s) for s ∈ S.

Then the existence of an infinite computation starting from a state s ∈ S is decidable.

Decidability of divergence. Consider a given goal G and a (CHR) program

P and consider the transition system T = (Conf ,
ωa→P ) defined in Section 4.5. Ob-

viously the number of constants and variables appearing in G or in P is finite.

Moreover, observe that since we consider range-restricted programs, the application

of the transitions
ωa→P does not introduce new variables in the computations. In

fact, even though rules are renamed (in order to avoid clash of variables), the defini-

tion of the Apply rule (in particular the definition of θ) implies that in a transition
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s1
ωa→P s2 we have that V ar(s2) ⊆ V ar(s1) holds. Hence an obvious inductive argu-

ment implies that no new variables arise in computations. For this reason, given a

goal G and a program P , we can assume that the set Conf of all the configurations

uses only a finite number of constants and variables. In the following we implicitly

make this assumption. We define a quasi-order on configurations as follows.

Definition 5.2 Given two configurations s1 = 〈G1, S1, B1〉i and s2 = 〈G2, S2, B2〉j
we say that s1 ≤ s2 if

• for every constraint c ∈ G1 |{c ∈ G1}| ≤ |{c ∈ G2}|

• for every constraint c ∈ {d . d#i ∈ S1} |{i . c#i ∈ S1}| ≤ |{i . c#i ∈ S2}|

• B1 is logically equivalent to B2

The next Lemma, with proof in Appendix A, states the relevant property of ≤.

Lemma 5.1 ≤ is a well-quasi-order on Conf .

Next, in order to obtain our decidability results we have to show that the strong

compatibility property holds. This is the content of the following lemma whose

proof is in Appendix A.

Lemma 5.2 Given a CHRωa(C) program P , (Conf ,
ωa→P ,≤) is a well-structured

transition system with strong compatibility.

Finally we have the desired result.

Theorem 5.2 Given a range-restricted CHRωa(C) program P and a goal G, the

existence of an infinite computation for G in P is decidable.

Proof: First observe that, due to our assumption on range-restricted programs,

T = (Conf ,
ωa→P ) is finitely branching. In fact, as previously mentioned, the use of

rule Apply can not introduce new variables (and hence new different states). The

thesis follows immediately from Lemma 5.2 and Theorem 5.1. �
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The previous Theorem implies that range-restricted CHRωa(C) is strictly less

expressive than Turing Machines, in the sense that there can not exist a termination

preserving encoding of Turing Machines into range-restricted CHRωa(C). To be

more precise, we consider an encoding of a Turing Machine into a CHR language as

a function f which, given a machine Z and an initial instantaneous description D

for Z, produces a CHR program and a goal. This is denoted by (P,G) = f(Z,D).

Hence we have the following.

Definition 5.3 (Termination preserving encoding) An encoding f of Turing

Machines into a CHR language is termination preserving3 if the following holds:

the machine Z starting with D terminates iff the goal G in the CHR program P

has only terminating computations, where (P,G) = f(Z,D). The encoding is weak

termination preserving if: the machine Z starting with D terminates iff the goal G

in the CHR program P has at least one terminating computation.

Since termination is undecidable for Turing Machines, we have the following

immediate corollary of Theorem 5.2.

Corollary 5.1 There exists no termination preserving encoding of Turing Machines

into range-restricted CHRωa(C).

Note that the previous result does not exclude the existence of weak encodings.

For example, in [24] it is showed that the existence an infinite computation is de-

cidable in CCS!, a variant of CCS, yet it is possible to provide a weak termination

preserving encoding of Turing Machines in CCS! (essentially by adding spurious non-

terminating computations). We conjecture that such an encoding is not possible for

CHRωa(C). Note also that previous results imply that range-restricted CHRωa(C)

is strictly less expressive than CHRωa(C): in fact there exists a termination pre-

serving encoding of Turing Machines into CHRωa(C) [116, 32].

3For many authors the existence of a termination preserving encoding into a non-deterministic

language L is equivalent to the Turing completeness of L, however there is no general agreement

on this, since for others a weak termination preserving encoding suffices.
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5.3 Single-headed CHRωa(C)

As mentioned in the introduction, while CHRωa(C) and CHRωa
1 (F ) are Turing

complete languages [116, 32], the question of the expressive power of CHRωa
1 (C) is

open. Here we answer to this question by proving that the existence of a terminating

computation is decidable for this language, thus showing that CHRωa
1 (C) is less

expressive than Turing machines. Throughout this section, we assume that the

abstract semantics ωa is considered (however see the discussion at the end for an

extension to the case of ωt). The proof we provide is a direct one, since neither

well-structured transition systems nor reduction to Petri Nets can be used here (see

the introduction).

5.3.1 Some preparatory results

We introduce here two more notions, namely the forest associated to a computation

and the notion of reactive sequence, and some related results. We will need them

for the main result of this section.

First, we observe that it is possible to associate to the computation for an atomic

goal G in a program P a tree where, intuitively, nodes are labeled by constraints

(recall that these are atomic formulae), the root is G and every child node is obtained

from the parent node by firing a rule in the program P . This notion is defined

precisely in the following, where we generalize it to the case of a generic (non atomic)

goal, where for each CHR constraint in the goal we have a tree. Thus we obtain a

forest Fδ = (V,E) associated to a computation δ, where V contains a node for each

repetition of identified CHR constraints in δ. Before defining the forest we need the

concept of repetition of an identified CHR atom in a computation.

Definition 5.4 (Repetition) Let P be a CHR program and let δ be a computation

in P . We say that an occurrence of an identified CHR constraint h#l in δ is the

i-th repetition of h#l, denoted by h#li, if it is preceded in δ by i Apply transitions

of propagation rules whose heads match the atom h#l. We also define

r(δ, h#l) = max{i | there exists a i-th repetition of h#l in δ}
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Definition 5.5 (Forest) Let δ be a terminating computation for a goal in a

CHRωa
1 (C) program. The forest associated to δ, denoted by Fδ = (V,E) is defined as

follows. V contains nodes labeled either by repetitions of identified CHR constraints

in δ or by �. E is the set of edges. The labeling and the edges in E are defined as

follows:

(a) For each CHR constraint k which occurs in the first configuration of δ there

exists a tree in Fδ = (V,E), whose root is labeled by a repetition k#l0, where k#l is

the identified CHR constraint associated to k in δ.

(b) If n is a node in Fδ = (V,E) labeled by k#li and the rule r @h�g | C, k1, . . . , km

is used in δ to rewrite the repetition h#li, where � ∈ {⇐⇒,=⇒}, the k′is are CHR

constraints while C contains built-ins, then we have two cases:

1. If � is =⇒ then n has m + 1 sons, labeled by kj#lj
0, for j ∈ [1,m], and by

h#li+1, where the kj#lj
0 are the repetitions generated by the application of the

rule r to h#li in δ.

2. If � is ⇐⇒ then:

• if m > 0 then n has m sons, labeled by kj#lj
0, for j ∈ [1,m], where

kj#lj
0 are the repetitions generated by the application of the rule r to

h#li in δ.

• if m = 0 then n has 1 son, labeled by �.

Note that, according to the previous definition, nodes which are not leaves are

labeled by repetitions of identified constraints k#li, where either i < r(δ, h#l) or

h#l does not occur in the last configuration of δ. On the other hand, the leaves of

the trees in Fδ are labeled either by � or by the repetitions which do not satisfy the

condition above. An example can help to understand this crucial definition.

Example 5.1 Let us consider the following program P :

r1 @ c(X,Y) <=> c(X,Y),c(X,Y)

r2 @ c(X,Y) <=> X = 0
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r3 @ c(0,Y) ==> Y = 0

r4 @ c(0,0) <=> true

There exists a terminating computation δ for the goal c(X, Y ) in the program P ,

which uses the clauses r1, r2, r3, r4 in that order and whose associated forest Fδ is

the following tree:

c(X, Y )#10

''PPPPPPPPPPPP

wwnnnnnnnnnnnn

c(X, Y )#20

��

c(X, Y )#30

��
� c(X, Y )#31

��
�

Note that the left branch corresponds to the termination obtained by using rule

r2, hence the superscript is not incremented. On the other hand, in the right branch

the superscript 0 at the second level becomes 1 at the third level. This indicates

that a propagation rule (rule r3) has been applied. �

Given a forest Fδ, we write Tδ(n) to denote the subtree of Fδ rooted in the node

n. Moreover, we identify a node with its label and we omit the specification of

the repetition, when not needed. The following definition introduces some further

terminology that we will need later.

Definition 5.6 • Given a forest Fδ, a path from a root of a tree in the forest to

a leaf is called a single constraint computation, or sc-computation for short.

• Two repetitions h#li and k#mj of identified CHR constraints are called r-

equal, indicated by h#li == k#mj, iff there exists a renaming ρ such that

h = kρ.

• a sc-computation σ is p-repetitive if p = maxh#li∈σ |{k#mj ∈ σ | h#li ==

k#mj}|.
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• The degree of a p-repetitive sc-computation σ, denoted by dg(σ) is the cardinal-

ity of the set P REP which is defined as the maximal set having the following

properties:

– contains a repetition h#li in σ iff p = |{k#mj ∈ σ | h#li == k#mj}|

– if h#li is in P REP then P REP does not contain a repetition k#mj

s.t. h#li == k#mj

• A forest Fδ is l-repetitive if one of its sc-computation σ is l-repetitive and there

is no l′-repetitive sc-computation σ′ in Fδ with l′ > l.

• The degree dg(Fδ) of an l-repetitive forest Fδ is defined as

dg(Fδ) =
∑
σ

{dg(σ) | σ is an l-repetitive sc-computation in Fδ}.

After the forest, the second main notion that we need to introduce is that one

of reactive sequence4.

Given a computation δ, we associate to each (repetition of an) occurrence of an

identified CHR atom k#l in δ a, so called, reactive sequence of the form

〈c1, d1〉 . . . 〈cn, dn〉, where, for any i ∈ [1, n], ci, di are built-in constraints.

Intuitively each pair 〈ci, di〉 of built-in constraints represents all the Apply tran-

sition steps, in the computation δ, which are used to rewrite the considered occur-

rence of the identified CHR atom k#l and the identified atoms derived from it. The

constraint ci represents the input for this sequence of Apply computation steps,

while di represents the output of such a sequence. Hence one can also read such a

pair as follows: the identified CHR constraint k#l, in δ, can transform the built-

in store from ci to di. Different pairs 〈ci, di〉 and 〈cj, dj〉 in the reactive sequence

correspond to different sequences of Apply transition steps. This intuitive notion

is further clarified later (Definition 5.9), when we will consider a reactive sequence

associated to a repetition of an identified CHR atom.

4This notion is similar to that one used in the (trace) semantics of concurrent languages, see,

for example, [29, 27] for the case of concurrent constraint programming. The name comes from

this field.
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Since in CHR computations the built-in store evolves monotonically, i.e. once

a constraint is added it can not be retracted, it is natural to assume that reactive

sequences are monotonically increasing. So in the following we will assume that,

for each reactive sequence 〈c1, d1〉 . . . 〈cn, dn〉, the following condition holds: CT |=
dj → cj and CT |= ci+1 → di for j ∈ [1, n], i ∈ [1, n − 1]. Moreover, we denote

the empty sequence by ε. Next, we define the strictly increasing reactive sequences

w.r.t. a set of variables X.

Definition 5.7 (Strictly increasing sequence) Given a reactive sequence s =

〈c1, d1〉 · · · 〈cn, dn〉, with n ≥ 0 and a set of variables X, we say that s is strictly

increasing with respect to X if the following holds for any j ∈ [1, n], i ∈ [1, n− 1]

• Fv(cj, dj) ⊆ X,

• CT |= di 6→ ci+1 and CT |= ci 6→ di.

Given a generic reactive sequence s = 〈c1, d1〉 · · · 〈cn, dn〉 and a set of variables

X, we can construct a new, strictly increasing sequence η(s,X) with respect to a

set of variables X as follows. First the operator η restricts all the constraints in s to

the variables in X (by considering the existential closure with the exception of the

variables in X). Then η removes from the sequence all the stuttering steps (namely

the pairs of constraints 〈c, d〉, such that CT |= c ↔ d) except the last. Finally, in

the sequence produced by the two previous steps, if there exists a pair of consecutive

elements 〈cl, dl〉〈cl+1, dl+1〉 which are “connected”, in the sense that cl+1 does not

provide more information than dl, then such a pair is “fused” in (i.e., replaced by)

the unique element 〈cl, dl+1〉 (and this is repeated inductively for the new pairs).

This is made precise by the following definition.

Definition 5.8 (Operator η) Let s = 〈c1, d1〉 · · · 〈cn, dn〉 be a sequence of pairs of

built-in stores and let X be a set of variables. The sequence η(s,X) is the obtained

as follows:

1 First we define s′ = 〈c′1, d′1〉 · · · 〈c′n, d′n〉, where for j ∈ [1, n] c′j = ∃−Xcj and

d′j = ∃−Xdj.
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2 Then we define s′′ as the sequence obtained from s′ by removing each pair of the

form 〈c, d〉 such that CT |= c ↔ d, if such a pair is not the last one of the

sequence.

3 Finally we define η(s,X) = s′′′, where s′′′ is the closure of s′′ w.r.t. the following

operation: if 〈cl, dl〉〈cl+1, dl+1〉 is a pair of consecutive elements in the sequence

and CT |= dl → cl+1 holds then such a pair is substituted by 〈cl, dl+1〉.

The following Lemma states a first useful property. The proof is in Appendix A.

Lemma 5.3 Let X be a finite set of variables and let s = 〈c1, c2〉 · · · 〈cn−1, cn〉 be a

strictly increasing sequence with respect to X. Then n ≤ |X|+ 2.

Next we note that, given a set of variables X the possible strictly increasing

sequences w.r.t. X are finite (up to logical equivalence on constraints), if the set of

the constants is finite. This is the content of the following lemma, whose proof is in

Appendix A. Here and in the following, with a slight abuse of notation, given two

reactive sequences s = 〈c1, d1〉 · · · 〈cn, dn〉 and s′ = 〈c′1, d′1〉 · · · 〈c′n, d′n〉, we say that s

and s′ are equal (up to logical equivalence) and we write s = s′, if for each i ∈ [1, n]

CT |= ci ↔ c′i and CT |= di ↔ d′i holds.

Lemma 5.4 Let Const be a finite set of constants and let S be a finite set of

variables such that u = |Const| and w = |S|. The set of sequences s which are

strictly increasing with respect to S (up to logical equivalence) is finite and has

cardinality at the most

2w(u+w)(w+3) − 1

2w(u+w) − 1
.

Finally, we show how reactive sequences can be obtained from a forest associated

to a computation. First we need to define the reactive sequence associated to a

repetition of an identified CHR atom in a computation. In this definition we use

the operator η introduced in Definition 5.8.
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Definition 5.9 Let δ be a computation for a CHRωa
1 (C) program, h#lj be a rep-

etition of an identified CHR atom in δ and r1, . . . , rn the sequence of the Apply

transition in δ that rewrite h#lj and all the repetitions derived from it. If s
ri→P s

′

let pair(ri) be the pair (
∧
B1,
∧
B2) where B1 and B2 are all the built-ins in s and

s′. We will denote with seq(h#lj, δ) the sequence η(pair(r1) . . . pair(rn), Fv(h))

Finally we define the function SFδ which, given a node n in a forest associated to

a computation δ (see Definition 5.5), returns a reactive sequence. Such a sequence

intuitively represents the sequence of the Apply transition steps which have been

used in δ to rewrite the repetition labeling n and the repetitions derived from it.

Definition 5.10 (Sequence associated to a node in a forest) Let δ be a ter-

minating computation and let Fδ = (V,E) be the forest associated to it. Given a

node n in Fδ we define:

• if the label of n is h#li, then SFδ(n) = seq(h#li, δ);

• if the label of n is � then SFδ(n) = ε.

Example 5.2 Let us consider for instance the forest shown in Example 5.1. The

sequences associated to the nodes of this forest are:

• SF (δ)(c(X, Y )#10) = 〈true,X = 0 ∧ Y = 0〉

• SF (δ)(c(X, Y )#20) = 〈true,X = 0〉

• SF (δ)(c(X, Y )#30) = 〈X = 0, X = 0 ∧ Y = 0〉

• SF (δ)(c(X, Y )#31) = 〈X = 0 ∧ Y = 0, X = 0 ∧ Y = 0〉

�
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5.3.2 Decidability of termination

We are now ready to prove the main result of this chapter. First we need the

following Lemma which has some similarities to the pumping lemma of regular and

context free grammars. Indeed, if the derivation is seen as a forest, this lemma

allows us to compress a tree if in a path of the tree there are two r-equal constraints

with an equal (up to renaming) sequence. The lemma is proved in Appendix A.

Here and in the following given a node n in a forest F we denote by AF (n) the

label associated to n.

Lemma 5.5 Let δ be a terminating computation for the goal G in the CHRωa
1 (C)

program P . Assume that Fδ is l-repetitive with p = dg(Fδ) and assume that there

exists an l-repetitive sc-computation σ of Fδ and a repetition k#li ∈ σ such that

l = |{h#nj ∈ σ | h#nj == k#li}|.
Moreover assume that there exist two distinct nodes n and n′ in σ such that n′ is

a node in Tδ(n), AFδ(n) = k#li, AFδ(n
′) = k′#l′i

′
and ρ is a renaming such that

SFδ(n) = SFδ(n
′)ρ and k = k′ρ.

Then there exists a terminating computation δ′ for the goal G in the program P ,

such that either Fδ′ is l′-repetitive with l′ < l, or Fδ′ is l-repetitive and dg(F ′δ) < p.

Finally we obtain the following result.

Theorem 5.3 (Decidability of termination) Let P be a CHRωa
1 (C) program an

let G be a goal. Let u be the number of distinct constants used in P and in G and

let w be the maximal arity of the CHR constraints which occur in P and in G.

G has a terminating computation in P if and only if there exists a terminating

computation δ for G in P s.t. Fδ is m-repetitive and m ≤ 2w(u+w)(w+3)−1
2w(u+w)−1

= L.

Proof: We prove only that if G has a terminating computation in P then there

exists a terminating computation δ for G in P s.t. Fδ is m-repetitive and m ≤ L.

The proof of the converse is straightforward and hence it is omitted.

The proof is by contradiction. Assume G has a terminating computation δ in P

s.t. Fδ is m-repetitive, m > L and there is no terminating computation δ′ for G in
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P such that Fδ′ is m′-repetitive and m′ < m. Moreover, without loss of generality,

we can assume that the degree of Fδ is minimal, namely there is no terminating

computation δ′ for G in P such that Fδ′ is m-repetitive and dg(Fδ′) < dg(Fδ).

Let σ be a m-repetitive sc-computation in Fδ. By definition, there exist m

repetitions of identified CHR constraints k1#l1
i1 , ..., kr#lm

im in σ, which are r-equal.

Therefore there exist renamings ρs,t such that ks = ktρs,t for each s, t ∈ [1,m].

By Lemma 5.4 for each CHR constraint k which occurs in P or in G, the set

of sequences s which are strictly increasing with respect to Fv(k) (up to logical

equivalence) is finite and has cardinality at the most L. Then there are two distinct

nodes n and n′ in σ and there exist s, t ∈ [1,m] such that A(n) = ks#ls
is and

A(n′) = kt#lt
it and SFδ(n) = SFδ(n

′)ρs,t. Then we have a contradiction, since by

Lemma 5.5 this implies that there exists a terminating computation δ′ for G in P s.t.

either Fδ′ is m′-repetitive with m′ < m or Fδ′ is m-repetitive and dg(Fδ′) < dg(Fδ)

and then the thesis. �

As an immediate corollary of the previous theorem we have that the existence

of a terminating computation for a goal G in a CHRωa
1 (C) program P is decidable.

Then we have also the following result, which is stronger than Corollary 5.1 since

here weak encodings are considered.

Corollary 5.2 There is no weak termination preserving encoding of Turing Ma-

chines into CHRωa
1 (C).

As mentioned at the beginning of this section, the previous result is obtained

when considering the abstract semantics ωo. However it holds also when considering

the theoretical semantics ωt. In fact Lemma 5.5 holds if we require that two r-equal

constraints have the same sequence and have fired the same propagation rules. Since

the propagation rules are finite Theorem 5.3 is still valid if m ≤ 2r · 2w(u+w)(w+3)−1
2w(u+w)−1

where r is the number of propagation rules.
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5.4 Summary and related works

We have shown two decidability results for two fragments of CHRωa(C), the CHR

language defined over a signature which does not allow function symbols. The first

result, in Section 5.2, assumes the abstract operational semantics, while the second

one, in Section 5.3, holds for both semantics (abstract and theoretical). These results

are not immediate. Indeed, CHRωa(C), without further restrictions and with any

of the two semantics, is a Turing complete language [116, 32]. It remains quite

expressive also with our restrictions: for example, CHRωa
1 (C), the second fragment

that we have considered, allows an infinite number of different states, hence, for

example, it can not be translated to Petri Nets.

These results imply that range-restricted CHRωa(C) and CHRωa
1 (C), the two

considered fragments, are strictly less expressive than Turing Machines (and there-

fore than CHRωa(C)). Also, it seems that range-restricted CHRωa(C) is more

expressive that CHRωa
1 (C), since the decidability result for the second language is

stronger. However, a direct result in this sense is left for future work.

Several papers have considered the expressive power of CHR in the last few years.

In particular, [116] showed that a further restriction of CHRωa
1 (C), which does not

allow built-ins in the body of rules (and which therefore does not allow unification

of terms) is not Turing complete. This result is obtained by translating CHRωa
1 (C)

programs (without unification) into propositional CHR and using the encoding of

propositional CHR intro Petri Nets provided in [13]. The translation to propositional

CHR is not possible for the language (with unification) CHRωa
1 (C) that we consider.

[13] also provides a translation of range-restricted CHRωa(C) to Petri nets. However

in this translation, differently from our case, it is also assumed that no unification

built-in can be used in the rules, and only ground goals are considered. Related

to this work is also [32], where it is shown that CHRωa(F ) is Turing complete and

that restricting to single-headed rules decreases the computational power of CHR.

However, these results are based on the theory of language embedding, developed in

the field of concurrency theory to compare Turing complete languages, hence they
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Signature Operational semantics k = 1 k > 1

P (propositional) ωa No No

range-restricted C

(constants) (cf. Section 5.2)

ωa No No

C (constants), without = ωa and ωt No Yes

C (constants) (cf. Sec-

tion 5.3)

ωa and ωt No Yes

F (functors) ωa and ωt Yes Yes

Table 5.1: Summary of termination preserving encoding of Turing Machines

do not establish any decidability result. Another related study is [117], where the

authors show that it is possible to implement any algorithm in CHR in an efficient

way, i.e. with the best known time and space complexity. Earlier works by Frühwirth

[46, 45] studied the time complexity of simplification rules for naive implementations

of CHR. In this approach an upper bound on the derivation length, combined with

a worst-case estimate of (the number and cost of) rule application attempts, allows

to obtain an upper bound of the time complexity. The aim of all these works is

clearly different from ours.

A summary of the existing results concerning the computational power of several

dialects of CHR is shown in Table 5.1. In this table, “no” and “yes” refer to the ex-

istence of a termination preserving encoding of Turing Machines into the considered

language, while “any” means theoretical or abstract. The new results shown in this

chapter are indicated in a bold font.
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Chapter 6

Expressive power of priorities in CHR

The original theoretical operational semantics for CHR, denoted by ωt, is non de-

terministic, as usual for many other rule based and concurrent languages. Such a

non determinism has to be resolved in the implementations by choosing a suitable

execution strategy. Most implementations indeed use the, so called, refined oper-

ational semantics, called ωr, which has been formalized in [33] and fixes most of

the execution strategy. This semantics, differently from the theoretical one, offers a

good control over execution, however it is quite low-level and lacks flexibility.

For this reason [75] proposed an extension of CHR, called CHRωp , for supporting

an high-level, explicit form of execution control which is more flexible and declarative

than the one offered by the ωr semantics. This is obtained by introducing explicitly

in the syntax of the language rule annotations which allow one to specify the priority

of each rule. The operational semantics, in the following denoted by ωp, is changed

accordingly: Rules with higher priority are chosen first. Priorities can be either

static, when the annotations are completely defined at compile time, or dynamic,

when the annotations contain variables which are instantiated at run-time.

Even though in [117] it is shown that any algorithm can be implemented in CHR

preserving time and space complexity, yet in [75] it is claimed that “priorities do

improve the expressivity of CHR”.

In this chapter we provide a formal ground for this informal claim by using a

notion of expressivity coming from the field of concurrency theory to show several
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expressivity results relating CHR, CHRωp and static CHRωp . In fact, in this field

the issue of the expressive power of a language has received a considerable attention

in the last years and several techniques and formalisms have been proposed for sep-

arating the expressive power of different languages which are Turing powerful (and

therefore can not be properly compared by using the standard tools of computability

theory). Such a separation is meaningful both from a theoretical and a pragmatic

point of view, since different (Turing complete) languages can provide quite differ-

ent tools for implementing our algorithms. Indeed, some existing techniques for

comparing the expressive power of two languages take into account the translation

process, trying to formalize how difficult such a process is.

One of these techniques, that we use in this chapter, is based on the notion of

language encoding, first formalized in [30, 113, 123]1 and can be described as follows.

Intuitively, a language L is more expressive than a language L′ or, equivalently, L′

can be encoded in L, if each program written in L′ can be translated into an L
program in such a way that: (1) the intended observable behavior of the original

program is preserved, under some suitable decoding; (2) the translation process

satisfies some additional restrictions which indicate how easy this process is and how

reasonable the decoding of the observables is. For example, typically one requires

that the translation is compositional w.r.t. (some of) the syntactic operators of the

language (see for example [30]).

In this chapter we use the notion of acceptable encoding, defined in the next sec-

tion, which imposes the following requirements on the translation. First, similarly

to the previous cases, we require that the translation of the goal (in the original

program) and the decoding of the results (in the translated program) are homomor-

phic w.r.t. the conjunction of atoms. This assumption essentially means that our

encoding and decoding functions respect the structure of the original goal and of the

results (recall that for CHR programs these are constraints, that is, conjunction of

atoms). Next we assume that the results to be preserved are the, so called, qualified

answers. Also this is a rather natural assumption, since these are the typical CHR

1The original terminology of these papers was “language embedding”.
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observables for many CHR reference semantics.

To simplify the treatment we assume that both the source and the target lan-

guage use the same built-in constraints, semantically described by a theory CT ,

which is not changed in the translation process. It is, on the other hand, worth

noticing that we do not impose any restriction on the program translation.

Our first result presented in Section 6.2.1 shows that, in presence of static prior-

ities, allowing two or more atoms in the head of rules does not change the expressive

power of the language. This result is obtained by providing, an acceptable encod-

ing of static CHRωp into static CHR
ωp
2 , where the latter notation indicates the

static CHRωp language where at most two atoms are allowed in the heads of rules.

We also show that when considering a slightly different notion of answers, namely

data sufficient answers, there exists an acceptable encoding from static CHRωp to

static CHR
ωp
2 even if we add also the requirement that the goal encoding and output

decoding functions are the identity. It is worth noting that such a result does not

hold for CHR without priorities, as shown in [32].

In Section 6.2.2 we prove that dynamic priorities do no augment the expressive

power of the language w.r.t. static priorities. This result is obtained by providing

an acceptable encoding of CHRωp (with dynamic priorities) into static CHRωp .

Finally in Section 6.3 we prove a separation result showing that (static) priorities

augment the expressive power of CHR, that is CHRωp is strictly more expressive

than CHR, in the sense that there exists no acceptable encoding of CHRωp into

CHR (with the ωt semantics).

6.1 Language encoding

In this work we consider the following languages and semantics:

• CHRωt : this is standard CHR, where the theoretical semantics is used,

• CHRωp : this is CHR with priorities, where both dynamic and static priorities

can be used, the semantics is that one defined in the previous section (ωp);
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• static CHRωp : this is CHR with static priorities only, with the ωp semantics;

• static CHRωp
2 : this is CHR with static priorities only, with the ωp semantics,

where we allow at most two constraints in the head of a rule.

Since all these languages are Turing powerful [117] in principle one can always

encode a language into another one. The question is how difficult and how natural

such an encoding is. As mentioned in the introduction, depending on the answer to

this question one can discriminate different languages. Indeed, several approaches

which compare the expressive power of concurrent languages impose the condition

that the translation is compositional w.r.t. some operator of the language, because

compositionality is considered a natural sign for the translation. Moreover, usually

one wants that some observable properties of the computations are preserved by the

translation, which is also a natural requirement.

In the following we will then make similar assumptions on our encoding func-

tions for CHR languages. We formally define a program encoding as any function

PROG : PL → PL′ which translates a L program into a (finite) L′ program (PL
and PL′ denote the set of L and L′ programs, respectively). To simplify the treat-

ment we assume that both the source and the target language use the same built-in

constraints semantically described by a theory CT . Next we have to define how

the initial goal and the observables should be translated by the encoding and the

decoding functions, respectively. We require that these translations are composi-

tional w.r.t. the conjunction of atoms. This assumption essentially means that

the encoding and the decoding respect the structure of the original goal and of

the observables. Moreover, since the source and the translated programs use the

same constraint theory, it is natural to assume also that these two functions do not

modify or add built-in constraints (in other words, we do not allow to simulate the

behaviour and the effects of the constraint theory).

We do not impose any restriction on the program translation, hence we have the

following definition.
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Definition 6.1 (Acceptable encoding) Suppose that C is the class of all the pos-

sible multisets of constraints. An acceptable encoding (of L into L′) is a tern of

mappings (PROG, INP ,OUT ) where PROG : PL → PL′ is the program encoding,

INP : C → C is the goal encoding, and OUT : C → C is the output decoding which

satisfy the following conditions:

1. the goal encoding function is compositional, that is, for any goal (A,B) ∈ C,

INP(A,B) = INP(A), INP(B) holds. We also assume that the built-ins

present in the goal are left unchanged and no new built-ins can be added;

2. the output decoding function is compositional, that is, for any qualified answer

(A,B) ∈ C, OUT (A,B) = OUT (A),OUT (B) holds. We also assume that

the built-ins present in the answer are left unchanged and no new built-ins can

be added;

3. Qualified answers are preserved for the class C, that is, for all P ∈ PL and

G ∈ C, QAP (G) = OUT (QAPROG(P )(INP(G))) holds.

Moreover we define an acceptable encoding for data sufficient answers of L into L′

exactly as an acceptable encoding, with the exception that the third condition above

is replaced by the following:

3’. Data sufficient answers are preserved for the class C, that is, for all P ∈ PL and

G ∈ C, SAP (G) is equal to the data sufficient answers in

OUT (QAPROG(P )(INP(G))).2

Further weakening these conditions and requiring for instance that the transla-

tion of A,B is some form of composition of the translation of A and B does not

seem reasonable, as conjunction is the only form for goal composition available in

CHR.

Note that, according to the previous definition, if there exists an acceptable

encoding then there exists also an acceptable encoding for data sufficient answers.

2Note that in 3. and in 3′. the function OUT () is extended in the obvious way to sets of qualified

answers.
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This is an immediate consequence of the fact that data sufficient answers are a

subset of data qualified answers.

In the following, given a program P , we denote by Pred(P ) and Head(P ) the

set of all the predicate symbols p s.t. p occurs in P and in the head of a rule in P ,

respectively.

6.2 Positive results

In this section we will present some (acceptable) encodings for the four languages

described at the beginning of Section 6.1. We first present some immediate results

which derive directly from the language definitions. Then we will describe two of

the main results of this paper, namely that there exists an acceptable encoding

from static CHRωp to static CHR
ωp
2 and from CHRωp to static CHRωp . The

combination of these results shows that static CHR
ωp
2 is as powerful as the full

CHRωp , that is, a program with dynamic priorities can be (acceptably) encoded

into one with static priorities and this, in its turn, can be encoded into a program

which does not use more than two constraints in the head of rules.

We first observe that CHRωt is a sublanguage of static CHRωp , since a CHRωt

program can be seen as a static CHRωp program where all the rules have equal

priority. Clearly static CHR
ωp
2 is a sublanguage of static CHRωp that, in its turn,

is a sublanguage of CHRωp . Moreover, when a language L is a sublanguage of L′

then a tern of identity functions provides an acceptable encoding between the two

languages. Therefore we have the following.

Fact 1 There exists an acceptable encoding from CHRωt to static CHRωp, from

static CHR
ωp
2 to static CHRωp, and from static CHRωp to CHRωp.

As previously mentioned, the existence of an acceptable encoding implies the

existence of an acceptable encoding for data sufficient answers. Hence we have the

following immediate corollary.



Chapter 6. Expressive power of priorities in CHR 71

Corollary 6.1 There exists an acceptable encoding for data sufficient answers from

CHRωt to static CHRωp, from static CHR
ωp
2 to static CHRωp, and from static CHRωp

to CHRωp.

6.2.1 Encoding static CHRωp into static CHR
ωp
2

In this section we will provide an acceptable encoding from static CHRωp to static CHR
ωp
2 .

We assume that P is a static CHRωp program composed by m rules and that the

i-th rule (with i ∈ {1, . . . ,m}) has the form:

pi :: rulei @ h(i,1)(t̄1), . . . , h(i,li)(t̄li)\h(i,li+1)(t̄li+1
), . . . , h(i,ri)(t̄ri)⇔ Gi|Ci.

Moreover we denote by pmax the lowest priority (i.e. the biggest pi).

First, we require that the goal encoding (the second component of our acceptable

encoding) is a non surjective function. The reason for this requirement is that the

program encoding (first component of the triple) needs to use, in the translated

program, some fresh constraints which do not appear in the initial (translated)

goal. A simple goal encoding that satisfies this requirement is the one that does not

change built-in constraints and adds a letter, say “a”, at the beginning of the other

constraints, as shown below

INP(b(t̄)) =

 b(t̄) if b(t̄) is a built-in constraint

ab(t̄) otherwise

In the following of this section, by a slight abuse of notation, we use the notation

INP() also to indicate a function from predicate symbols to predicate symbols.

In order to define the program encoding we need the following constraints:

• id(t); This will be used to simulate an Introduce transition step; t is a term

that will be used as a constraint identifier.

• end; It will be used to delete the constraint added in the process of simulating

the firing of the rules.
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• rC[N ]i(t̄) with N ∈ {1, . . . , ri} where ri is the number of constraint in the

head of the i-th rule; this will be used to check if the rule rulei can fire.

• rAi(t̄) is a constraint which is added to the store when the i-th rule is fired; The

t̄ are the identifiers of the constraints which are consumed by the application

of the i-th rule and therefore should be removed from the store.

• newk(V, ū) where V is a term, ū is a sequence of terms and k is a predi-

cate symbol in INP(Pred(P )); This new constraint will be used to add to a

constraint k(ū) a new identifier V .

Note that since no constraint in this list starts with an “a”, previous assumption on

the goal encoding function INP( ) implies that these constraints can not be in any

goal produced by INP( ).

In the following, to simplify the notation when we are not interested in the

arguments of a predicate we will simply use an underscore to indicate them (thus

writing, for example, p( ), q( )).

We can now define the program encoding function, denoted by α( ). This func-

tion, given a static CHRωp program P , returns the program constructed as follows:

for every predicate name k ∈ INP(Head(P ))

1 :: rule(1 ,k) @ id(V ), p(X̄)⇔ id(V + 1), newk(V, X̄)

2 :: rule(2 ,k) @ k(X̄)⇔ id(2), newk(1, X̄)

for every i ∈ {1, . . . ,m}, N ∈ [1, ri − 1]

3 :: rule(3 ,i ,N ) @ end\rC[N ]i( )⇔ true

for every predicate name k ∈ INP(Head(P )), i ∈ {1, . . . ,m}
3 :: rule(4 ,i ,k) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ ∈ V̄ |true

for every i, j ∈ {1, . . . ,m}, N ∈ [1, ri − 1]

3 :: rule(5 ,j ,i ,N ) @ rAj(V̄ )\rC[N ]i(V̄
′, X̄)⇔ V̄ ∩ V̄ ′ 6= ∅|true
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for every i ∈ {1, . . . ,m}
4 :: rule(6 ,i) @ rAi( )⇔ true

for every i ∈ {1, . . . ,m}CHECK RULE(i)

for every i ∈ {1, . . . ,m}
6 + pi :: rule(7 ,i) @ rC[ri]i(V1, . . . , Vri , t̄1, . . . , t̄ri), id(V )⇔

Gi|Update(INP(Ci), V ), rAi(Vli+1, . . . , Vri)

7 + pmax :: rule8 @ id( )⇔ end

7 + pmax :: rule9 @ end⇔ true

where CHECK RULE(i) are the following rules

for every N ∈ [2, ri]

5 :: rule ′(i ,N ) @ rC[N − 1]i(V̄1, X̄1), newINP(h(i,N))(V2, X̄2)⇒
V2 6∈ V̄1|rC[N ]i(V̄1, V2, X̄1, X̄2)

where by convention, rC[1]i(V, X̄) = newINP(h(i,1))(V, X̄) and Update(C, V ) is de-

fined as follows

Update(k(t̄), V ) = newk(V, t̄)

if k(t̄) is a CHR constraint

Update(c(t̄), V ) = c(t̄)

if c(t̄) is a built-in constraint

Update([ ], V ) = id(V )

Update([d(X̄) | Ds], V ) =

Update(d(X̄), V ), Update(Ds, V + 1).
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Example 6.1 As an example for the application of the program encoding α( ) let

us consider the simple program P composed by the following rule:

1 :: h1(X), h2(Y )\h′(Z)⇔ X = Y |h

α(P ) is the following program:

1 :: id(V ), ah1(X)⇔ id(V + 1), newah1
(V,X)

1 :: id(V ), ah2(X)⇔ id(V + 1), newah2
(V,X)

1 :: id(V ), ah′(X)⇔ id(V + 1), newah′(V,X)

2 :: ah1(X)⇔ id(2), newah1
(1, X)

2 :: ah2(X)⇔ id(2), newah2
(1, X)

2 :: ah′(X)⇔ id(2), newah′(1, X)

3 :: end\rC21(V1, V2, X1, X2)⇔ true

3 :: end\rC31(V1, V2, V3, X1, X2, X3)⇔ true

3 :: rA1(V )\newah1
(V ′, X)⇔ V ′ = V |true

3 :: rA1(V )\newah2
(V ′, X)⇔ V ′ = V |true

3 :: rA1(V )\newah′(V ′, X)⇔ V ′ = V |true

3 :: rA1(V )\rC21(V1, V2, X1, X2)⇔ V 6∈ {V1, V2}|true
3 :: rA1(V )\rC31(V1, V2, V3, X1, X2, X3)⇔ V 6∈ {V1, V2, V3}|true

4 :: rA1(V )⇔ true

5 :: newah1
(V1, X1), newah2

(V2, X2)⇒ V2 6= V1|rC21(V1, V2, X1, X2)

5 :: rC21(V1, V2, X1, X2), newah′(V3, X3)⇒ V3 /∈ {V1, V2}|rC31(V1, V2, V3, X1, X2, X3)

7 :: rC31(V1, V2, V3, X1, X2, X3), id(V )⇔ X1 = X2|newah(V ), id(V + 1), rA1(V3)
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8 :: id(V )⇔ end

8 :: end⇔ true

�

We now provide a brief explanation of the program encoding α( ). Intuitively the

encoding simulates the execution of the original program. The constraint identifier

introduced by Introduce transition in the original program is simulated by adding a

unique term as an argument to a newk( ) constraint.

The simulation process can be divided in the following three phases:

1. Initialization. In the initialization phase, for each k ∈ INP(Head(P ))

we introduce two (sets of) rules replacing a constraint k(t̄) with newk(n, t̄).

Moreover we use an id predicate symbol to memorize the highest identifier

used. The first rule to be fired is a rule rule(2 ,k) that triggers the firing of

rules rule(1 ,k). Note that rules rule(1 ,k) have maximal priority and therefore if

a constraint of the form id(t) occurs in the CHR store they are always tried

before rules rule(2 ,k).

2. Main. The main phase is divided into three sub-phases. The first sub-phase

is the evaluation that starts when the init phase terminates (at this point

all the constraints k(t̄), with k ∈ INP(Head(P )) have been converted into

newk(l, t̄)). Rules rule ′(i ,N ) determine what rules belonging to the original

program can fire. The second sub-phase is the activation. During this sub-

phase if rulei can be fired in the original program P then rule(7 ,i) can be fired

in the program α(P ). If the original program has not reached the final state

then one of the rules rule(7 ,i) fires starting the deletion sub-phase. In this last

sub-phase rules rule(4 ,i ,k), rule(5 ,j ,i ,N ) and rule(6 ,i) delete all the constraints

that are used to simulate the constraints deleted by the application of the i-th

rule in the original program P .

3. Termination. The termination phase is triggered by rule rule8 that is used

to detect when no rule rule(7 ,i) can fire (this happens iff the original program
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has reached a final state). Rules rule(3 ,i ,N ) and rule9 delete all the constraints

produced during the computation for the simulation purpose, that is id, rC[N ]i

and end.

It is worth noting that in the program encoding presented we implicitly assumed

that the constraint theory CT has equalities and inequalities constraints (i.e. we

can evaluate whether n = n′ and n 6= n′ where n, n′ ∈ N). All the operators ∈, 6∈
and ∩ written in the guards can be replaced by equalities and inequalities. In rules

rule ′(i ,N ), for instance, the guards V ′ 6∈ V̄ , where V̄ = V1, . . . , Vn can be replaced by

V ′ 6= V1, . . . , V
′ 6= Vn. Rules

3 :: rule(4 ,i ,k) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ ∈ V̄ |true

where V̄ = Vli+1
, . . . , Vri can be rewritten by the set of rules

{3 :: rule(4 ,i ,k ,o) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ = Vo|true | o ∈ [li+1, ri]}

and finally rules

3 :: rule(5 ,j ,i ,N ) @ rAj(V̄ )\rC[N ]i(V̄
′, X̄)⇔ V̄ ∩ V̄ ′ 6= ∅|true

where V̄ = Vli+1
, . . . , Vri and V̄ ′ = V ′1 , . . . , V

′
N can be rewritten by the set of rules

{3 :: rule(5 ,j ,i ,N ,o,p) @ rAj(V̄ )\rC[N ]i(V̄
′, X̄)⇔ Vo = V ′p |true |

o ∈ [li+1, ri] and p ∈ [1, N ] }.

However, strictly speaking, the assumption of having equalities and inequalities

is not needed (we used them for the sake of simplicity). In fact, only rules rule ′(i ,N )

can be translated into rules having inequalities in their guards. These rules have a

structure similar to the following rule:

p :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V 6= V1, . . . , V 6= Vn|c3(V, V1, . . . , Vn, X̄, Ȳ )

Since we know that V, V1, . . . , Vn will always be matched with ground terms we can
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replace the previous rule with the following rules:

p1 :: eq(Z̄)\c3(Z̄)⇔ true

p2 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V = V1|eq(V, V1, . . . , Vn, X̄, Ȳ )

. . .

p2 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V = Vn|eq(V, V1, . . . , Vn, X̄, Ȳ )

p3 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ c3(V, V1, . . . , Vn, X̄, Ȳ )

where p1, p2, p3 are priorities s.t. p1 < p2 < p3 and eq is a new constraint. Thus we

have removed inequalities. Equalities instead can be removed by simply changing

the name of terms in the head of the rules. For instance the equality X = Y in a

rule like

k1(X), k2(Y )⇔ X = Y |C

can be removed replacing the previous rule with the following one

k1(X), k2(X)⇔ C.

To conclude the definition of the acceptable encoding we need the last ingredient:

the output decoding function. If we run the goal INP(G) in the program α(P ) we

obtain the same qualified answers obtained by running G in the program P , with

the only difference that if in the qualified answer of P there is a CHR constraint k(t̄)

then in the corresponding qualified answer of the encoded program α(P ) there will

be either a constraint newak(V, t̄) (if k ∈ Head(P ) or k(t̄) is introduced by an Apply

transition step) or a constraint ak(t̄) (if k 6∈ Head(P ) and k(t̄) is in the initial goal

G).

Therefore the decoding function that we need is:

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint

k(t̄′) if b(t̄) = newak(V, t̄
′)

k(t̄) if b(t̄) = ak(t̄).

The following Theorem, whose proof is in the Appendix, shows that the triple

(α(), INP(),OUT ()) that we have defined indeed provides the desired encoding.
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Theorem 6.1 The triple (α(), INP(),OUT ()) provides an acceptable encoding from

static CHRωp into static CHR
ωp
2 .

Note that, as mentioned after Definition 6.1, if there exists an acceptable encod-

ing then there exists also an acceptable encoding for data sufficient answers. Hence

previous result implies that there is an acceptable encoding for data sufficient an-

swers from static CHRωp into static CHR
ωp
2 .

Moreover, when considering data sufficient answers it is possible to strengthen

previous Theorem by requiring that the goal encoding and the output decoding

functions are the identity functions. Intuitively this does not hold if we consider

the program encoding α( ) presented in the previous session because, when the goal

encoding function is the identity function, constraint such as id, end, rC[N ]i could

be in the initial goal of the encoded program. However, when we are focusing on

data sufficient answers we can overcome this problem and use the same program

encoding as a base for a new program encoding for data sufficient answers. We can

indeed exploit the fact that when a fresh constraint for a program P is in a goal

then the program has no data sufficient answers for that goal.

Below we exploit this idea and we will first define a program translation β(P, q)

that, given a static CHRωp program P and a predicate symbol q produces a modified

program P ′ which has the same data sufficient answers of P for every goal that does

not contain the predicate symbol q, produces a failure otherwise 3.

Let us then consider a static CHRωp program P composed by m rules

pi :: rulei @ Hi\H ′i ⇔ Gi|Bi

where 1 ≤ pi ≤ pmax. Without loss of generality, we can assume that start and init

are not contained in Head(P ). Moreover, let f be a function that maps predicate

symbols into predicate symbols which are not in Pred(P ) ∪ {start, init, q}). f can

be extended to multiset of constraints in the obvious way.

3Note that we are not requiring that the presence of a constraint of the form q(t̄) always brings

to a failure. We allow for instance the use of q(t̄) during the execution. The program fails only if

a constraint of the form q(t̄) is in the original goal.
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The transformation β(P, q) produces the following program

1 :: rulem+1 @ start, q( )⇔ false

for every predicate name k ∈ Head(P )

1 :: rule(m+2 ,k) @ start, f(k( ))⇔ false

1 :: rulem+3 @ start, init⇔ false

2 :: rulem+4 @ start⇔ init

for every predicate name k, k′ ∈ Head(P )

3 :: rule(m+5 ,k) @ k( )⇒ start

3 :: rule(m+6 ,k ,k ′) @ k( )\k′(Ȳ )⇔ f(k′(Ȳ ))

for every predicate name k ∈ Head(P )

4 :: rule(m+7 ,k) @ k(X)⇒ f(k(X̄))

for every i ∈ {1, . . . ,m}
4 + pi :: rule ′i @ f(Hi)\f(H ′i),⇔ Gi|f(Bi), init

5 + pmax :: rule(m+8 ) @ init, init⇔ init

for every predicate name k ∈ Head(P )

6 + pmax :: rule(m+9 ,k) @ k( ), init⇔ true

The following lemma, whose proof is in the appendix, shows that indeed the trans-

formed program has the behaviour that we have described before.
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Lemma 6.1 Let P be a static CHRωp program and let q be a predicate symbol.

For every goal G, if G does not contain the predicate symbol q then SAP (G) =

SAβ(P,q)(G), SAβ(P,q)(G) = ∅ otherwise.

Now let us denote with β′() the extensions of β() to a list of predicate symbols

(β′(P, []) = P and β′(P, [X|XS]) = β(β′(P,XS), X)).

Suppose that New Symbols(P ) is the list of the new predicate symbols intro-

duced by α(P ) (namely id, end, rC[N ]i, rAi, newak) and w.l.o.g suppose that these

predicate symbols are fresh in P .

Using the Lemma we can prove the following result previously described.

Theorem 6.2 The triple (β′(α(P ), New Symbols(P )), id, id), where id is the iden-

tity function and α() is defined as before, provides an acceptable encoding for data

sufficient answers from static CHRωp into static CHR
ωp
2 .

Proof: The proof derives by Lemma 6.1 using the program encoding of Theorem

6.1. Indeed given a program P w.l.o.g. we can assume that id, end, rC[N ]i, rAi

and newak (with k ∈ Head(P )) are not contained in Head(P ). Therefore for every

goal G containing at least one of them, we have that

SAP (G) = ∅.

By using the same arguments of Theorem 6.1, for each goal G s.t. no predicate

symbol in New Symbols(P ) is in G we have that SAP (G) = SAα(P )(G). More-

over, by construction, α(P ) ∈ static CHR
ωp
2 . By Lemma 6.1 for every goal G, if

G does not contain the predicate symbols in New Symbols(P ) then SAP (G) =

SAβ′(P,New Symbols(P ))(G), SAβ′(P,New Symbols(P ))(G) = ∅ otherwise. Therefore we

have that for each goal G, SAβ′(α(P ),New Symbols(P ))(G) = SAP (G). Moreover, since

α(P ) ∈ static CHRωp
2 , by definition of β′() we have that β′(α(P ), New Symbols(P )) ∈

static CHR
ωp
2 and then the thesis. �

It is worth noting that Theorem 6.2 does not hold when the traditional semantics

is considered, as shown in [31].
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6.2.2 Encoding CHRωp into static CHRωp

In this section we prove that the CHRωp language, which allows dynamic pri-

orities, is not more expressive than static CHRωp , which allows static priorities

only. This result is obtained by providing an (acceptable) encoding of CHRωp into

static CHRωp .

As usual, we assume that P is a CHRωp program composed by m rules and we

also assume that the i-th rule (with i ∈ {1, . . . ,m}) has the form:

pi :: rulei @ Hi\H ′i ⇔ Gi|Bi

Moreover, given a multiset of CHR constraints H̄ = h1(t̄1), . . . , hn(t̄n) and a se-

quence of (distinct) variables V̄ = V1, . . . , Vn, we denote by new′(H̄, V̄ ) the multiset

of atoms newh1(V1, t̄1), . . . , newhn(Vn, t̄n).

As for the goal encoding and the output decoding functions we use here the

same functions INP() and OUT () defined in Section 6.2.1.4 The program encoding

T (P ) from CHRωp into static CHRωp is instead defined as the function that, given

a program P , produces the following program:

for every predicate name ak ∈ INP(Head(P ))

1 :: rule(1 ,k) @ start\id(V ), ak(X̄)⇔ id(V + 1), newak(V, X̄)

2 :: rule(2 ,k) @ ak(X̄)⇒ start, id(0)

2 :: rule3 @ start⇔ highest priority(inf)

for every i ∈ {1, . . . ,m}
3 :: rule(4 ,i) @ end\instancei( )⇔ true

4 :: rule5 @ end⇔ true

4In the following of this section, by an abuse of notation, we use the function INP() also as a

function from predicate symbols to predicate symbols.
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for every i ∈ {1, . . . ,m} EVALUATE PRIORITIES(i)

7 :: rule9 @ highest priority(inf), id(V )⇔ end

for every i ∈ {1, . . . ,m} ACTIVATE RULE(i)

If rulei is not a propagation rule then EVALUATE PRIORITIES(i) are the following

rules

6 :: rule(7 ,i) @ new′(INP(Hi), Z̄), new′(INP(H ′i), Ū)\highest priority(inf)⇔
Gi|highest priority(pi)

6 :: rule(8 ,i) @ new′(INP(Hi), Z̄), new′(INP(H ′i), Ū)\highest priority(P )⇔
Gi, pi < P |highest priority(pi)

if rulei is a propagation rule then EVALUATE PRIORITIES(i) are the following

rules

5 :: rule(6 ,i) @new′(INP(Hi), Z̄)⇒ Gi|instancei(Z̄)

6 :: rule(7 ,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest priority(inf)⇔
Gi|highest priority(pi)

6 :: rule(8 ,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest priority(P )⇔
Gi, pi < P |highest priority(pi)

if rulei is a propagation rule then ACTIVATE RULE(i) is the following rule

8 :: rule(10 ,i) @ new′(INP(Hi), Z̄)\instancei(Z̄), highest priority(P ), id(V )⇔
Gi, pi = P |Update(INP(Bi), V ), highest priority(inf)
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if rulei is not a propagation rule then ACTIVATE RULE(i) is the following rule

8 :: rule(10 ,i) @ new′(INP(Hi), Z̄), new′(INP(H ′i), Ū), highest priority(P ), id(V )⇔
Gi, pi = P |Update(INP(Bi), V ), highest priority(inf)

In the above encoding we assume that the constraint theory CT allows to use

equalities and inequalities (so we can evaluate whether pi = h and pi > h where

h ∈ Z and pi is an arithmetic expression). We also assume inf is a conventional

constant which is bigger than all pi (i.e. it represents the lowest priority). The

Update function is exactly the one defined in Section 6.2.1.

Example 6.2 Let us consider as P the shortest path program depicted in Figure

4.2. The correspondent T (P ) is the following program:

1 :: start\id(V ), asource(X̄)⇔ id(V + 1), newasource(V, X̄)

1 :: start\id(V ), adist(X̄)⇔ id(V + 1), newadist(V, X̄)

1 :: start\id(V ), aedge(X̄)⇔ id(V + 1), newaedge(V, X̄)

2 :: asource(X̄)⇒ start, id(0)

2 :: adist(X̄)⇒ start, id(0)

2 :: aedge(X̄)⇒ start, id(0)

2 :: start⇔ highest priority(inf)

3 :: end\instance1(Z̄)⇔ true

3 :: end\instance2(Z̄)⇔ true

3 :: end\instance3(Z̄)⇔ true

4 :: end⇔ true

5 :: newasource(V,X)⇒ instance1(V )

6 :: newasource(V,X)\highest priority(inf)⇔ highest priority(1)

6 :: newasource(V,X)\highest priority(P )⇔ 1 < P |highest priority(1)
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6 :: newadist(V1, X1, X2), newadist(V2, Y1, Y2)\highest priority(inf)⇔
X2 ≤ Y2|highest priority(1)

6 :: newadist(V1, X1, X2), newadist(V2, Y1, Y2)\highest priority(P )⇔
X2 ≤ Y2, 1 < P |highest priority(1)

5 :: newadist(V1, X1, X2), newaedge(V2, Ȳ )⇒
instance3(V1, V2)

6 :: newadist(V1, X1, X2), newaedge(V2, Ȳ )\highest priority(inf)⇔
highest priority(X2 + 2)

6 :: newadist(V1, X1, X2), newaedge(V2, Ȳ )\highest priority(P )⇔
X2 + 2 < P |highest priority(X2 + 2)

7 :: highest priority(inf), id(V )⇔ end

8 :: newasource(V,X)\instance1(V̄ ), highest priority(P ), id(V ′)⇔
1 = P |newadist(V ′, X, 0), id(V ′ + 1), highest priority(inf)

8 :: newadist(V1, X,X1)\newadist(V2, X,X2), highest priority(P ), id(V ′)⇔
X1 ≤ X2, 1 = P |id(V ′), highest priority(inf)

8 :: newadist(V1, X,X1), newaedge(V2, X,X2, X3)\instance3(V1, V2), highest priority(P ),

id(V ′)⇔ X1 + 2 = P |newadist(X3, X1 +X2), id(V ′ + 1), highest priority(inf)

�

We now provide some explanations for the above encoding. Intuitively the result

of the encoding can be divided in three phases:

1. Init. In the init phase, for each (user defined) predicate symbol ak ∈ INP(Head(P ))

we introduce a rule rule(1 ,k), which replaces ak(t̄) by newak(V, t̄) where V

is a variable which will be used to simulate the identifier used in identi-

fied constraints. Moreover we use the id predicate symbol to memorize the

highest identifier used. Rules rule(2 ,k) (one for each predicate symbol ak ∈
INP(Head(P )), as before) are used to fire rules rule(1 ,k) and also to start the

following phase (via rule3 ). Note that rules rule(1 ,k) have maximal priority

and therefore are tried before rules rule(2 ,k).
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2. Main. The main phase is divided into two phases: the evaluation phase

starts when the init phase adds the constraint highest priority(inf). Rules

rule(6 ,i), . . . , rule(8 ,i) store in highest priority the highest priority on all the

rule instances that can be fired. After the end of the evaluation phase the acti-

vation starts. During this phase if a rule can be fired one of the rules rule(10 ,i)

is fired. After the rule has been fired the constraint highest priority(inf) is

produced which starts a new evaluation phase.

3. Termination. The termination phase is triggered by rule rule9 . This rule

fires when no instance from the original program can fire. During the termi-

nation phase all the constraints produced during the computation (namely id,

instancei, highest priority, end) are deleted.

In the following we now provide some more details on the two crucial points in

this translation: the evaluation and the activation phases.

• Evaluation. The rules in the set denoted by

EVALUATE PRIORITIES(i)

are triggered by the insertion of highest priority(inf) in the constraint store.

In the case of a propagation rule rulei ∈ P , the rules in

EVALUATE PRIORITIES(i)

should consider the possibility that there is an instance of rulei that can not be

fired because it has been previously fired. When an instance of a propagation

rule can fire, rule rule(6 ,i) adds a constraint instancei(v̄), where v̄ are the

identifiers of the CHR atoms which can be used to fire rulei . The absence of

the constraint instancei(v̄) in the constraint store means that either rulei can

not be fired by using the CHR atoms identified by v̄ or has already fired for

the CHR atoms identified by v̄.

The evaluation of the priority for a simpagation or a simplification rule is

instead more simple because the propagation history does not affect the exe-

cution of these two types of rules.
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Rules rule(7 ,i) and rule(8 ,i) replace the constraint highest priority(p) with the

constraint highest priority(p′) if a rule of priority p′ can be fired and p > p′.

• Activation. When the evaluation phase ends if a rule can fire then one of the

rules rule(10 ,i) is fired since highest priority(inf) has been removed from the

constraint store.

The only difference between a propagation rule and a simpagation/simplification

rule is that when a propagation rule is fired the corresponding constraint

instancei(v̄) is deleted to avoid the execution of the same propagation rule

in the future.

It is worth noting that the non-determinism in the choice of the rule to be

fired provided by the ωp semantics is preserved, since all the priorities of

ACTIVATE RULE(i) are equal.

The following result shows that the qualified answers are preserved by our encod-

ing. Its proof, in Appendix, follows the lines of the reasoning informally explained

above. The functions INP() and OUT () are those defined in Section 6.2.1, while

T () is defined before.

Theorem 6.3 The triple (T (), INP(), OUT ()) provides an acceptable encoding

between CHRωp and static CHRωp.

Analogously to the case of previous section, previous result implies that there ex-

ists an acceptable encoding for data sufficient answers from CHRωp into static CHRωp .

6.3 Separation results

In this section we prove that priorities do augment the expressive power of CHR.

To do so we prove that there exists no acceptable encoding from static CHRωp into

CHRωt .

In order to prove this separation result we need the following lemma which states

a key property of CHR computations under the ωt semantics. Essentially it says that,



Chapter 6. Expressive power of priorities in CHR 87

given a program P and goal G, if there exists a derivation for G in P which produces

a qualified answer (d,K) where d is a built-in constraint, then when considering the

goal (d,G) we can perform a derivation in P , which is essentially the same of the

previous one, with the only exception of a Solve transition step (in order to evaluate

the constraint d). Hence it is easy to observe that such a new computation for (d,K)

in P will terminate producing the same qualified answer (d,K).

The proof of the following Lemma is then immediate.

Lemma 6.2 Let P be a CHRωt program and let G be a goal. Assume that G in P

has the qualified answer (d,K). Then the goal (d,G) has the same qualified answer

(d,K) in P .

Lemma 6.2 is not true anymore if we consider CHRωp programs. Indeed if we

consider the program P consisting of the rules

1 :: h(X)⇔ X = yes|false

2 :: h(X)⇔ X = yes

then the goal h(X) has the qualified answer X = yes in P , while the goal X =

yes, h(X) has no qualified answer in P . With the help of the previous lemma we

can now prove our main separation result.

Theorem 6.4 There exists no acceptable encoding for data sufficient answers from

CHRωp into CHRωt.

Proof: The proof is by contradiction. Consider the following program P in CHRωp

1 :: h(X)⇔ X = yes|false

2 :: h(X)⇔ X = yes

and assume that (γ(), INP(),OUT ()) is an acceptable encoding for data sufficient

answers from CHRωp into CHRωt .
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Let G be the goal h(X). Then SAP (G) = {X = yes}. Since the goal h(X)

has the data sufficient answer X = yes in the program P and since the encoding

preserves data sufficient answers, QAγ(P )(INP(a(X))) contains a qualified answer

S such that OUT (S) = (X = yes). Moreover, since the output decoding function

is such that the built-ins appearing in the answer are left unchanged, we have that

S is of the form (X = yes,K), where K is a (possibly empty) multiset of CHR

constraints.

Then since the goal encoding function is such that the built-ins present in the

goal are left unchanged INP(X = yes, h(X)) = (X = yes, INP(h(X))) and

therefore from previous Lemma 6.2, it follows that the program γ(P ) with the goal

INP(X = yes, h(X)) has the qualified answer S.

However (X = yes, h(X)) has no data sufficient answer in the original program

P . This contradicts the fact that (γ(), INP(),OUT ()) is an acceptable encoding

for data sufficient answers from CHRωp into CHRωt , thus concluding the proof. �

Since the existence of an acceptable encoding implies the existence of an accept-

able encoding for data sufficient answers we have the following immediate corollary:

Corollary 6.2 There exists no acceptable encoding from CHRωp into CHRωt.

6.4 Summary and related works

Figure 6.1: Graphical sum-

mary:

99K: absence of an acceptable

encoding

→: presence of an acceptable

encoding
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We have studied the expressive power of CHR with priorities and we have shown

that, differently from the case of standard CHR, allowing more than two atoms in
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the head of rules does not augment the expressive power of the language. We have

also proved that dynamic priorities do not increase the expressive power w.r.t. static

ones. These results are proved by providing translations from static CHRωp into

static CHR
ωp
2 and from CHRωp into static CHRωp which preserve the standard

observables of CHR computations (qualified answers).

On the other hand we have proved that, when considering the theoretical se-

mantics, there exists no acceptable encoding of CHR with (static) priorities into

standard CHR. This means that, even though both languages are Turing powerful,

priorities augment the expressive power of the language in a quite reasonable sense,

as discussed in the introduction.

Among the other few papers which consider the expressive power of CHR a quite

relevant one is [117], where the authors show that it is possible to implement any

algorithm in CHR in an efficient way, i.e. with the best known time and space com-

plexity. This result is obtained by introducing a new model of computation, called

the CHR machine, and comparing it with the well-known Turing machine and RAM

machine models. Earlier works by Frühwirth [45, 44] studied the time complexity

of simplification rules for naive implementations of CHR. In this approach an upper

bound on the derivation length, combined with a worst-case estimate of (the number

and cost of) rule application attempts, allows to obtain an upper bound of the time

complexity. The aim of all these works is different from ours, even though they can

be used to state that, in terms of classical computation theory, CHRωp is equivalent

to CHR.

Another paper which studies the expressive power of CHR is [116], where the

author shows that several subclasses of CHR are still Turing-complete, while single-

headed CHR without host language and propositional abstract CHR are not Turing-

complete. Recently these results have been further extended in [31].

Our notion of acceptable encoding has been recently used in [14] to justify a

source-to-source transformation.

When moving to the more general field of concurrent languages one can find

several works related to the present one. In particular, concerning priorities, [125]
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shows that the presence of priorities in process algebras does augment the expressive

power. More precisely the authors show, among other things, that a finite fragment

of asynchronous CCS with (global) priority can not be encoded into π-calculus nor

in the broadcast based b-π calculus. This result is related to our separation result

for CHRωp and CHR, even though the formal setting is completely different.

More generally, often in process calculi and in distributed systems separation

results are obtained by showing that a problem can be solved in a language and not

in another one (under some additional hypothesis, similar to those used here). For

example, in [102] the author proves that there exists no reasonable encoding from

the π-calculus to the asynchronous π-calculus by showing that the symmetric leader

election problem has no solution in the asynchronous version of the π-calculus. A

survey on separation results based on this problem can be found [126].
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Chapter 7

Constraints in Clouds

Cloud computing, introduced in Section 3.1.3, can be a powerful infrastructure for

solving Constraint Satisfaction Problems (CSPs) in parallel since sometimes a ded-

icated machines is too expensive to be afforded. In a scenario where a lot of CSP

need to be solved concurrently, the resources provided by a cloud can be used with

four main advantages with respect to the use of a dedicated machine: flexibility,

scalability, cost effectiveness and reliability. The cloud allows flexibility and scal-

ability since borrowing or releasing resources can be done very easily at run time

following the variation of the computational requirements needed to solve the CSPs.

Moreover, since cloud services providers like Amazon give discounts (e.g Amazon

spot instances are cheaper than normal nodes), the cloud based constraint solver can

dynamically decide to exploit the possible abundance of resources to get solution

faster by using more than one CSP solver in parallel. It is indeed proven that run-

ning different solvers in a sequential order or in parallel is very effective for reducing

the solving time of CSPs. As far as reliability is concerned, using cloud computing

can improve the hardware failure tolerance: when a node fails the only thing to do

to cope with the failure is to borrow a new resource.

In this chapter we propose a framework called Constraint in Clouds (CiC) that

exploits a distributed system to solve CSPs. The framework allows a user to send

a CSP instance to the system that deals with the solving process autonomously

and returns the solution of the problem. The framework could have more than one
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user at the same time, hence it needs to deal with more than one CSP instance in

parallel. The goal of CiC is to minimize the time users wait for answers and the

cost of the resources used to get the solutions to the CSPs.

Technically, considering the definition of Cloud computing in Section 3.1.3, we

can state that our goal is to provide a Cloud Software as a Service for solving CSPs

and deploy it in a Community cloud. Alternatively one can think at this framework

as a volunteer computing project for solving CSPs. Indeed, the key idea of volunteer

computing is to solve problems using distributed computing resources donated by

others. It was first used in 1996 by the project called Great Internet Mersenne

Prime Search (http://www.mersenne.org/) and was followed by other academic or

commercial projects like SETI@home (http://setiathome.ssl.berkeley.edu/)

and Folding@home (http://folding.stanford.edu/) projects launched in 1997.

These projects received considerable media coverage, and each one attracted several

hundred thousand volunteers.

We would like to design our architecture using the SOC paradigm described in

Section 3.5 and implementing it using Jolie [94] because in this way we could obtain

• scalability. Massive number of communications with different computers can

easily be handled;

• modularity. New services can easily be integrated and organized in a hierarchy.

This is particularly important in an architecture like ours which should be

divided in modules or sub services;

• deployment. Jolie allows us to deploy the framework in a number of different

ways. It provides interaction between heterogeneous services, like in the case

of web services (e.g integrating a Google map application in a hotel-search

application). We can therefore easily interact with other services (even graph-

ical ones) in the future and make our architecture be part of a more complex

system.

In this chapter we will fist present a brief overview of what has been done in the

literature to solve CSPs in parallel. In Section 7.2 we present in more detail the

http://www.mersenne.org/
http://setiathome.ssl.berkeley.edu/
http://folding.stanford.edu/
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CiC framework, in Section 7.3 we describe a first CiC prototype and some test we

performed with it, in Section 7.4 we present a brief summary.

In the next Chapters instead we show other attempts to improve the CiC frame-

work or its implementation. In particular, smart ways of assigning resources are

studied in Chapter 8 while Chapters 9 and 10 describe how Jolie, but in principle

also other SOC language, can be extended with features that improve the efficiency

and the conciseness of the implementation of the CiC framework.

Note that a presentation of Jolie, the language used to develop the prototype, is

beyond the scope of this thesis. In Chapter 10 we will just present the theoretical

model behind Jolie. For more details about this language please refer to [94].

7.1 Parallel Constraint Solving

In the literature a lot of attempts to parallelize constraint solving have been tried.

Following [18], the main approaches to parallel constraint solving can roughly be

divided into the following main categories:

• Search Space Splitting approach. It explores the parallelism provided by the

search space, when a branching is done the different branches can be explored

in parallel (”OR-parallelism”). One challenge with this approach is load bal-

ancing: the branches of a search tree are typically extremely imbalanced and

require a non-negligible overhead of communication for balancing the load.

Recent works based on this approach are e.g.[134, 68, 88];

• Portfolio approach. It explores the parallelism provided by different viewpoints

on the same problem, for instance different algorithms or parameter tunings.

This idea has also been exploited in a non-parallel context, e.g., [56, 132,

35]. One challenge here is to find a scalable source of diverse viewpoints that

provide orthogonal performance and is therefore of complementary interest;

• Problem Splitting approach. The instance itself is split into pieces to be solved

by each processor. One challenge here is that because no processor has a
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complete view on the problem, it typically becomes much more difficult to

solve an instance. Instance splitting typically relates to distributed CSPs [133]

which assumes that the instance is naturally split between agents, for instance

for privacy reasons;

• Other Approaches. Typically based on the parallelization of one key algorithm

of the solver, for instance constraint propagation. Usually parallelizing prop-

agation is challenging [70] and the scalability of this approach is limited by

Amdahl’s law: if propagation consumes 80% of the runtime, then by paral-

lelizing it, even with a massive number of processors, the speed-up that can be

obtained will be under 5. Some other approaches focus on particular topologies

or make assumptions on the problem.

Search-space splitting and portfolio approaches are the most likely to offer scal-

able speed-ups. Note that even for these approaches scalability issues are yet to

be investigated: most related works use a number of processors between 4 and 16;

the only exception we are aware of is [68] where 61 CPU are used in the context

of search-space splitting and [18] where they use up to 128 CPUs in the context of

portfolio and search-space splitting. To our knowledge no one has ever tried to solve

CSPs in a massively parallel system with more than 128 processors. Our goal is to

go beyond this limit and use thousands of CPUs for solving CSPs if it is necessary.

In this context we would also like to mention cpHydra [35] that is a sequential

CSP solver that uses a portfolio approach and machine learning algorithm to speed

up the solving process. cpHydra, which is the winner of the 2008 CSP Solver Com-

petition [1], combines many CP solvers in a portfolio and determines via case base

reasoning the subset of the solvers to use in an interleaved fashion and the time

to allocate for each solver, given a CSP instance. In this work we propose to use

a similar case base reasoner algorithm, or alternatively another machine learning

algorithm, to forecast the execution times of our solvers and using these data to

speed up the solving of the instances submitted to the system.
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7.2 The CiC framework

The CiC framework is composed by four main kind of entities, viz. distributor,

learner, worker, and preprocessor. The most important component of the framework

is the distributor that has the task of coordinating the workers for solving the CSPs.

The distributor assigns jobs to the workers. A job is a requests to solve a given CSP

instance using a certain solver. The distributor then collects the results of the

workers’ computation. Its goal is to dispatch the jobs minimizing the time or the

cost needed to solve the CSPs exploiting informations provided by the learner that

can be viewed as an oracle that tries to predict how difficult a CSP is and what

is the best solver to employ. To make these predictions the learner uses machine

learning algorithms that are trained over a well know dataset of CSP instances.

The workers are the components that are running the solvers and are searching the

solution of the CSPs. They are only required to run some solvers taken from a

fixed portfolio, receive a job from the distributor and send back the solution of the

problem. Even though all the components of the framework are intended to be run

on a cloud it is vital to the system to deploy at least these workers on the cloud

because the distributor should be able to dynamically borrow more workers.

The last component of the framework is the preprocessor that has to collect the

CSP instances submitted by the users, test if the instances are well defined and

extract from them some statistics that are later used by the learner and distributor.

For instance the preprocessor is responsible for the extraction of the feature vector

needed by the machine learning algorithm of the learner.

Figure 7.1 depicts how the system behaves when a user submits the request of

solving a CSP instance. The user sends to the preprocessor a problem instance i.

Once i is sent, the preprocessing computes a feature vector, i.e. a list of statistics

of the CSP instance submitted like the number of constraints. The feature vector is

then sent to the learner and used to predict how difficult the problem is and what

solver among a portfolio of solvers is the fastest one for the given instance. The

learner returns these predictions to the preprocessor that forwards them and the
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Figure 7.1: Flow exchange between entities of the framework

CSP instance to the distributor. The distributor uses all the given information to

coordinate all the workers that are needed to solve the instance in the most cost

effective way. In particular it decides which worker should try to solve the problem,

it selects what solver the worker should use and assigns the job to the worker.

Figure 7.2 depicts the messages exchanged when a worker has solved the prob-

lem. In this case the worker sends to the distributor the solution along with some

solving statistics like the run time of the solver and the memory that was used.

The distributor can decide to stop the other workers that are working on the same

problem, it forwards the solution to the preprocessor and the solving statistics to the

learner. The preprocessor forwards the solution to the user while the learner collects

the new solving statics in order to improve the prediction models for increasing the

future accuracy of the predictions.

To use the framework a common language to specify the CSP instance should

be used. Unfortunately, the CP community lacks a standardized representation

of problem instances and this still limits the acceptance of CP by the business

world. One attempt to overcome this problem was taken by the Association for

Constraint Programming with the Java Specification Request JSR-331 “Constraint
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Figure 7.2: Flow exchange between entities of the framework

Programming API” [4, 2]. The goal of this specification is the creation of a powerful

API for specifying CP problems. In the last five years other approaches focusing

on more low level languages emerged. The aim of these approaches is to define a

minimal domain dependent language that supports all the major constraint features

and requires, at the same time, a minimal implementation effort to be supported by

constraint solvers. Two languages following this goal are worth mentioning: FlatZinc

[11] and XCSP [101]. The first language was originally created to be the target into

which a higher level constraint model (e.g. MiniZinc [99]) is translated. Today

FlatZinc is also used as a low level “lingua franca” for solver evaluation and testing.

For instance, since 2008, FlatZinc has been used in the MiniZinc Challenge [3, 119], a

competition where different solvers are compared by using a benchmark of MiniZinc

instances that are compiled into FlatZinc. XCSP is a language structurally very

similar to FlatZinc. It was defined with the purposes of being a unique constraint

model that could be used by all the CP solvers. It was first proposed in 2005 for

the solvers competing in the CSP International Solver Competition [1] and has then

been used in other contexts and extended. For specifying the instance for the cloud

base constraint solver framework we have decided to use XCSP, specifically its 2.1
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version.

The Extensible Markup Language (XML) is a simple and flexible text format

playing an increasingly important role in the exchange of a wide variety of data on

the Web. The objective of the XSCP is to ease the effort required to test and com-

pare different algorithms by providing a common testbed of constraint satisfaction

instances. The proposed representation is low-level: for each instance the domains,

variables, relations (if any), predicates (if any) and constraints are exhaustively de-

fined. No control flow constructs like“for” cycles or “if then else” statements can be

used.

Roughly speaking, there exist two variants of this format: a fully-tagged repre-

sentation and an abridged representation. The first one is a full XML, completely

structured representation which is suitable for using generic XML tools but is quite

verbose and tedious to use for a human being. The second representation is just a

shorthand notation of the first one and it is easier to read and to write for a human

being, but less suitable for generic XML tools.

XCSP is the perfect choice to be used to specify CSPs in our framework because:

• it has been used in the last constraint solver competitions and thus many

solvers support it;

• such a low level representation is useful to extract the feature vectors

• XML is one of the most used document formats to transmit data in clouds

and service oriented systems

As already mentioned, modularity, scalability and reliability are some of the ma-

jor concerns that guided the design of the framework. We think that the separation

of the task of solving a CSP into four loosely coupled subtask makes the system

modular. For instance, a new feature like the support of the FlatZinc format can

be easily added simply allowing the preprocessor the receive FlatZinc programs and

convert them into XCSP. Morover, since replication is the main technique used in

distributed system to cope with hardware failures and spikes of computational de-

mands, to obtain a scalable and reliable framework we allow every entity of the
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system to be replicated. In the CiC framework, for instance, the preprocessor entity

could be deploy in more than one physical machines, every one of them perform-

ing the same task in parallel, and potentially allowing the preprocessing of a huge

number of instance submissions in parallel.

7.3 First experiments

We have implemented a prototype as a proof of concept to check if the CiC frame-

work was feasible and scalable. We where not aiming at providing from the beginning

an implementation with all the features we previously described. For this reason,

for example, the development of the learner was postponed.

The components of the system (viz. preprocessor, worker, and distributor) were

developed as Jolie services. We chose to implement one of the simplest dispatching

strategies: we let the system try to solve every CSP with all the solvers available in

the portfolio using all the available workers. In particular the dispatcher assigns to a

free worker the job of solving the oldest instance, i.e. the instance that was submit-

ted first, using a solver that was not already tried for the given instance. When the

solution of the problem was received the workers solving the same instance were not

interrupted. Moreover we forbid to the system to assign a job for solving an instance

if the instance was already solved, this even in the case a solver of the portfolio was

not used to solve the given instance.

For the testing of this naive system we deployed the services on Dell Optiplex

computers running Linux with Intel core 2 duo and Pentium 4 processors. Up to

100 of them were employed for the workers and only one for both the distributor

and the preprocessing services.

To evaluate the system, as a benchmark, we consider the instances of the 2009

CSP Solver Competition [1]. The solver portfolio was composed by six solvers:

Abscon 112v4 AC, Abscon 112v4 ESAC, Choco2.1.1 2009-06-10, Choco2.1.1b 2009-

07-16, Mistral 1.545, SAT4J CSP 2.1.1 that were used in the 2009 CSP Solver

Competition and one, bpsolver 2008-06-27, used in the 2008 competition. These
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n◦ Easy SAT (30 min) Easy UNSAT (30 min) Hard SAT (1h) Hard UNSAT (1h)

20 15 14 15 17 18 18 3 3 6 7 7 9

40 132 128 135 150 150 150 8 8 7 16 17 13

60 141 140 140 320 318 322 19 15 14 23 23 22

80 144 145 151 335 323 328 25 21 25 29 30 30

100 179 179 192 336 345 334 25 25 25 44 33 36

Table 7.1: Experimental results.

solvers were provided as black-box, hence their tunings was not possible.

The experiments we performed focused on the following instances: (i) Easy SAT:

1607 satisfiable instances solved in less than 1 minute; (ii) Easy UNSAT: 1048 un-

satisfiable instances solved in less than 1 minute; (iii) Hard SAT: 207 satisfiable

instances solved in between 1 and 30 minutes; (iv) Hard UNSAT: 106 unsatisfiable

instances solved in between 1 and 30 minutes. Such times refer to the solving times

of the competition.

In Table 7.1, we present the number of instances solved in 30 minutes for the easy

instances and in 1 hour for the hard instances. Every experiment was performed

and reported for three runs. The results we obtained are promising. Even without

the learner and using a small portfolio of solvers, the number of the instances solved

in a fixed amount of time increases as the number of computers increases. Moreover

note that only one computer was used to run the preprocessing and the distributor

services, and yet the system can handle 100 computers without any problems.

We also used the testing data to evaluate the limits of the choices we made in

the development of the prototype. For instance, we chose not to interrupt workers

because the data collected running every solver for every instance could be used to

obtain a better learner. However, looking at the runs, we noticed that sometimes

a solver is able to solve an instance very quickly while all the others solvers require

a very long time. Hence, letting all the solver run for every instance could be a

huge waste of computing resources. In Chapter 8 we focus on this problem studying

strategies to reach good compromises between the number of instances solved and

the cost of resources that need to be used.
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7.4 Summary

In this chapter we have proposed a new framework for solving CSPs exploiting the

resources of a cloud. For this reason, in the design process phase, we focused our

attention toward scalability and modularity concerns. This leads us to the creation

of a system composed by four separate components, each of them necessary for the

efficient execution of the system. Moreover, the components and their interaction

were designed to be replicated allowing the system to be more reliable and able to

adapt to huge loads of CSP solving requests.

We presented a proof of concept implementation using the SOC language Jolie.

Although some important features are not implemented in this first prototype, we

showed that the system is indeed scalable and is able to exploit a cloud environment.

The use of a SOC language was proven successful since it allows us to implement

the system following the framework abstraction in a straightforward way without

having a significant loss of performances. However, using the Jolie language, we

have also noticed some of the limitations of the SOC languages. In particular SOC

languages do not support broadcasting primitives that can be used to describe the

communication between workers and dispatcher in a more concise and efficient way.

Another limit of Jolie is related to the mechanism that it uses for handling timeouts.

In Chapters 9 and 10 we present in detail these limitations and we propose an

extension to Jolie in order to improve the implementation of the CiC framework.
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Chapter 8

A Classification-based Approach to

Manage a Solver Portfolio

The past decade has witnessed a significant increase in the number of constraint

solving systems deployed for solving constraint satisfaction problems (CSP). It is well

recognized within the field of constraint programming that different solvers are better

at solving different problem instances, even within the same problem class [56].

It has been shown in other areas, such as satisfiability testing [131] and integer

linear programming [82], that the best on-average solver can be out performed by

a portfolio of possibly slower on-average solvers. This selection process is usually

performed using a machine learning technique based on feature data extracted from

CSPs.

Three specific approaches that use contrasting approaches to portfolio man-

agement in CSP, sat and qbf are CPHydra, SATzilla, and Acme respectively.

CPHydra is a portfolio of constraint solvers exploiting a case-base of problem solv-

ing experience [35]. CPHydra combines case-base reasoning of machine learning

with the idea of partitioning cpu-time between components of the portfolio in order

to maximize the expected number of solved problem instances within a fixed time

limit. SATzilla [131] builds runtime prediction models using linear regression tech-

niques based on structural features computed from instances of Boolean satisfiability

problem. Given an unseen instance of the satisfiability problem, SATzilla selects

the solver from its portfolio that it predicts to have the fastest running time on
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the instance. The Acme system is a portfolio approach to solve quantified Boolean

formulae, i.e. SAT instances with some universally quantified variables [106].

In this chapter we present a very different approach to managing a portfolio for

constraint solving when the objective is to solve a set of problem instances so that

the average completion time, i.e. the time at which we have either found a solution

or proven that none exist, of each instance is minimized. This scenario arises in a

context in which problem instances are submitted to the CiC framework presented

in the previous Chapter. In addition, there is a significant scheduling literature that

focuses on minimizing average completion time, much of which is based around the

use of dispatching heuristics [128].

The approach we propose is strongly inspired by dispatching rules for scheduling.

Our approach is conceptually simple, but powerful. Specifically, we propose the use

of classifier techniques as a basis for making high-level and qualitative statements

about the solvability of CSP instances with respect to a given solver portfolio. We

also use classifier techniques as a basis for a dispatching-like approach to solve a set

of problem instances in a single processor scenario. We show that when runtimes are

properly clustered, simple classification techniques can be used to predict the class

of runtime as, for example, short, medium, long, time-out, etc. We show that, even

considering a processing system with only one computational node, this approach

significantly out-performs a well-known general-purpose CSP solver and performs

well against an oracle implementation of a portfolio. We then show what happens

if we apply the approach for sytems having more than one computational unit.

Clearly these studies were conducted to evaluate what are the best machine

learning algorithms and the best distribution strategy to use for the learner and the

distributor entities of the framework presented in the previous chapter.

The remainder of this chapter is organized as follows. In Section 8.1 we sum-

marize the requisite background on constraint satisfaction and machine learning

required for this chapter. Section 8.2 presents the large collection of CSP instances

on which we base our study. We discuss the various classification tasks upon which

our approach is based in Section 8.3, and evaluate the suitability of different rep-
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resentations and classification for these tasks in Section 8.4. We demonstrate the

utility of our classification-based approach for managing a solver portfolio exploiting

system with one or more processors in Section 8.5 and 8.6 respectively. We discuss

related work in Section 8.7 and summarize in Section 8.8.

8.1 Preliminaries

Machine learning “is concerned with the question of how to construct computer pro-

grams that automatically improve with experience”. It is a broad field that uses

concepts from computer science, mathematics, statistics, information theory, com-

plexity theory, biology and cognitive science [93]. Machine learning can be applied

to well-defined problems, where there is both a source of training examples and one

or more metrics for measuring performance. In this chapter we are particularly in-

terested in classification tasks. A classifier is a function that maps an instance with

one or more discrete or continuous features to one of a finite number of classes [93].

A classifier is trained on a set of instances whose class is already known, with the

intention that the classifier can transfer its training experiences to the task of clas-

sifying new instances.

8.2 The International CSP Competition Dataset

We focused on demonstrating our approach on as comprehensive and a realistic set

of problem instances as possible. Therefore, we constructed a comprehensive dataset

of CSPs based on the various instances gathered for the annual International CSP

Solver Competition [1] from 2006-2008. An advantage of using these instances is that

they are publicly available in the XCSP format [101]. The first competition was held

in 2005, and all benchmark problems were represented using extensional constraints

only. In 2006, both intentional and extensional constraints were used. In 2008,

global constraints were also added. Overall, there are five categories of benchmark

problem in the competition: 2-ary-ext instances involving extensionally defined
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binary (and unary) constraints; n-ary-ext instances involving extensionally defined

constraints, at least one of which is defined over more than two variables; 2-ary-int

instances involving intensionally defined binary (and unary) constraints; n-ary-int

instances involving intensionally defined constraints, at least one of which is defined

over more than two variables; and, glb instances involving any kind of constraints,

including global constraints.

The competition required that any instance should be solved within 1800 seconds.

Any instance not solved by this cut-off time was considered unsolved. To facilitate

our analysis, we remove from the dataset any instance that could not have been

solved by any of the solvers of our portfolio by the cut-off. In total, our data set

contains around 4000 instances across these various categories. Later we will further

restrict ourselves to a challenging subset of these.

8.3 From Runtime Clustering to Runtime Classi-

fication

We show how clusters of runtimes can be used to define classification problems

for a dispatching-based approach to managing an algorithm portfolio. While our

focus here is not to develop the CPHydra system, we will, for convenience, use

its constituent solvers and feature descriptions of problem instances to build our

classifiers. We demonstrate our approach on a comprehensive and realistic set of

problem instances.

Based on the three solvers used in the 2008 CSP Solver Competition variant of

CPHydra we present in Figures 8.1(a), 8.1(b), and 8.1(c) the runtime distributions

for each of its solvers, Mistral, Choco, and Abscon respectively,1 showing for every

solver in the portfolio the number of instances of the data set solved in given time

windows. Having removed from the dataset any instance that could not have been

solved by any of these solvers within a 1800s time-limit, each instance is ensured

1Visit the competition site for links to each of the solvers.
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Figure 8.1: The performance of each solver in the portfolio on the dataset.

to be solved by at least one solver. However, it is not the case that each solver

finds that the same instances are either easy or hard. There are many instances, as

we will show below, for which one of the solvers decides the instance quickly, while

another solver struggles to solve it. Therefore we define a classification task that

given a CSP instance returns the fastest solver for that instance.

Classification 1 (Fastest Solver Classification (Fs)) Given a CSP instance i

and a CSP solver portfolio Π, the Fs classification task is to predict which solver in

Π gives the fastest runtime on i.

From Figure 8.1 it is clear that there are many instances that can be solved easily

or not at all. To capture this property we introduce a classification task called 3C



110 Chapter 8. A Classification-based Approach to Manage a Solver Portfolio

which is defined over a solver portfolio as follows.

Classification 2 (3Ck) Given a CSP instance i and a CSP solver portfolio Π, the

3Ck classification task is to predict whether i: (a) can be solved by all solvers in Π

in at most k seconds; (b) can be solved by at least one solver, but not all, in Π in at

most k seconds; or (c) takes more than k seconds to solve with each solver in Π.

The number of instances in our CSP dataset in each class is presented in Fig-

ure 8.1(d). Note that while many instances were easy (i.e. solvable within 10

seconds) for all solvers, a larger number were easy for some, but not all (the middle

stack in the histogram). We consider two additional classifiers related to the perfor-

mance of the portfolio as a whole. We compute the maximum and the average time

required by each solver in the portfolio to solve each instance. The maximum times

are presented in Figure 8.1(e), in which the x axis lists the index of each instance

and the y-axis represents the maximum run-time. Note that a time-limit of 1800

seconds was applied on the dataset which gives the upper bound of the maximum

solving time and which is why there are a number of instances presenting across the

top of the plot. For applying this classifier, we consider only two intervals of running

time according to the data presented in Figure 8.1(e): at most 1500 seconds and

greater than 1500 seconds.

Classification 3 (MaxCks) Given a CSP instance i and a CSP solver portfolio Π,

the MaxCks classification task is to predict which interval of running-times in ks

that instance i can be solved using the worst performing solvers from Π.

Similarly, the average times are presented in Figure 8.1(f). In this plot we note

that there are three distinct classes of runtimes: instances that take on average

between 0-600 seconds, between 601-1200, and more than 1200. Again, this division

is influenced by the fact that an instance’s maximum solving time is at most 1800

seconds.
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Classification 4 (AvgCks) Given a CSP instance i and a CSP solver portfolio Π,

the AvgCks classification task is to predict which interval of running-times in ks

that instance i can be solved taking the average solving times for each of the solvers

in Π.

To complement the AvgC classifier, we will also make use of a classifier that

considers the variance, or spread, of runtimes across the constituent solvers of a

portfolio over a given instance. We refer to this classifier as Spread.

Classification 5 (Spreadk) Given a CSP instance i and a CSP solver portfolio

Π, the Spreadk classification task is to predict whether the difference across the

runtimes of the constituent solvers is at most (or at least) k.

For applying this classifier, we consider the difference of at most 100 seconds, based

on the given runtimes.

The classifiers presented in this section define a very expressive qualitative lan-

guage to describe the expected performance of a solver portfolio on a given CSP

instance. For example, we can make statements like “this instance is easy for all

solvers in the portfolio”, or “this instance is easy for some, but not all solvers, but

the average running time is low and has low variation”. This contrasts with all

current approaches to managing a solver portfolio. As our empirical results will

demonstrate, this approach is also very powerful in term of efficient solving.

8.4 Experiments in Runtime Classification

In this section, we experiment with the various classification problems discussed in

the previous section. To do so, we first establish “good” features to represent CSPs

starting from the features used in CPHydra. The objective of these experiments

is to show that accurate classifiers for solver runtimes can be generated, and that

these can be successfully used to build effective dispatching heuristics for managing

a solver portfolio for CSPs. We only focus on the 3C, AvgC, and MaxC classifiers.
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The experimental data set is based on the 2008 International CSP Solving Competi-

tion. We consider a portfolio comprising three solvers: Abscon, Choco and Mistral.

Running times for each of these solvers are available from the CSP competition’s

web-site. A time-out on solving time is imposed at 1800 seconds. We exclude from

the dataset the CSP instances that cannot be solved in that amount of time and

also some other instances due to the reason that we will explain later. In total, our

final dataset, upon which we run our experiments comprises 3293 CSP instances.

Knowledge Representation and Classifiers. Since the selection of good fea-

tures has a significant impact on the classifier performances, we investigate which

ones are more suitable to capture problem hardness. In particular, we consider

three feature-based representations of the CSP instances in our dataset: SATzilla

features representing each CSP instance encoded into SAT, those features used by

CPHydra(with some modifications), and the combination of the two.

SATzilla uses a subset of the features introduced by [100]: starting from 84

features they discard those computationally expensive and too instable to be of any

value. At the end they consider only 48 features that can be computed in less then

a minute (for more information see [130]). In this work we are able to use directly

these features simply translating each competition CSP instance into SAT using the

Sugar solver2 and then using SATzilla to extract its feature description. In some

(but few) cases, the encoding of a CSP instance into SAT requires an excessive

amount of time (i.e. more than a day). In order to make a fair comparison between

the set of features, we simply dropped such instances from the dataset.

For the second feature representation, we started from the 36 features of CPHydra.

Whilst the majority of them are syntactical, the remaining are computed by col-

lecting data from short runs of the Mistral solver. Among the syntactical features,

worth mentioning are the number of variables, the number of constraints and global

constraints, the number of constants, the sizes of the domains and the arity of the

predicates. The dynamic features instead take into account the number of nodes

explored and the number of propagations done by Mistral with a time limit of 2 sec-

2http://bach.istc.kobe-u.ac.jp/sugar/

http://bach.istc.kobe-u.ac.jp/sugar/
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onds. When we extracted the CPHydra features using our dataset we noticed that

two of them (viz. the logarithm of the number of constants and the logarithm of the

number of extra values) were strongly correlated with other features. Since strongly

correlated features are not useful for discriminating between different problems, we

discarded these two features. Inspired by Nudelman et al [100], we considered ad-

ditional features like the ratio of the number constraints over the number variables,

and the ratio of the number of variables over the number of constraints. Moreover,

we added features representing an instance’s variable graph and variable-constraint

graph. In the former, each variable is represented by a node with an edge between

pairs of nodes if they occur together in at least one constraint. In the latter, we

construct a bipartite graph in which each variable and constraint is represented by

a node, with an edge between a variable node v and a constraint node c if v is con-

strained by c. From these graphs, we extract the average and standard deviation of

the node degrees and take their logarithm. With these, the total amount of features

we consider are 43.

The third feature-based description of the CSP instances, which we refer to

as Hylla, is simply the concatenation of the two feature descriptions discussed

above. We consider a variety of classifiers, implemented in publicly available tools

RapidMiner3 and WEKA.4 Our SVM classifier is hand-tuned to the specific tasks

considered in this chapter according to the best parameters found using RapidMiner;

however, it is only applied to the 3C and AvgC tasks because it appeared to be

problematic to tune for the MaxC task. The other WEKA classifiers are used with

their default settings.

Results. The results of the runtime classification tasks are presented in Tables 8.1–

8.3. Three alternative feature descriptions, as discussed earlier, are compared; these

are denoted as CPHydra, Hylla, and SATzilla, in the tables. We compare the per-

formance of various classifiers on each of the three classification tasks (3C, MaxC,

and AvgC). A 10-fold cross-validation is performed. The performance of each

3http://rapid-i.com/content/view/181/196/
4http://www.cs.waikato.ac.nz/ml/weka/

http://rapid-i.com/content/view/181/196/
http://www.cs.waikato.ac.nz/ml/weka/
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classifier, on each representation, on each classification task are measured in terms

of the classification accuracy and the κ-statistic. The latter measures the relative

improvement in classification over a random predictor [25].

Differences in performance are tested for statistical significance using a Paired t-

Test at a 95% confidence level. The performance on the CPHydra feature set is used

as a baseline. In each table, values that are marked with a ◦ represent performances

that are statistically significantly better than CPHydra, while those marked with a

• represent performances that are statistically significantly worse.

In summary, both classification accuracies and κ values are high across all three

tasks. Interestingly, combining both CPHydra and SATzilla features improves per-

formance in only one κ value, and without any significant improvement in clas-

sification accuracy. The CPHydra feature set thus gives rise to the best overall

performance. Based on these promising results, we consider in the next section the

utility of using these classifiers as a basis for managing how a solver portfolio can

be used to solve a collection of CSP instances.

8.5 Scheduling a Solver Portfolio

We now consider a solver portfolio and demonstrate the utility of our classification-

based approach for its management via some experimental results. In this section

we will focus on systems having only one computational node, in the next section

instead we will consider the more interesting case when more than one processor

could be use in parallel.

Portfolio Construction and its Management. The portfolio is composed of

three solvers previously introduced: Mistral, Choco and Abscon. It is designed so

as to face the challenge of solving a collection of CSP instances as quickly as possible.

Specifically, it tries to minimize the average completion time of each instance; the

completion time of an instance is the time by which it is solved. One would wish

to minimize average completion time, if for instance a CSP solver was deployed as

a web-service. We assume all CSP instances are known at the outset. This setting
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Table 8.1: Classification accuracy and κ-statistics for the 3C classifier.

Classifier (CPHydra) ( Hylla) ( SATzilla) (CPHydra) ( Hylla) ( SATzilla)

trees.J48 83.83 82.52 • 79.70 • 0.75 0.73 0.68 •
meta.MultiBoostAB 84.75 84.91 82.19 • 0.76 0.76 0.72 •
trees.RandomForest 85.34 85.14 82.39 • 0.77 0.77 0.72 •
functions.LibSVM 85.63 84.68 82.62 • 0.77 0.76 • 0.73 •
lazy.IBk 83.69 83.53 78.71 • 0.74 0.74 0.67 •
bayes.NaiveBayes 61.70 62.74 52.49 • 0.37 0.44 ◦ 0.31 •
meta.RandomCommittee 84.99 85.44 82.57 • 0.76 0.77 0.73 •
rules.OneR 72.89 72.89 69.16 • 0.57 0.57 0.51 •

◦, • statistically significant improvement or degradation over CPHydra .

Table 8.2: Classification accuracy and κ-statistics for the AvgC classifier.

Classifier (CPHydra) ( Hylla) ( SATzilla) (CPHydra) ( Hylla) ( SATzilla)

trees.J48 84.18 83.35 82.42 • 0.63 0.61 0.58 •
meta.MultiBoostAB 85.14 85.10 83.95 • 0.65 0.65 0.62 •
trees.RandomForest 85.37 85.53 84.42 0.65 0.65 0.62 •
functions.LibSVM 84.99 84.24 83.67 • 0.64 0.63 0.60 •
lazy.IBk 83.45 83.13 81.39 • 0.62 0.61 0.57 •
bayes.NaiveBayes 64.96 53.81 • 41.69 • 0.25 0.22 0.12 •
meta.RandomCommittee 85.03 85.32 84.25 0.65 0.65 0.62

rules.OneR 78.97 78.97 75.75 • 0.45 0.45 0.34 •

◦, • statistically significant improvement or degradation CPHydra.̇

Table 8.3: Classification accuracy and κ-statistics for the MaxC classifier.

Classifier (CPHydra) ( Hylla) ( SATzilla) (CPHydra) ( Hylla) ( SATzilla)

trees.J48 89.61 89.08 87.99 • 0.73 0.72 0.69 •
meta.MultiBoostAB 90.19 90.33 89.47 0.75 0.75 0.73

trees.RandomForest 90.35 90.70 89.90 0.75 0.76 0.74

lazy.IBk 89.18 89.00 87.87 • 0.73 0.72 0.70 •
bayes.NaiveBayes 71.37 67.30 • 54.26 • 0.31 0.34 0.18 •
meta.RandomCommittee 90.28 90.64 90.10 0.75 0.76 0.74

rules.OneR 82.98 82.98 77.87 • 0.54 0.54 0.38 •

◦, • statistically significant improvement or degradation over CPHydra .

is similar to setting used in the international SAT competitions and also relevant in

the context of the International CSP Competition.

Minimizing average completion time can be achieved by solving each problem in

increasing order of difficulty, i.e. by using the well-known shortest processing time

heuristic. In a solver portfolio context this corresponds to solve an instance with the

fastest solver for it, and order each one by solving time. This give us the most basic



116 Chapter 8. A Classification-based Approach to Manage a Solver Portfolio

oracle (perfect) approach to minimize average completion time. As it is unlikely to

have such perfect information, the portfolio can be managed via an instance selector

and a solver selector whose purpose are to predict respectively the right order of

the instances from easiest to hard and the fastest solver on a given instance.

The classifiers developed previously can help to manage the portfolio. Consider

for instance Figure 8.1(d) in which we see that the instances are grouped in three: i)

those that can be solved by all solvers in 10 seconds; ii) those that can be solved by

at least one solvers in 10 seconds; iii) those that are solved by all solvers in more than

10 seconds. The figure exhibits a rather balanced distribution, especially between

the first two classes. This hints that 3C can provide a good way to distinguish the

easy instances from hard ones and that the classifiers AvgC, Spread, and MaxC

could be useful to break ties between the instances of the second and third classes.

We exemplify this approach in Figure 8.2. Given two classifiers C1 and C2 with 3 and

2 classes respectively, an instance ordering C1 ≺ C2 would mean that the instances

are first divided according the predictions of C1 resulting in three classes, and then

those in each class of C1 would be further divided according to the predictions of C2

, resulting in six classes in total. The ordering of the instances then would be from

the left most to the right most leaf in the tree.

C1

c13

C2

c22c21

c12

C2

c22c21

c11

C2

c22c21

Figure 8.2: Instance ordering using classifiers C1 (dividing in 3 classes) and C2

(dividing in 2 classes).

Even though it is not clear in which order to use our classifiers, we restrict

ourselves to starting with 3C as it gives the most balanced classification among all.
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As we will verify empirically later, this approach yields the best performance. Once

the order of the instances are determined according to the predictions of the relative

classifiers, we pick the solver of an instance using Fs. Given an instance and a solver

chosen for the instance via the Fs classifier, the solver is run on the instance for

1800 seconds. In case of time-out, we switch to another solver randomly. As noted

earlier, our benchmarks are composed of instances that can be solved by at least one

solver by the cut-off. Our portfolio therefore guarantees that each instance is solved,

independently of the way the instances are ordered and the solvers are picked up.

Oracles, Baselines and Experimental Methodology. In our experiments, we

compare the quality of our classifiers for managing a portfolio of solvers with various

oracle-based management strategies, as well as with a best on-average solver, and

naive baseline strategies. We do not compare against CPHydra since it solves a

challenge specific to the International CSP Solver competition, namely to maximize

the probability that a problem instance is solved within 1800s. Instead, we aim at

solving each instance as quickly as possible.

The most basic oracle-based (perfect) management strategy to minimize average

completion time is solving each instance with the fastest solver on it, and order each

one by solving time. Alternatively, we can consider ordering the instances using

our classifiers, but choosing always the fastest solver on each instance. Such an

approach can help us understand how close our instance ordering approach is to

being perfect. Similarly, we can consider ordering the instances by solving time but

picking the solver decided by Fs which can help determine how good is our solver

selection classifier.

There are six obvious baseline management strategies. The first (Random) is to

select the next instance to solve and its solver at random. The second and third

strategies (Random + Fs) and (Best Instance Selector + random) use classifiers for

one selector while picking the other randomly; the Best Instance Selector corresponds

to the instance selector of our best classifier-based approach. We also mix oracle

and random approaches on instance and solver selection and consider Random +

oracle and Oracle + Random. The last (Mistral) is to use a best on-average solver
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to solve each instance and heuristically order the instances. Note that this is not

a portfolio approach, therefore it may leave some instances unsolved by the cut-

off. We build such a baseline using the Mistral constraint solver, as Mistral has

been the overall winner of the CSP Solver Competition for a number of years and

has a parser for the competition problem format that we use in our experiments.

Consequently, we construct a classifier called MistralC that classifies the instances

into those that: can be solved quickly (within 10 seconds); that can be solved without

timeout (between 10 and 1799 seconds); or will timeout (1800 seconds or more). We

based these specific classes from the data presented in Figure 8.1(a). The other two

solvers of the portfolio (Abscon and Choco) solve fewer problems than Mistral and

on average their solving times are higher. Hence, we do not consider any baseline

using these.

Another baseline is the worst-case scenario where the instances are ordered in

completely the wrong way (from most difficult to the easiest) and always the worst

solver is picked up. We have experimented with such a method many times and

found it to be always much worse than Random. Given the unlikely nature of the

worst-scenario, we do not consider this baseline in our experiments. We believe that

this exclusion is safe. As explained later, every management strategy is executed

several times and eventually the average of the results are reported. The analysis of

the Random results have revealed that they cover a wide range, from being close to

perfect to being totally naive. Hence Random represents a more realistic scenario

than the worst-case.

In the experiments, we adopt a simple random split validation approach to eval-

uating the quality of our classifiers for managing a portfolio of solvers. We use the

instances described in Section 8.4 to have a unified benchmark for all tests that we

perform. Given a management strategy, we execute it (via simulation) 1000 times.

A single run consists in random split of the dataset into a testing set (1/5 of the in-

stances) and a training set (the remaining 4/5). We use the random forest algorithm

(WEKA) for learning the models. For every run, we compute the overall average

solving times and report in Table 8.4 the average of the average solving times across
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1000 runs. Differences in performance are tested for statistical significance using a

Paired t-test at a 95% confidence level.

Note that the training and the simulation are done in two separate phases. For

every run, we have previously trained all the classifiers with the entire training set,

hence, the accuracy of the classifiers should be similar to the one presented in Section

8.4. The simulator is implemented in Python using the SimPy Simulation Package5

and the SciPy package6 for the statistical computations.

Results. In Table 8.4 we present three categories of portfolio solvers: three oracle-

based, 9 classifier-based, and six baselines. They are ordered by average completion

time. Oracle1 is ranked first, of course, since it has full information about which

solver solves which instance. The Random baseline is ranked last. The Mistral

baseline selects as the next instance the one which it believes it can solve quickly

(in less than 10 seconds). In case of time-out (set to 1800 seconds), whilst Fs or

random solver selector switches to another solver randomly, Mistral records 1800

seconds as the solving time. Hence, Mistral results indicate only a lower bound.

Scheduler11 to Scheduler4 use the various classifiers presented in Section 8.3. In

particular, Scheduler11 to Scheduler16 order the instances by first the 3C classifier

and then the MaxC, AvgC, and Spread classifiers in 6 different ways. As noted

previously, we expect that ordering the instances first by 3C is a good heuristic but

it is not clear in which order to use the remaining classes afterwards. Given that the

best result comes from Scheduler11, we test the importance of the use of multiple

classes via Scheduler2 to Scheduler4 by dropping one class at a time from the instance

ordering of Scheduler11. Even if we here present the results of only 9 classifier-based

management strategies, we have indeed experimented with all (subsets of ) possible

orderings of instances by using 3C, MaxC, AvgC, and Spread and observed that

Scheduler11 is indeed the real winner overall. This is the reason why we use exactly

this instance ordering in Oracle2.

Even though the best management strategy Scheduler11 utilizes the 3C≺AvgC≺
5http://simpy.sourceforge.net/
6 http://www.scipy.org/

http://simpy.sourceforge.net/
http://www.scipy.org/
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Spread≺ MaxC instance ordering, which we later use as our Best Instance Selec-

tor in our base line strategies, permuting the orders of the classes after 3C does not

worsen the results in a statistically significant way, except in Scheduler16. Instead,

the results become significantly worse, as we start using one class less with respect

to Scheduler11 in the instance ordering. We therefore observe that our classifiers all

contribute to the best management strategy.

Scheduler11 outperforms Mistral with statistical significance by at least a fac-

tor of two with Mistral being unable to solve 6.4% of its instances by the cut-off.

Comparing Scheduler11 to all the baseline and oracle methods, we observe that the

performance of Scheduler11 is in general much closer to the oracles than it is to the

baselines, both in terms of instance ordering alone, solver selection alone, and both.

In particular, the prediction accuracy of Fs is remarkable, compared to Mistral and

random solver selection strategies. Clearly, a simple classifier-based approach to

controlling a solver portfolio approach for CSPs is very promising.

8.6 Parallel Solver Portfolio

We now consider the use of classification to solve CSPs using a multi processor

system. In this setting, more than one solver could be run in parallel for solving the

same instance. It is therefore possible to try new strategies like the one of running

all solvers in parallel for instances that are difficult for all the solvers but one, and

run only the best solver for all the other instances. This strategy looks promising

since it does not waste resources running all the solvers for all the instances and, at

the same time, it minimizes the risk of choosing the wrong solver for some instances.

Minimizing the use or computational resources when a multi processor system is

used could be very important. Since the more resources are used the more expensive

the computation becomes, in this section we consider a metric function that takes

into account also the number of processors. Specifically, instead of considering only

the solving time, in order to compare different strategies we consider the product

of the average solving time and the number of processors used by the system. Min-
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imizing this function is equivalent to maximize the efficiency of a system having a

cost that increases linearly over the number of processors.

The experiments setting is the same as the one presented in the previous section.

The only things that differs is that now a dispatching strategy consist of three

selectors, namely instance, solver, and parallel. The first two, as described in the

previous section, are used to sort the instances and chose the solver to use. The

parallel selector instead can be viewed as a function that, given an instance, it

decides if the instance could be solved running all the solvers of the portfolio in

parallel.

As a starting point we consider four simple parallel selectors:

Sel0 all the solvers are run in parallel for all the instances;

Sel1 selects to use all the solvers just for instances that are predicted to be easy

for one solver but not for all by the 3C classifier;

Sel2 selects to use all the solvers just for instances that are predicted to have a big

spread by the Spread classifier;

Sel3 selects to use all the solvers just for instances that are predicted to be easy

for one solver but not for all and are predicted to have a big spread by the 3C

and Spread classifiers respectively.

Results.

Figure 8.6 depicts the cost of every strategy (i.e. the product of the average solv-

ing time and the number of processors used) as the number of processors increases.

For presentation purposes, we report only a subset of the strategies presented in

the previous Section with two new additional strategies, namely (Best Inst.+ FS +

Sel0) and (Oracle + FS + Sel0), that are obtained from the “Best Inst.+ FS” and

“Oracle + FS’ respectively using the Sel0 as parallel selector (i.e. same strategies

as before but now all the instances were solved using the solvers in parallel and not

sequentially).
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Figure 8.3: Performance of strategies exploiting multi processors systems

As can be seen from the plot, the more processor are used the less important

becomes the ordering of the instance selector. For instance, when more than 70 pro-

cessors are used, the (Random + Oracle) strategy that sorts the instances randomly

but choses to use always the best solver is better than any strategy using the FS

classifier. Intuitively, this can be explained by the fact that when more processors

are used, more instance are solved in parallel and thus the mistake of scheduling a

difficult instance first is less frequent.

Every strategy has a cost that steadily increases after a certain number of pro-

cessors are used; this means that after a certain point the increase in number of

processors does not contribute significantly to the reduction of the average solving

time. This result is predicted by the Amdahl’s low [7] that states that the speed

up of a program exploiting in parallel multiple computation nodes is limited by the
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Figure 8.4: Performance of new strategies exploiting multi processors systems

time needed for the sequential fraction of the program. Notice however that here

the test is conducted with a fix number of instances and therefore, according to

Gustafson’s law [62], in these settings it is still possible to obtain a linear speed up

if the dimension of the problem varies. Hence, we expect that efficient systems to

solve concurrently thousands of instances will need more than 100 processors.7

In Figure 8.6 we report the strategies that enhance the (Best Inst.+ FS) strategy

considering the four parallel selectors previously introduced. We report as baselines

the (Best Inst.+ FS), (Best Inst. + FS + Sel0), and (Oracle + FS + Sel0) strategies

already visualized in Figure 8.6. From this plot we notice that parallel selectors have

a non negligible effect on the cost of a strategy. Specifically, strategies having very

7Unfortunately, the current datasets available for the CP community do not allow us to make

simulations with thousands of instances
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selective parallel selectors (i.e. parallel selectors where only few instances are tried

with all the solvers in parallel) have a smaller cost when systems have few processors,

but their performance do not scale up. For instance, the strategy (Best Inst. + FS +

Sel3), which has a more selective parallel selector than Sel2, performs initially better

than the (Best Inst. + FS + Sel2) strategy until less than 70 processors are used. In

particular let us note that running all the solvers in parallel for all the instances is

not a good choice for systems with a small number of processors but it can become

a good strategy for systems having a lot of computation units. This could be very

interesting since running all the solvers for a great number of instances allows the

collection of more data that can be used to improve the classifiers accuracy.

These initial results suggest that a deeper and more exhaustive study of parallel

selectors is needed in order to obtain a better and more efficient CSP portfolio based

parallel solver. Note that here we assume that the cost of the system depends linearly

on the number of processors. However, cloud providers usually make discounts if

users are planning to use a lot of processors. In this kind of scenarios the metric

function to evaluate the cost of the system is different and therefore it could be the

case that the most efficient strategy is obtained with systems having more than 20

or 30 processors.

8.7 Related Work

The three closest approaches to solver portfolio management are CPHydra, SATzilla,

and Acme. CPHydra, using a CBR system for configuring a set of solvers to max-

imize the chances of solving an instance in 1800 seconds, was overall winner of

the 2008 International CSP Solver Competition. Gebruers et al. [53] also use case-

based reasoning to select solution strategies for constraint satisfaction. In contrast,

SATzilla [131] relies on runtime prediction models to select the solver from its port-

folio that (hopefully) has the fastest running time on a given problem instance. In

the International SAT Competition 2009, SATzilla won all three major tracks of the

competition. An extension of this work has focused on the design of solver portfo-
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lios [130]. The Acme system is a portfolio approach to solve quantified Boolean for-

mulae, i.e. SAT instances with some universally quantified variables [106]. Streeter

et al. [118] use optimization techniques to produce a schedule of solvers that should

be executed in a specific order, for specific amounts of time, in order to maximize

the probability of solving the given instance.

In [57], a classification-based algorithm selection for a specific CSP is studied.

Given an instance of the bid evaluation problem (BEP), the purpose is to be able

to decide a-priori whether an Integer Programming (IP) solver, or an hybrid one

between IP and CP (HCP) will be the best. Such a selection is done on the basis

of the instance structure which is determined via (a subset of) 25 static features

derived from the constraint graph [82]. These features are extracted on a set of

training instances and the corresponding best approach is identified. The resulting

data is then given to a classification algorithm that builds decision trees. Our

purpose is not only to be able to predict the best solver for a given instance but

also to choose the right instance in the right time so as to minimize the average

finishing time of the set of instances. Consequently we develop multiple classifiers

and utilize them so as to predict their order of difficulty. Moreover, our features are

general-purpose and our approach works for any CSP in the XCSP format with any

of its suitable solvers. Furthermore, we take into account as well dynamic features

which provide complementary information.

Also related to our work is the instance-specific algorithm configuration tool

ISAC [69]. Given a highly parameterized solver for a CSP instance, the purpose

is tune the parameters based on the characteristics of the instance. Again, such

characteristics are determined via static features and extracted from the training

instances. Then the instances are clustered using the g-means algorithm, the best

parameter tuning for each cluster is identified, and a distance threshold is computed

which determines when a new instance will be considered as close enough to the

cluster to be solved with its parameters. The fundamental difference with our ap-

proach is that instances that are likely to prefer the same solver are grouped with a

clustering algorithm based on their features. We instead do not use any clustering
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algorithm. We create clusters ourselves according to the observed performance of

the solvers on the instances and predict which cluster an instance belongs based on

its features using classification algorithms.

8.8 Summary

We have presented a novel approach to managing a portfolio for constraint solv-

ing. We proposed the use of classifier techniques as a basis for making high-level

and qualitative statements about the solvability of CSP instances with respect to

a given solver portfolio. We showed how these could then be used for solving a

collection of problem instances. While this approach is conceptually very simple, we

demonstrated that using classifiers to develop dispatching rules for a solver portfolio

is very promising. The code for computing the CPHydra features and the simulator

is available at www.cs.unibo.it/~jmauro/ictai_2011.html.

This is a first investigation towards the ambitious goal of developing an on-line

service-based portfolio CSP solver as described in Chapter 7.

As part of future work, we will investigate the benefit of using automatic al-

gorithm tuning tools like GGA [8] and ParamILS [65] to train a larger portfolio

of solvers. It has been observed in ISAC and Hydra that additional performance

benefits can be achieved with solvers that have been expressly tuned for a particular

subset of problem types.

Finally we would like to exploit the solving statistics (e.g. solving times, memory

consumption) obtained at run time to improve on the fly the predictions of the

models. This goal has been already considered for the QSAT domain [107]. We plan

to follow similar ideas using on-line machine learning techniques [127].

www.cs.unibo.it/~jmauro/ictai_2011.html
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Chapter 9

Broadcast messages in Jolie

Service-Oriented Computing (SOC), presented in Section 3.5 is a paradigm for pro-

gramming distributed applications by means of the composition of services. Services

are autonomous, self-descriptive computational entities that can be dynamically dis-

covered and composed in order to build more complex functionalities. The resulting

systems, called Service-Oriented Architectures (SOA), have a wide diffusion. In a

SOA services are loosely coupled, i.e. they stress a minimality on the dependencies

that each service has w.r.t. the others, and can be stateful; this last point is the

case of orchestrators which maintain a state for each created session. Usually, in

a stateful service a session is created at the first client invocation. But, differently

from the object-oriented approach, SOC does not guarantee references for identify-

ing the new session. Thus a fundamental aspect which affects the efficiency and the

performance of SOAs is the mechanism which allows to manage sessions. In fact,

in a typical pattern of interaction, a service may manage many different sessions,

corresponding to different clients. Since communications are usually supported with

stateless protocols (e.g. SOAP on HTTP), when a service receives a message from a

client C the system must be able to identify which is the session corresponding to C

and that, therefore, must receive the message. In other words, sessions usually need

to be accessed only by those invokers (messages) which hold some specific rights.

A relevant mechanism for solving this problem, first introduced by BPEL [5] and

then used in JOLIE [95, 96], COWS [80] and in other languages, is that based on
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correlation sets. Intuitively a correlation set is a set of variables whose values allow

to distinguish sessions initiated by different clients. More precisely, both the sessions

and the incoming messages contain some specific “correlation values” defining the

variables in the correlation set. When a message m arrives it is routed to the session

which has the same values as m for the correlation variables.

As a simple example of correlation set consider the case of a service S used for

buying goods. Suppose that S handles all the communication of a specific customer

using a unique session, while different customers have different sessions. Assuming

that a customer is uniquely determined by her name and surname we can use a

correlation set consisting of the two variables name and surname for determining

the customer’s session. Now let us suppose that S can receive the following three

types of messages (with the obvious meaning):

• buy(name, surname, product id);

• delete order(name, surname, product id);

• pay(name, surname, product id, credit card info).

When a customer, say John Smith, wants to buy product 1 he can send a message

of the form buy(John, Smith, 1). When this message is received the service checks

whether there is a session that correlates with it, i.e. whether there exists a session

whose variables name and surname are respectively instantiated to the values John

and Smith. If this is the case message m is assigned to such session. On the other

hand, if John Smith is a new customer and no session correlates with m then the

message is not delivered (note however, that in this case a new session could be

created which correlates with the message, see for example [9, 5, 60]).

The BPEL and Jolie languages are currently allowing the use of messages whose

target is only one session. However there are a lot of scenarios where being able to

send a broadcast message to more than one session could be useful. For instance

broadcast messages can be used to define the message exchange between the workers

and the distributor in the CiC framework defined in Chapter 7. Another case where
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broadcast messages could be useful is a cloud environment where every user can

start, control and terminate a virtual machine on the cloud (a framework similar for

instance to Amazon EC2). Let’s suppose that we would like a unique entry point to

this system and this entry point is a service that can receive and send messages to

the users and the administrators of the cloud. We could consider to have a session

for every virtual machine and control the virtual machine through this session. The

key to identify a session can be the union of the following fields:

• the name, surname and date of birth of the user (we assume that these values

univocally determine the user);

• the kind of virtualized operating system (i.e Ubuntu, Windows, . . . );

• the version of the operating system;

• the priority of the virtual machine (high, medium, low).

Having this key a user (say John Smith born on the 1st of Jan 1970) can start a

Windows 7 machine with low priority sending for instance a message like

start(John,Smith,19700101,windows,7,low). Later he can control and terminate the

session (and therefore the virtual machine) simply sending messages like execute or

terminate specifying every time all the fields of the key.

On the other hand suppose now that an administrator wants to apply a patch

to all the Windows virtual machines. Without a broadcast primitive he/she should

retrieve all the keys of sessions controlling a Windows machine and later send them

the message that triggers the application of the patch. For the programmer point of

view this usually involves the definition of a session or service that keeps the log of

all the sessions. This session/service often slows down the performances due to the

creation or deletion of new sessions. On the other hand having a broadcast primitive

an administrator could send:

• a message like get location() that will be sent to every session for asking to the

session which hardware machine is used to run the virtual machine;
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• a message like patch(operating system, operating system version, . . . ) to patch

all the virtual machines with a certain operating system and version;

• a messages like terminate(name, surname, birthday date) that can terminate

all the virtual machines belonging to a user;

• messages like stop(priority) or stop(operating system, priority) can be used to

stop every virtual machine having a specific priority or operating system +

priority.

These are only few examples of the use of broadcast primitives. Another impor-

tant application for these messages is for the implementation of a publish/subscribe

pattern: This is a messaging pattern where senders (publishers) of messages do not

send the messages directly to specific receivers (subscribers). The messages are in-

stead divided into classes and the subscribers subscribe for the reception of messages

of a given class. The system is responsible for sending every message belonging to a

certain class to every subscriber that has subscribed for that class. Publisher may

not know who are the subscribers and vice versa.

This pattern can be easily implemented using broadcast and a service having a

correlation set that contains the class identifier. Whenever a subscriber subscribes

for a class, a new session responsible for the forwarding of the message is created. The

publisher now can send a broadcast message specifying in the message its class. The

correlation mechanism will check this value and route the message to every session

that has subscribed for that class. The session can later forward the message to the

real subscriber.

In this chapter we present a data structure and an implementation of the cor-

relation mechanism that supports the broadcast primitive without degrading the

performances of the correlation of normal messages.

The operations that a correlation mechanism has to support can be seen as

the select, insert and delete operations of a relational database, where every tuple

of the relation is a session. The correlation set is a key of a relation. When a

normal message arrives it always contains a key that determine the target session.
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In the database analogy the correlation operation is then a “select” operation, and

in the case of normal messages the (complete) key is used to retrieve the target

session. On the contrary, a broadcast message specifies only part of the key, indeed

its target is potentially a set of sessions. Continuing in the database analogy, the

broadcast operation can be efficiently implemented by adding an index for every type

of broadcast messages. However, since increasing the number of indexes decrease the

performances of the insert and delete queries (i.e. creation and deletion of sessions),

the less indexes we have the better it is. We will then define a solution that uses the

minimal number of indexes needed to correlate the messages to the right sessions.

The indexes will be implemented using radix trees.

We would like to underline that in this work we have taken as a starting point the

correlation mechanism of Jolie. We made this choice because Jolie was the language

we chose to develop the framework presented in Chapter 7 and because we find

that Jolie correlation mechanism is more flexible than the BPEL one. For instance

Jolie correlation variables are normal variables and not a late-bound constant like in

BPEL. While in BPEL the values of a correlation set are defined only by a specially

marked send or receive message and once defined they can not change, in Jolie the

programmer can decide to instantiate or change the values of a correlation set at

run time. In BPEL all the fields (correlation proprieties or correlation tokens) of a

message key should be always defined. Jolie instead allows partially defined keys.

This flexibility comes with a price: the implementation of the search of a correlating

session is linear w.r.t. the number of session while in BPEL it is constant (usually

hash table are used).

The correlation mechanism can be seen as a special case of the well know content-

based publish/subscribe mechanism [98]. Indeed the correlation mechanism can be

seen as a simpler content-based publish/subscribe mechanism where messages are

notifications, sessions are subscriptions and correlation variables are attributes. The

correlation mechanism exploits however two constraints that usually a content-based

publish/subscribe mechanism does not have. In correlation, few attributes need

to be considered and only equality predicates are used to compare the attributes.
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Hence, this work could be considered as an improvement over publish/subscribe

algorithms such as [37, 26] for scenarios where the previous two constraints hold.

After having provided some background in Section 9.1 we explain the idea of the

algorithm in Section 9.2. In Section 9.3 we show how the data structure is created

and used, while in Section 9.4 we prove the correctness of the algorithm and we

perform some complexity analysis. Finally Section 9.5 presents a summary.

9.1 Background

In this section we formally define the main concepts that we will use in the rest of

the chapter. A correlation set, c-set for short, can be seen as a key that can be used

to retrieve a session. For our purposes a c-set can be seen as a set of variables names

(in BPEL these correspond to c-set proprieties) that can assume values in a domain.

To simplify the notation we assume that the variables of a c-set can assume values

in the domain D defined as the set of strings on a given signature.

Definition 9.1 (c-set) Given a service S, a correlation set for S is a finite set of

variables names. When these variables are defined their values uniquely identify a

session of S.

Sessions may define the variables of a c-set. The definition of variables belonging

to a c-set is captured with the following definition.

Definition 9.2 (c-instance) Given a c-set c we say that a c-instance for c is a

total function that maps every variable of c to a value in D.

We will say that a session s has a c-instance ϕ if for every variable v in c the

variable v has been assigned and its value is ϕ(v).

Services, especially those having multi-party sessions, may need more than one

c-set because the users may need to use different keys to identify a session. These

services, also known as multi correlation services, do not require to have a c-instance

for every c-set. However since c-sets are used to identify a session we require that a
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session must have at least a c-instance. Moreover we do not allow the starting of a

session having the same c-instance of another existing session.

Every message that is exchanged will contain some arguments associated to a c-

set. Usually these arguments are called correlation tokens or correlation values and

are used to find the recipient of the message. BPEL and other service engines allow

the use of potentially one correlation token (c-token for short) for every c-set of the

service. For example a multi-party session can be initialized submitting a message

having as correlation tokens the values for all the c-sets of the service. In this

work instead we will consider messages having only one c-token. This restriction is

however insignificant since the behaviour that is caused by the exchange of messages

with more than one c-token can be easily simulated in our framework. This is due

to the fact that differently from BPEL we do not need the exchange of a message

to change the value of a correlation variable.

Formally we can define a c-token in the following way.

Definition 9.3 (c-token) Given a message m a c-token is a pair (c, ϕ) where

• c is a c-set containing the variables used to specify the message recipients

• if m is a normal message then ϕ is a total function that maps a variable of c

into a value in D

• if m is a broadcast message then ϕ is a partial function that maps a variable

of c into a value in D. Moreover ϕ is not total.

For instance the service for buying goods has only one c-set c = {name, surname}
and the c-instance of John’s session is the function ϕ s.t. ϕ(name) = John and

ϕ(surname) = Smith. The message buy(John, Smith, 1) has instead as c-token

the couple (c, ϕ). If we want to send a message m to every person named John for

wishing him a happy name day we can use a broadcast message whose c-token will

be the couple (c, ϕ′) where ϕ′(name) = John and ϕ(surname) is not defined.

As it can be seen in the previous definition the introduction of the broadcast

primitive allows the user to not define all the variables of a c-set. Normal messages,
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like c-instances, need to define all the variables of a c-set because they need to

identify their (unique) target session. On the other hand, broadcast messages can

specify only a part of the key, indeed their target can be a set of sessions. Note that,

in case of multi correlation services, the c-token definition does not allow to consider

part of two different keys to determine the targets of a broadcast message. We do

not allow this possibility since we haven’t find a significant example that justifies

this increased power. However we could easily extend our framework to treat also

this case. Now we can formally define when a message correlates with a session.

Intuitively a message correlates with a session when the values of the correlation

token match the c-instance of a session. In the following ϕm(v) ↑ denotes that ϕm

is not defined in v.

Definition 9.4 (Correlation) Given a service S, a session s and a message m

with c-token (cm, ϕm) we will say that s correlates with m iff s has a c-instance ϕ

for the c-set cm and ∀v ∈ cm. ϕm(v) = ϕ(v) ∨ ϕm(v) ↑.

9.2 The idea

As we have discussed above the current mechanisms for assigning a message to the

correct session does not support the possibility of identifying a set of sessions. A

naive implementation for the support of broadcast messages would use an associative

array for every c-set variable. However, if this solution is used, for finding the targets

of a broadcast message we have to compute a set intersection whose complexity

depends on the number of sessions. Another naive solution is using an associative

arrays for every subsets of correlation variables that can be used in a broadcast

message. If we consider a c-set with n variables this means that for the support

of the broadcast primitive we could have 2n − 1 associative arrays, since with n

variables we can use up to 2n−1 different kind of broadcast messages (one for every

subset of the c-set variables). Inspired by [114], our key idea in order to improve the

complexity of message assignment is to use radix trees to memorize the c-instances

of all the sessions and therefore for routing messages to the correct session. In this
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section we will explain intuitively the idea, while its formalization and complexity

analysis are contained in the next sections.

A trie, or a prefix tree, is an ordered tree for storing strings, in which there is one

node for every common prefix. Edges are labeled with characters, while the strings

are stored in extra leaf nodes. Tries are extremely useful for constructing associative

arrays with keys that can be expressed as strings, since the time complexity of

retrieving the element with a given key is linear time in the length of the key. In

fact, looking up for a key of length k consists in following a path in the trie, from

the root to a leaf, guided by the characters in the key. A radix tree (or Patricia tree,

[97]) is essentially a compact representation of a trie in which any node that has no

siblings is merged with its parent (so, each internal node has at least two children).

Unlike in regular tries, edges can be labeled with sequences of characters as well

as single characters. This makes radix tree more efficient than tries for storing sets

of strings (keys) that share long prefixes. The operations of lookup (to determine

whether a string is in the set represented by a radix tree), insert (of a string in the

tree), and delete (of a string from the tree) have all worst case complexity of O(l),

where l is the maximal length of the strings in the set.

Intuitively our idea is to use radix trees to map incoming messages to sessions,

by using the values of the c-set variables as keys. In other words, the session point-

ers can be seen as elements stored in an associative array, while the values of the

variables of the c-sets, conveniently organized as strings, are the keys. Our radix

trees implements such a structure by memorizing the values of the c-set variables

which appear in the existing sessions. In particular, since every broadcast message

can define only part of the c-set variables, to be able to process every message we

could use a radix tree for every subset of the c-set variables. This however is not

an optimal solution. For example if a service has two c-set variables name and

surname we could receive the following kind of messages

1. broadcast messages s.t. their c-tokens do not define any variable

2. broadcast messages s.t. their c-tokens define only the field name
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3. broadcast messages s.t. their c-tokens define only the field surname

4. normal messages s.t. their c-tokens define both name and surname

With the naive approach we need to use 4 associative arrays (one for every message

type). Using radix trees is however possible to use a unique radix tree for 1st, 2nd

and 4th types since the c-tokens of the 1st and 2nd kind of messages can be considered

as prefix of the c-tokens of the 4th type of messages. For the message of the 3th type

instead we have to use a different radix tree, since in this case the c-tokens are not a

prefix of those for the 4th type of messages. So it is sufficient to use two radix trees

to cover all the possible cases.

To better explain the idea let us consider some more examples. In the following

we use a special character, denoted by # and not used elsewhere, to denote in a

string the termination of the values of c-set variables.

�

John#

��
s1

(a)

�

Jo
��
�

hn#
}}}

~~}}}
s

@@@

  @@@

s1 �

eph#
}}}

~~}}} h#
AAA

  AAA

s2 s3

(b)

Figure 9.1: Example of radix trees

We first consider a unique c-set variable with only one field: name. When there

exist no session for such a variable we have a radix tree consisting of the only root

(recall that in radix trees the root is associated with the empty string). We represent

such a radix tree as a �. If now a session s1 is created which is identified by the value

John for the c-set variable name then the radix tree became as the one depicted

in Figure 9.1(a). The value John allows to reach s1 by an (obvious) lookup in the

tree.
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Next assume that two more sessions are created: a session s2, which is identified

by the value Joseph for the variable name and a session s3 which is identified by

Josh. The radix tree we obtain is the one depicted in Figure 9.1(b). Notice that

the longest common prefixes of the three key values are associated to edges of the

tree. When a message arrives, the value that it carries for the name variable allows

one to select a root-leaf path in the tree, so reaching the correct session.

Assume now that our correlation set is composed by the two variables name and

surname and consider four sessions s1− s4 identified as follows by the values of the

c-set variables:

s1 : name = John, surname = Smith; s2 : name = John, surname = Smirne

s3 : name = Josh, surname = Smith; s4 : name = John, surname = Smithson

Correspondingly we have the radix tree depicted in Figure 9.2(a). In this case, as

mentioned before, we need more that one radix tree to store the values of c-sets

variables of the sessions. This because in a broadcast message the value of some

c-set variables could be not specified. For example, in the case above, let us consider

a broadcast message which contains the token Smith for surname and no token for

name. If we have only a radix tree like the one depicted in Figure 9.2(a) we can

not find with a lookup which session correlate with it. This is due to the fact that

the first part of the key of the radix tree is the value of the variable name. Hence

we need an additional radix tree like the one depicted in Figure 9.2(b) that can be

used to retrieve sessions for messages that do not define the variable name.

It is easy to see that these two radix trees allow to cover all the possible cases.

First consider what happens if we receive a message m where name = John and

surname = Smith, hence we consider the string John#Smith#. In this case, by

using the 9.2(a) radix tree, we see that the message m will be assigned to s1, since

this is the session which correlates with m. However, note that this first tree covers

also the case in which no value for surname is provided by the message, hence we do

not need a further radix tree to keep only the sessions that define only the variable

name. For example, if we receive a message m with name = John, that is we
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Figure 9.2: Example or radix trees for c-set with 2 variables

consider the string John#, then the 9.2(a) radix tree shows that m correlates to

the sessions s1, s2, s4.

On the other hand, if we receive a broadcast message m′ where name is not

defined and surname = Smith we will use the 9.2(b) radix tree (with the string

Smith#) to find that the session correlating with m′ are s1, s3.

9.3 Building the radix trees

As previously discussed, with our approach every c-set of the service has a group of

radix trees that can be used for checking the correlation of a message to a session.

We have also shown that, if we assume that the c-set has n variables, one does

not need to consider 2n different radix trees, because a radix tree for a sequence of

variables cover also all the cases given by the prefixes of such a sequence.

In this section we provide an algorithm that, given a c-set with n variables, in

the worst case constructs a set containing
(

n
dn/2e

)
(= n!

dn/2e! bn/2c!) radix trees. In the

next section we will prove that such set allow us to route all the possible messages

to a service. We also prove that this set is minimal, in the sense that any other set

of radix trees which allow to route correctly all the messages has at least the same
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cardinality. So our algorithm cannot be improved w.r.t. the number of radix trees

generated.

In the following we assume that the c-set c has n variables and the set V contains

all and only these variables. We denote by seqi a sequence x1, . . . , xhi of variables

of c. Given a list of sequences of variables seq1, . . . , seqm such that seqi is a prefix

of seqi+1, for i ∈ [1,m − 1], we use the notation RT (seq1, . . . , seqm) to indicate

any radix tree whose keys are strings of the form d1# . . .#dhi# where dj = ϕ(xj),

for j ∈ [1, hi], and for some c-set-instance ϕ. In other words, RT (seq1, . . . , seqm)

is a kind of schema which can be instantiated by considering the values of the

variables for one specific sequence seqi, with i ∈ [1,m] (and using # as separator

of values), to obtain a specific concrete radix tree. As previously discussed, a radix

tree (described by) RT (seq1, . . . , seqm) allows us to check the existence of a session

defining all the variables in one of the sequences seqi. For example the radix tree in

Figure 9.2(a) can be denoted by RT (〈〉, 〈name〉, 〈name, surname〉) while the radix

tree 9.2(b) is denoted by RT (〈surname〉) 1. By using this notation our problem can

be stated as follows: we need to find the minimum number h of radix trees schemas

RT1(seq1,1, . . . seq1,l1), . . . , RTh(seqh,1, . . . seqh,lh) such that, for each set X ⊆ V ,

there exists a sequence seqk,o that contains all and only the variables in X.

We find convenient to formulate this problem in terms of a graph representation.

Indeed, given a set of variables V , we can create a labeled direct graph G(V ) where:

• the nodes are (labeled by) elements in P(V ). Intuitively we will consider all

the set of variables that can be defined by a c-token;

• there is an arc from u to v if u ⊂ v;

• the arc (u, v) is labeled with the variables v\u (where \ denotes set difference).

For example, in Figure 9.3 we see the graph constructed by considering the three

variables x, y and z where we can receive all the possible 7 broadcast messages. A

1Note that the order of the cset variables is important and therefore for instance

RT (〈name, surname〉) 6= RT (〈surname, name〉)
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Figure 9.3: Example of
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path on this graph corresponds to a radix tree schema (see definition 9.5). Hence,

with this graph representation our problem can be stated as follows: we have to find

the minimum number of paths that cover all the nodes of the graph where, as usual,

we say that a path u1

x1
))
u2

x2 **
. . .

xn ++
un+1

covers the nodes u1, . . . , un+1.

The algorithm that produces this minimum number of paths is Algorithm 1 and

its intuition is the following. Consider the graph G(V ) associated to a c-set V , as

explained above. We first partition all the nodes of G(V ) into levels according to

the number of variables of the nodes, so level i contains all the nodes that have

exactly i variables. Then starting from the lowest levels (i.e. level 0 and 1) we

consider two next levels at a time, say level i and i+ 1. These two levels are seen as

a bipartite graph where the nodes of each level form an independent set. We then

use a maximum bipartite matching algorithm for selecting a set of arcs between the

nodes of these two levels. Next we repeat the same procedure with levels i+ 1 and

i + 2, and we continue until we reach the level n. At this point we take the graph

G′(V ) obtained by considering all the nodes in the original graph G(V ) and only

the edges which have been selected by the matching algorithm. As we prove in the

next section, the maximal paths2 on the graph G′(V ) form a minimum set of paths

covering all the nodes of P .

Before providing the algorithm we need to introduce some notation. We assume

that each node is (labeled by) an element of P(V ) (n = |V |), as mentioned above

and we denote by levelV (i) the set of nodes in the i-th level, i.e. the set of elements

in P(V ) which have cardinality i. Moreover graph(A,B) denotes the bipartite direct

2A maximal path is a path that can not be a proper part of another path.
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graph (A ∪ B,E) where (u, v) ∈ E iff u ⊂ v. Finally maximal matching(G) is one

of the maximal matchings of the bipartite graph G chosen in a non deterministically

way. Algorithm 1 takes as input the set P ⊆ P(V ) and returns the graph containing

a minimum set of paths covering all the nodes of P . Once we have obtained a graph

Algorithm 1 radix trees(P )

1: i = 0

2: V = levelP (i)

3: M = ∅
4: while (i < n) do

5: i = i+ 1

6: V ′ = levelP (i)

7: G = graph(V, V ′)

8: M ′ = maximal matching(G)

9: V = V − {v | (v, x) is an edge in M ′, for some x}
10: V = V ∪ V ′

11: M = M ∪M ′

12: end while

13: return (P,M)

by using the Algorithm 1 it is possible to compute the radix trees by simply finding

all the maximal paths, as shown below.

Definition 9.5 Given P ⊆ P(V ) we say that a radix tree schema RT (u′1, u
′
2 . . . , u

′
m)

is produced by the algorithm radix tree(P ) if u1

x1
))
u2

x2 **
. . .

xm ,,
um+1

is a max-

imal path in the graph G = radix tree(P ) and

• u′i is a sequence of all the variables in the set ui, for each i ∈ [1,m];

• u′i is a prefix of u′i+1, for each i ∈ [1,m− 1].

We now consider an example of application of the previous algorithm to the

graph in Figure 9.3. In Figure 9.4 we have reported the three steps denoting by



144 Chapter 9. Broadcast messages in Jolie

⇒ the arcs selected by the maximal matching algorithm (i.e. arcs in M) while →
indicates the arcs considered by the maximal matching algorithm (i.e. arcs in G,

line 7). The nodes in frame are the nodes that are used for computing the maximal

matching (i.e. the nodes in V and in levelP (i)), while nodes in dotted frame are

the nodes already processed (not considered by the matching algorithm and deleted

from V , line 9).
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(d) Final graph

Figure 9.4: Example of execution of Algorithm 1 with 3 variables

From the final graph (Figure 9.4(d)) we can compute the radix trees schemas by

taking the maximal paths:

∅
x
''x

y
++
x, y

y
z ++
y, z

z
x ++
x, z

y ,,
x, y, z

The first path corresponds to the radix tree schema

RT (〈〉, 〈x〉, 〈x, y〉) while the other two corresponds to

RT (〈y〉, 〈y, z〉) and RT (〈z〉, 〈z, x〉, 〈z, x, y〉), respectively.
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9.3.1 Using radix trees

Once we have created the radix tree schemas by using our algorithm, we need some

operations for inserting and removing values from them, thus creating the concrete

radix trees to be used for correlating messages and sessions. Moreover we need

to define a lookup operation, that, given a message, allows us to use the (concrete)

radix tree to find all the correlating sessions. To this aim we first introduce the three

operations described below. Here and in the following, unless differently specified,

with “radix tree” we mean a concrete radix tree, containing values for keys and

whose leafs contain (pointers to) sessions. Moreover we assume w.l.o.g. that the

service has a unique c-set and therefore only one group of radix trees. If the service

has more than one c-set the following considerations should be applied to every

c-set.

• RT.add(s) is the operation for adding to the radix tree RT the session s;

• RT.del(s) is the dual operation that deletes the session s in RT ;

• RT.find(m) returns all the sessions which correlate with m. If no sessions in

RT correlates with m then the null pointer is returned.

Assuming that RT belongs to the radix tree schema RT (seq1, . . . , seqk), when

RT.add(s) is invoked s is added to the radix tree RT using as key the string

ϕs(x1)# . . .#ϕs(xl)# where 〈x1, . . . , xl〉 = seqk and ϕs is the c-instance for s. In a

similar way RT.del(s) deletes from RT the session pointer to s.

If 〈x1, . . . , xl〉 is the sequence of all the variable defined by the c-token ϕ of a

message m, the operation RT.find(m) can be applied iff there exists a sequence

seqi = 〈x1, . . . , xl〉. In this case this operation returns all the sessions whose keys

have as prefix the string ϕ(x1)# . . .#ϕ(xl)#.

Using these basic operation we can now define the operations which manage

the set of radix trees produced by our algorithm . More precisely, we assume that

the set of radix tree schemas produced by the algorithm has been instantiated to

a set of (concrete) radix trees. Then this set is managed by the following three
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operations: find session(m) (for finding a session that correlates with a message

m); add session(s) (for adding the session s); del session(s) (for deleting a session

s). The definition of the add session(s) and del session(s) is obvious since the only

thing to do is to execute RT.add(s) and RT.del(s) for every radix tree RT . The

find session(m) instead first have to select a specific RT based on the variables

defined by the c-token of m and later return the RT.find(m) result.

9.4 Correctness and complexity analysis

In this section we prove the correctness of Algorithm 1 and we discuss the complexity

of correlation mechanism based on it. In particular, we show that it produces the

minimal number of radix trees needed to guarantee correctness. In the following, as

usual, we assume that V is the set of variables of a c-set and that n = |V |.

First of all, we show that Algorithm 1 produces a number of radix trees much

smaller than 2n. With a slight abuse of notation, when no ambiguity arise, we

indicate by radix trees(P ) both the graph produced by the algorithm, with input

P , the radix tree schemas obtained from this graph according to Definition 9.5,

and the concrete radix tree obtained from the schemas as described at the end of

previous section. All the proofs of the theorems are reported in Appendix A.

Theorem 9.1 If W ⊆ P(V ) the result of radix trees(W ) is a graph containing at

most
(

n
dn/2e

)
maximal paths. Hence the algorithm produces at most

(
n
dn/2e

)
radix trees

schemas.

Next we show that the algorithm is correct, that is, the number of radix trees

produced is sufficient to check correlation.

Theorem 9.2 Let m be a message and V1, . . . , Vk be all the subsets of c-set variables

that are defined by all the possible c-tokens. Then there exists a radix tree schema

produced by radix trees({V1, . . . , Vk}) which allows us to check if the message cor-

relates with a session.
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Finally we show that the number of radix trees produced by the algorithm is the

minimal one which guarantees correctness.

Theorem 9.3 The graph produced by radix trees(P ) contains the minimal number

of maximal paths covering all the nodes in P .

As an obvious consequence of previous theorem we obtain that if we consider

less radix trees than those produced by Algorithm 1 we cannot establish correctly

correlation for some kind of messages. Thus our algorithm cannot be improved with

respect to the number of radix trees that one can use to solve this problem.

The complexity of Algorithm 1 is polynomial on the size of P . As for the com-

plexity of the operations described in Section 9.3.1, assuming that l is the maximum

length of a c-set value and k is the number of the sessions that correlate with a

message m, the (time) complexity of find session(m), is O(n + knl) = O(knl).

For normal (i.e. non broadcast) messages the complexity of find session(m) re-

duces to O(nl). On the other hand, the (time) complexity of add session(s) and

del session(s) is O(
(

n
dn/2e

)
l) (for more details see [86]). We would like to underline

that, in practice, the number of the c-set variables which are used is very small (less

or equal to 5) so, in practice, the complexity of our operations is constant.

Let us now consider the complexity of the fundamental operations of the corre-

lation mechanism as described in Section 9.3.1:

• For find session(m) it is necessary to retrieve the right radix tree where the

find operation can be applied. This operation can be done simply checking the

number of the variables defined by the c-token of m and therefore has com-

plexity O(n). If k is the number of the sessions that correlate with m (k = 1 if

no session correlate with m) we have that the cost of find session(m) is O(n+

knl) = O(knl). Note that for normal messages the cost of find session(m)

is O(nl) that is also the complexity of a correlation mechanism implemented

using a perfect hash table with a key of length O(nl)
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• For add session(s) we need to add a session pointer to every radix tree. Since

adding a new element in a radix tree has cost O(nl) and for Algorithm 1

the number of radix trees is less or equal to
(

n
dn/2e

)
we have that the cost of

add session(s) is O(
(

n
dn/2e

)
l).

• Since adding or removing an element to a radix tree has the same cost of

deleting one, aslo del session(s) has complexity O(
(

n
dn/2e

)
l)

9.5 Summary

In this chapter we have proposed a data structure, based on radix trees, for managing

a correlation mechanism which supports also a broadcast communication in the

context of languages for service oriented computing. This could be very useful

for the definition of the message excange between the entities of the cloud based

constraint solving proposed in Chapter 7.

We have also described an algorithm that computes the minimal number of

radix trees required for handling correctly every normal and broadcast message.

The complexity of the correlation operation is constant for normal messages, and

linearly dependent with respect to the number of targets for broadcast messages.

The operations of session creation and termination have a complexity that depends

on the number of different types of broadcast messages. In the worst case (i.e.

when an exponential number of broadcast messages is used) it is exponential. The

worst case scenario is however impossible in practice, since real scenarios use few

types of broadcast messages. For this reason the complexity of session creation and

termination have in practice a constant complexity.

The major drawback of our approach is memory consumption: having more than

one radix tree means that we require more memory to store the correlation values.

For services that use huge data as correlation values memory consumption could

be problematic. Nevertheless, we believe that in practice this is not an issue, since

correlation values should be small for minimizing the cost of the message exchange

over the network. If a service uses huge data as correlation values then we argue
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that it is worth considering the introduction of a new shorter key that can be used

as a new correlation variable.

We are currently implementing the data structure and the algorithm in the

JOLIE language interpreter. With this new implementation hopefully we will be

able to provide a faster mechanism for the assignment of messages to session.
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Chapter 10

Interruptible request responses in Jolie

In Service-Oriented Computing (SOC) interaction with remote services may incur

in errors of different kinds: the remote service may disconnect, messages may be

lost on the net, received data items may be outside the desired range of values, or

a client may decide to interrupt the interaction with a remote service exactly in

between the request and the corresponding response. To avoid that such an error

causes the failure of the whole application, error handling techniques and primitives

have been developed. They are commonly based on the concept of fault handler and

compensation. A fault handler is a piece of code devoted to take the application to

a consistent state after a fault has been caught. A compensation is a piece of code

devoted to undoing the effect of a previous activity (e.g., an invocation of another

service) because of a later error.

As an example, consider a hotel reservation service that requires the credit card

number as a guarantee for the reservation. A reservation can be cancelled, but if it

is not annulled the cost of one night will be charged in case of no show. In case the

trip has to be annulled, the compensation for the successful hotel reservation has to

be executed, thus cancelling the reservation and avoiding the cost of a no show.

Jolie [59] is a language for programming service-oriented applications. A main

design choice in Jolie concerns its approach to the request-response interaction pat-

tern. Jolie request-response invocation establishes a strong connection between the

caller and callee, and that such a connection should not be disrupted by faults in
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the caller or in the callee. To this end, callee faults are notified to the caller that can

thus manage them. Symmetrically, in case of caller faults the answer from the callee

is waited for and used during recovery. This allows, in particular, to compensate

successful remote activities which are no more needed because of the local fault.

This is the case of the hotel reservation above. If the hotel reservation instead failed

on its own (e.g., no room was available), compensation is not needed.

The Jolie approach for interrupting request-response interactions is different from

that of WS-BPEL, according to which execution can continue without waiting for the

response, and the response is discarded upon arrival. The Jolie approach allows for

programming safer applications, including distributed compensation of faults. The

fact that the request-response pattern is not disrupted by errors has been formalized

and proved in [59], by relying on SOCK [60], a calculus defining the formal semantics

of Jolie, including its error handling features [58]. However, a nasty side effect of

the Jolie approach is that the client has to wait for answers of request-response

invocations before proceeding in its execution. This slows down the caller execution.

For instance, referring to the hotel reservation example, the client cannot continue

its operations (e.g., organizing a new trip) before the answer from the hotel has

been received and (s)he gets stuck whenever the answer is lost (e.g. the hotel server

unexpectedly disconnected).

This drawback is unacceptable for programming applications over the net, where

communications may be delayed for long time. Such a kind of problem is normally

solved using timeouts, but in the current Jolie language timeouts are not available,

and one cannot implement them relying on external faults to interrupt a running

request-response since execution is restarted only after the response has been re-

ceived.

We propose here a new approach to error handling in Jolie, allowing on one side

to compensate undesired remote side effects, and ensuring on the other side that

local computation is not slowed down in case of late answers. In particular, this new

approach allows to easily program timeouts.

This new variant of Jolie will be used to improve the implementation of the
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framework presented in Chapter 7 where the possibility of interrupting request re-

sponse message is vital to handle the exchange of messages between the entities of

the system. In particular, with such mechanism, we plan to create a more reliable

and fault tolerant system and also to exploit timeouts to terminate the workers

activity after a given time limit.

Going back to our previous example, assume that a client of the hotel reservation

service exploits a request-response communication pattern in order to send the credit

card number, and to subsequently receive the reservation number. In case the client

does not want to wait for the reservation number for a long time, (s)he could be

interested in interrupting the request-response interaction after the expiration of a

timeout. In this case, according to the Jolie approach, the client is blocked waiting

for the answer before being able to start other activities. On the contrary, according

to the WS-BPEL approach it is not possible to write code that will be executed

upon receipt of the hotel response. The mechanism that we propose in this chapter

allows the client to continue immediately after the timeout expires, but it is still

possible to program an activity that will be started upon the receipt of the response.

This activity will be responsible for cancelling the reservation.

We also analyze how the approach has to be extended to deal not only with simple

request-response, but also with invocations of multiple services. This is the case of

the so called speculative parallelism, where many services are invoked simultaneously

(e.g., many news servers), the first received answer is taken, the others are discarded

and the corresponding invocations compensated. Nevertheless, computation in the

caller restarts as soon as the first (successful) answer is received.

10.1 SOCK

To give a formal presentation of our approach, we first introduce SOCK [60], the

calculus that defines the semantics of Jolie [59] programs, and then we extend it

to account for request-response and multiple request-response service invocations.

SOCK is suitable for illustrating our approach since it has a formal SOS semantics
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(while WS-BPEL has not), it provides request-response as a native operator, and it

has a refined approach to error handling. SOCK is structured in three layers: (i) the

service behavior layer, specifying the actions performed by a service, (ii) the service

engine layer dealing with state and service instances (called sessions), and (iii) the

services system layer allowing different engines to interact. We give a simplified

description of SOCK, removing aspects not related to our aim. A description of the

full calculus can be found in [60].

Service behavior layer

The service behavior layer describes the actions performed by services. Actions can

be operations on the state (SOCK is an imperative language), or communications.

Basic actions can be composed using composition operators. Services are identified

by the name of their operations, and by their location.

SOCK offers strong support for error handling, based on the concepts of scope,

fault, and compensation. A scope is a process container denoted by a unique name.

A fault is a signal raised by a process towards the enclosing scope when an error

state is reached. A compensation is used either to smoothly stop an activity in case

of an external fault, or it can be invoked to compensate the effect of the activity

after its successful termination (this encompasses both termination and compensa-

tion mechanisms according to WS-BPEL terminology). Recovering mechanisms are

implemented by exploiting handlers, which contain processes defining error recov-

ery policies. Handlers are defined within a scope which represents the execution

boundaries for their application. We use fault handlers and compensation handlers.

Fault handlers are executed when a fault is triggered by the internal process of the

scope. Compensation handlers are executed when a running scope is reached by an

external fault or when its effect has to be annulled because of a later error. In this

last case it has to be invoked by another handler.

Syntax. SOCK syntax is based on the following (disjoint) sets: V ar, ranged over

by x, y, for variables, V al, ranged over by v, for values, O, ranged over by o, for one-
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P,Q, . . . : : = o@l(~y) output o(~x) input

x := e assignment P ;Q sequential comp.

P |Q parallel comp.
∑
i∈I oi(~xi);Pi external choice

if χ then P else Q det. choice while χ do (P ) iteration

0 null process {P : H : u}q⊥ active scope

inst(H) install handler throw(f) throw

comp(q) compensate 〈P 〉 protection

Table 10.1: Service behavior syntax with faults

way operations, Faults, ranged over by f , for faults, and Scopes, ranged over by q,

for scope names. Loc is a subset of V al containing locations, ranged over by l. We

denote as SC the set of service behavior processes, ranged over by P,Q, . . . . We use

q⊥ to range over Scopes∪{⊥}, whereas u ranges over Faults∪Scopes∪{⊥}. Here

⊥ is used to specify that a handler is undefined. H denotes a function from Faults

and Scopes to processes extended with ⊥, i.e. H : Faults ∪ Scopes → SC ∪ {⊥}.
In particular, we write the function associating Pi to ui for i ∈ {1, . . . , n} as [u1 7→
P1, . . . , un 7→ Pn]. Finally, we use the notation ~k = 〈k0, k1, ..., ki〉 for vectors.

The syntax of service behavior processes is defined in Table 10.1. A one-way

output o@l(~y) invokes the operation named o of a service at location l, where ~y are

the variables that specify the values to be sent. Dually, a one-way input has the

form o(~x) with ~x containing variables that will receive the communicated values.

Assignment x := e assigns the result of the expression e to the variable x (state is

local to each behavior). We do not present the syntax of expressions: we just assume

that they include the arithmetic and boolean operators, values in V al and variables.

Var(e) computes the set of variables in expression e, and JeK is the evaluation of

ground expression e. We use χ to range over boolean expressions. P ;Q and P |Q
are sequential and parallel composition respectively.

∑
i∈I oi(~xi);Pi is input-guarded

external choice: whenever one of the input operations oi(~xi) is invoked, continuation

Pi is executed. Iteration is modeled by while χ do (P ) and deterministic choice by
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if χ then P else Q. Finally, 0 is the inactive process.

We denote with {P}q a scope named q executing process P . An active scope

has instead the form {P : H : u}q⊥ . Here H defines the fault and compensation

handlers defined in the scope. Term {P}q is a shortcut for {P : H0 : ⊥}q, where

H0 is the function that evaluates to ⊥ for all fault names (i.e., at the beginning no

fault handler is defined) and to 0 for all scope names (i.e., the default compensation

handler has no effect). The third argument, u, is the name of a handler waiting to

be executed, or ⊥ if no handler is waiting to be executed. When a scope has failed

its execution, either because it has been killed from a parent scope, or because it

has not been able to catch and manage an internal fault, it reaches a zombie state.

Zombie scopes have ⊥ as scope name. Primitives throw(f) and comp(q) respectively

raises fault f and asks to compensate scope q. 〈P 〉 executes P in a protected way,

i.e. not influenced by external faults. This is needed to ensure that recovery from

a fault is completed even if another fault happens. Handlers are installed into the

nearest enclosing scope by inst(H), where H is the required update of the handler

function.

Well-formedness rules. Informally, comp(q) occurs only within handlers, and q

can only be a child of the enclosing scope. For each inst(H), H is undefined on all

scope names q but the one of the nearest enclosing scope, i.e. a process can define

the compensation handler only for its own scope. Finally, scope names are unique.

Semantics. The service behavior layer does not deal with state, leaving this issue

to the service engine layer. Instead, it generates all the transitions allowed by the

process behavior, specifying the constraints on the state that have to be satisfied

for them to be performed. The state, and the conditions on it, are substitutions of

values for variables. We use σ to range over substitutions, and write [~v/~x] for the

substitution assigning values in ~v to variables in ~x. Given a substitution σ, Dom(σ)

is its domain.

The semantics follows the idea above: the labels contain all the possible actions,
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together with the necessary requirements on the state. Formally, let Act be the set

of labels, ranged over by a. We use structured labels of the form ι(σ : θ) where

ι is the kind of action while σ and θ are substitutions containing respectively the

assumptions on the state that should be satisfied for the action to be performed and

the effect on the state. We also use the unstructured labels th(f), cm(q, P ), inst(H).

We use operator �, defined as follows, for updating the handler function:

(H�H′)(u) =

 H′(u) if u ∈ Dom(H′)
H(u) otherwise

Intuitively, handlers in H′ replace the corresponding handlers in H. We also

use cmp(H) to denote the part of H dealing with terminations/compensations:

cmp(H) = H|Scopes.

Definition 10.1 (Service behavior layer semantics) We define→⊆ SC×Act×
SC as the least relation which satisfies the rules of Tables 10.2 and 10.3, and closed

w.r.t. the structural congruence ≡, defined by the axioms at the bottom of Table 10.2.

Table 10.2 contains the standard semantic rules, while Table 10.3 defines the fault

handling mechanism. Rule One-WayOut defines the output operation, where ~v/~x

is the assumption on the state. Rule One-WayIn corresponds to the input oper-

ation: it makes no assumption on the state, but it specifies a state update. The

other rules in Table 10.2 are standard, apart from the fact that the label stores

the conditions on the state. The internal process P of a scope can execute thanks

to rule Scope in Table 10.3. Handlers are installed in the nearest enclosing scope

by rules AskInst and Install. According to rule Scope-Success, when a scope

successfully ends, its compensation handlers are propagated to the parent scope.

Compensation execution is required by rule Compensate. The actual compensa-

tion code Q is guessed, and the guess is checked by rule Compensation. Faults

are raised by rule Throw. A fault is caught by rule Catch-Fault when a scope

defining the corresponding handler is met. Activities involving the termination

of a sub-scope and the termination of internal error recovery are managed by the

rules for fault propagation Throw-Sync, Throw-Seq and ReThrow, and by
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(One-WayOut)

o@l(~x)
o(~v)@l(~v/~x:∅)−−−−−−−−−→ 0

(One-WayIn)

o(~x)
o(~v)(∅:~v/~x)−−−−−−−→ 0

(Assign)

Dom(σ) = Var(e) JeσK = v

x := e
τ(σ:v/x)−−−−−→ 0

(If-then)

Dom(σ) = Var(χ) JχσK = true

if χ then P else Q
τ(σ:∅)−−−−→ P

(Else)

Dom(σ) = Var(χ) JχσK = false

if χ then P else Q
τ(σ:∅)−−−−→ Q

(Iteration)

Dom(σ) = Var(χ) JχσK = true

while χ do (P )
τ(σ:∅)−−−−→ P ;while χ do (P )

(No-Iteration)

Dom(σ) = Var(χ) JχσK = false

while χ do (P )
τ(σ:∅)−−−−→ 0

(Sequence)

P
a−→ P ′

P ;Q
a−→ P ′;Q

(Parallel)

P
a→ P ′

P | Q a→ P ′ | Q

(Choice)

oi(~xi)
a−→ Qi i ∈ I∑

i∈I oi(~xi);Pi
a−→ Qi;Pi

structural congruence

P | Q ≡ Q | P P | 0 ≡ P P | (Q | R) ≡ (P | Q) | R 0;P ≡ P 〈0〉 ≡ 0

Table 10.2: Standard rules for service behavior layer (a 6= th(f))

the partial function killable. Function killable computes the activities that have

to be completed before the handler is executed and it is applied to parallel com-

ponents by rule Throw-Sync. Moreover, function killable guarantees that when

a fault is thrown there is no pending handler update. Technically this is obtained

by making killable(P, f) undefined (and thus rule Throw-Sync not applicable)

if some handler installation is pending in P . The 〈P 〉 operator (described by rule

Protection) guarantees that the enclosed activity will not be killed by external

faults. Rule Scope-Handle-Fault executes a handler for a fault. A scope that

has been terminated from the outside is in zombie state. It can execute its com-

pensation handler thanks to rule Scope-Handle-Term, and then terminate with

failure (the compensation handler will not be available any more) using rule Scope-

Fail. Similarly, a scope enters the zombie state when reached by a fault it cannot

handle, as specified by rule ReThrow. The fault is propagated up along the scope

hierarchy. Zombie scopes cannot throw faults any more, since rule Ignore-Fault

has to be applied instead of ReThrow.
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(Scope)

P
a−→ P ′ a 6= inst(H), cm(q′,H′)

{P : H : u}q⊥
a−→ {P ′ : H : u}q⊥

(Install)

P
inst(H)−−−−−→ P ′

{P : H′ : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H′�H : u}q⊥

(AskInst)

inst(H)
inst(H)−−−−−→ 0

(Throw)

throw(f)
th(f)−−−→ 0

(Compensate)

comp(q)
cm(q,Q)−−−−−→ Q

(Scope-Success)

{0 : H : ⊥}q
inst(cmp(H))−−−−−−−−−→ 0

(Scope-Handle-Fault)

{0 : H : f}q⊥
τ(∅:∅)−−−−→ {H(f) : H�[f 7→ ⊥] : ⊥}q⊥

(Compensation)

P
cm(q,Q)−−−−−→ P ′,H(q) = Q

{P : H : u}q′⊥
τ(∅:∅)−−−−→ {P ′ : H�[q 7→ 0] : u}q′⊥

(Scope-Handle-Term)

{0 : H : q}⊥
τ(∅:∅)−−−−→ {H(q) : H�[q 7→ 0] : ⊥}⊥

(Scope-Fail)

{0 : H : ⊥}⊥
τ(∅:∅)−−−−→ 0

(Protection)

P
a−→ P ′

〈P 〉 a−→ 〈P ′〉

(Throw-Sync)

P
th(f)−−−→ P ′, killable(Q, f) = Q′

P |Q th(f)−−−→ P ′|Q′

(Throw-Seq)

P
th(f)−−−→ P ′

P ;Q
th(f)−−−→ P ′

(Catch-fault)

P
th(f)−−−→ P ′,H(f) 6= ⊥

{P : H : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H : f}q⊥

(Ignore-fault)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}⊥
τ(∅:∅)−−−−→ {P ′ : H : u}⊥

(ReThrow)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)−−−→ 〈{P ′ : H : ⊥}⊥〉

where

killable({P : H : u}q, f) = 〈{killable(P, f) : H : q}⊥〉 if P ≡/ 0

killable(P | Q, f) = killable(P, f) | killable(Q, f)

killable(P ;Q, f) = killable(P, f) if P ≡/ 0

killable(〈P 〉 , f) = 〈P 〉 if killable(P, f) is defined

killable(P, f) = 0 if P ∈ {0, o(~x), o@l(~x), x := e, if χ then P else Q,while χ do (P )∑
i∈W oi(~xi);Pi, throw(f), comp(q)}

Table 10.3: Faults-related rules for service behavior layer (a 6= th(f))

Service engine layer

Since sessions have a limited impact on error recovery, we will present here only the

rules of the service engine layer that handle the state. The syntax of the service
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(Lift)

Y
ι−→ Y ′

Y@l
ι−→ Y ′@l

(Sync)

Y@l′
o(v)@l−−−−→ Y ′@l′ Z@l

o(v)−−→ Z ′@l

Y@l′ ‖ Z@l
τ−→ Y ′@l′ ‖ Z ′@l

(Par-Ext)

E1
ι→ E′1

E1 ‖ E2
ι→ E′1 ‖ E2

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 10.4: Rules for services system layer

engine is:

Y ::= (P,S) | Y |Y

A service engine can be a session (P,S), where P is a service behavior process and

S is a state, or a parallel composition of them. A state is a substitution of values

for variables. A state S satisfies a substitution σ, written S ` σ, if σ is a subset of

S. We denote with ⊕ the update operation on a state. The service engine layer is

described by the following rules:

(Engine-State)

P
ι(σ:ρ)−−−−→ P ′ S ` σ

(P,S)
ι−→ (P ′,S ⊕ ρ)

(Engine-Par)

(P,S)
ι−→ (P ′,S ′)

(P,S)|Y ι−→ (P ′,S ′)|Y

Services system layer

The services system models the composition of different engines into a system. The

services system syntax is:

E ::= Y@l | E ‖ E

A service system E can be a located service engine Y@l or a parallel composition

of them. The semantics is defined by the rules in Table 10.4 and closed w.r.t.

the structural congruence ≡ therein. Rule Lift propagates an action to a located

engine. Rule Sync allows to synchronize an output with the corresponding input.

Par-Ext deals with parallel composition.

10.2 Request-response interaction pattern

A request-response pattern is a bi-directional interaction where a client sends a

message to a server and waits for an answer. When a server receives such a message,
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it elaborates the answer and sends it back to the client. In the literature there are

two proposals to deal with a client that fails during a request-response interaction.

The WS-BPEL approach kills the receive activity and, when the message arrives, it

is silently discarded. In Jolie instead, clients always wait for the answer and exploit

it for error recovery. In particular, in case of a successful answer, handlers may be

updated by the continuation of the request-response operation.

Here we present an intermediate approach: in case of failure we wait for the an-

swer, but without blocking the computation. Moreover, when the answer is received

we allow for the execution of a compensation activity.

We now describe our approach. Let Or be the set of request-response operations,

ranged over by or. We define the request-response pattern in terms of the output

primitive or@l(~y, ~x, P ), also called solicit, and of the input primitive or(~x1, ~y1, Q).

When interacting, the client sends the values from variables ~y to the server, that

stores them in variables ~x1. Then, the server executes process Q and, when Q

terminates, the values in variables ~y1 are sent back to the client who stores them

in variables ~x. Only at this point the execution of the client can restart. If a fault

occurs on the client-side (e.g., because of a parallel thread) after the remote service

has been invoked, but before the answer is received, we allow the client to handle

the fault regardless of the reply, so that recovery can start immediately. However,

we create a receiver for the missing message in a fresh session so that, if later on

the message is received, the operation can be compensated. The compensation is

specified by the parameter P of the solicit operation. If instead a fault is raised on

the server-side during the computation of the answer, the fault is propagated to the

client where it raises a local fault. In this case there is no need to compensate the

remote invocation, since we assume that this is dealt with by local recovery of the

server.

To formally specify the behavior informally described above, we have to update

the three layers of SOCK architecture.
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Service behavior calculus - extension

To define the behaviour of the request-response pattern, we extend the syntax of the

behavioral layer with the request-response primitive and with few auxiliary operators

that are used to define its semantics.
or@l(~y, ~x, P ) Solicit or(~x1, ~y1, Q) Request-Response

Exec(l, or, ~y, P ) Req.-Resp. execution Wait(or, ~y, P ) Wait

or!f@l Fault output Bubble(P ) Bubble

Exec(l, or, ~y, P ) is a server-side running request-response: P is the process computing

the answer, or the name of the operation, ~y the vector of variables to be used for

the answer, and l the client location. Symmetrically, Wait(or, ~y, P ) is the process

waiting for the response on client-side: or is request-response operation, ~y is the

vector of variables to be used for storing the answer and P is the compensation

code to run in case the client fails before the answer is received. When a fault is

triggered on the server-side, an error notification has to be sent to the client: this

is done by or!f@l, where or is the name of the operation, f the name of the fault

and l the client location. As we have said, if a fault occurs on client-side, we have

to move the receipt operation to a fresh, parallel session, so that error recovery can

start immediately. This is done by the primitive Bubble(P ), which allows to create

a new session executing code P . We name it “bubble” since we see P as a bubble

that goes up in the scope hierarchy, and installs P when it arrives at the top level.

This primitive is the key element that allows a failed solicit to wait for a response

outside its scope and potentially allowing its termination regardless of the arrival of

the answer.

The semantics of the behavioral layer is extended with the rules presented in

Table 10.5. Function killable is also extended, as follows:

• killable(Exec(l, or, ~y, P ), f) = killable(P, f)|〈or!f@l〉

• killable(Wait(or, ~x, P ), f) = Bubble(Wait(or, ~x,0);P )

• killable(or!f@l, f) = or!f@l

• killable(Bubble(P ), f) = Bubble(P )

Rules Solicit and Request start a solicit-response operation on client and

server side respectively. Upon invocation, the request-response becomes an active
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(Solicit)

or@l(~y, ~x, P )
or(~v)@l(∅:~v/~x)−−−−−−−−−→Wait(or, ~x, P )

(Request)

or(~x, ~y, P )
or(~v)::l(∅:~v/~x)−−−−−−−−−→ Exec(l, or, ~y, P )

(Request-Exec)

P
a−→ P ′

Exec(l, or, ~y, P )
a−→ Exec(l, or, ~y, P

′)

(Throw-RExec)

P
th(f)−−−→ P ′

Exec(l, or, ~y, P )
th(f)−−−→ P ′| 〈or!f@l〉

(Request-Response)

Exec(l, or, ~y,0)
or(~v)@l(~v/~y:∅)−−−−−−−−−→ 0

(Solicit-Response)

Wait(or, ~x, P )
or(~v)(∅:~v/~x)−−−−−−−−→ 0

(Send-Fault)

or!f@l
or(f)@l(∅:∅)−−−−−−−−→ 0

(Receive Fault)

Wait(or, ~x, P )
or(f)(∅:∅)−−−−−−→ throw(f)

(Create Bubble)

Bubble(P )
τ(∅:∅)[[P ]]−−−−−−→ 0

Table 10.5: Request-response pattern rules

construct executing process P , and storing all the information needed to send back

the answer. The execution of P is managed by rule Request-Exec. When the

execution of P is terminated, rule Request-Response sends back an answer. This

synchronizes with rule Solicit-Response on the client side, concluding the com-

munication pattern.

When an executing request-response is reached by a fault, it is transformed into a

fault notification (see rule Throw-RExec and the definition of function killable) on

server side. Fault notification is executed by rule Send-Fault, and it will interact

with the waiting receive thanks to rule Receive-Fault. When received, the fault

is ready to be re-thrown at the client side, where it is treated as a local fault.

A fault on client side instead gives rise to a bubble, creating the process that will

wait for the answer in a separate session. The bubble is created by rule Create

Bubble, and will be installed at the service engine level. The label for bubble

creation has the form τ(∅ : ∅)[[P ]], where P is the process to be run inside the new

session. Here and in the following, to simplify the presentation, we will write τ(∅ : ∅)
for τ(∅ : ∅)[[0]]. The new receive operation inside the bubble has no handler update,

since it will be executed out of any scope, and its compensating code P has been

promoted as a continuation. In this way, P will be executed only in case of successful
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answer. In case of faulty answer, the generated fault will have no effect since it is

in a session on its own.

Service engine calculus - extension

We have to add to the service engine layer a rule for installing bubbles: when a

bubble reaches the service engine layer, a new session is started executing the code

inside the bubble.
(Engine-Bubble)

P
τ(∅:∅)[[Q]]−−−−−−→ P ′ Q 6= 0

(P,S)
τ−→ (P ′,S) | (Q,S)

Service system calculus - extension

The service system calculus is expanded with the rule modeling the request-response

communication. The rule uses the relation comp to match corresponding input

output actions.

(Request-Response Sync)

Y@l′
a−→ Y ′@l′ Z@l

a′−→ Z ′@l comp(a, a′)

Y@l′|Z@l
τ−→ Y ′@l′|Z ′@l

where comp = {(or(~v)@l, or(~v) :: l′), (or(~v)@l, or(~v)), (or(f)@l, or(f))}.

Example and properties

We present now an example of usage of the request-response primitive and prove

some basic properties. We show a first solution for the hotel reservation example

described in the introduction:

CLIENT:==

bookr@hotel Imperial(〈CC,dates〉,〈res num〉,

annul@hotel Imperial(〈res num〉) );

P

The bookr operation transmits the credit card number CC and the dates of the

reservation and waits for the reservation number. In case the user wants to cancel

the reservation before receiving an answer from the hotel a fault can be used to kill

this operation. In such a case the annul operation is invoked when the answer is
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received to compensate the bookr operation. The annul operation will be executed

in a new session by using our mechanism based on bubbles.

As a more concrete instance, we could consider the case where the user is willing

to wait a limited amount of time for the answer from the hotel, after which (s)he

will cancel the reservation. This case could be programmed by assuming a service

timeout that offers a request-response operation that sends back an answer after

n seconds1. The timeout service can be used to add a timeout in our example as

follows:

CLIENT:==

res num:= 0;

{

inst(f 7→ if res num==0 then throw(tm));

(

timeoutr@timeout(〈60〉,〈 〉,0); throw(f)

|

bookr@hotel Imperial(〈CC,dates〉,〈res num〉,

annul@hotel Imperial(〈res num〉) ); throw(f)

)

}q ; P

In this scenario the timeout operation is invoked in parallel with the booking

service. The first operation that finishes raises the fault f that is caught by the

handler of the scope q. The fault will kill the remaining operation and if the hotel

response has not arrived yet (i.e. the value of res num is still 0) then the fault tm

is raised. P is executed otherwise.

Note that a similar solution is not viable in BPEL: in case the timeout triggers,

the booking invocation is killed, and if an answer arrives, it is discarded. Thus

one does not know whether the invocation succeeded or not, neither which was the

reservation number in case it succeeded.

1Clearly, because of networks delay the answer may be received later than expected.
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In Jolie, the answer is used for error recovery. However, in case no answer

is received from the booking service, the whole service engine gets stuck. In our

approach instead the main session can continue its execution without delays.

It is difficult to apply the proposed solution when two or more solicits install

handlers or require compensation. Indeed, if two solicits are executed in parallel,

they can receive their answers simultaneously. It is thus difficult to accept one of the

answers and compensate the other one. One may try to exploit the handler update

primitive, but in this way compensations are executed inside the scope, thus they

have to be terminated before execution can proceed. To solve this problem, one may

try to change the semantics to execute those handlers in a separate session but this

would not be meaningful in general, since the handler may want to update the local

state. This is not the case for compensations of request-responses, which only need

to produce remote effects. An additional difficulty is that fault notifications from

the invoked services should be masked as long as there are invocations that may

succeed. These reasons justify the multiple solicit response primitive introduced in

the next section.

The fact that a response is always waited for is captured by the proposition

below.

Proposition 10.1 Let Y
a1−→ Y1

a2−→ Y2 . . .
an−→ Yn be a computation of an engine.

Let a1 be or(~v)@l, i.e. the start action in a solicit-response. Then there are two

possible cases:

1. the response has been received: ai = or(~v
′) or ai = or(f) for some i;

2. the process is waiting for the response: Yn
or(~v′)−−−→ Y ′.

10.3 Multiple Request-Response communication

pattern

The previous section presented the request-response pattern, where one invocation

is sent and one answer is received. For optimization reasons, it may be important to
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invoke many services providing the same facility (e.g., many hotels or news services),

and only consider the first received answer. This pattern is known as speculative

parallelism.

We model this communication pattern using a dedicated primitive that we call

multiple solicit-response (MSR for short) and that can be seen as a generalization

of the solicit-response from the previous section. The idea is that a MSR consists of

a list of solicit-responses, each one equipped with its own continuation. Formally,

we define the syntax of the MSR primitive as MSR{z1, . . . , zn} where each zi is a

solicit-response with continuation written zi = ori@li(~yi, ~xi, Pi) 7→ Qi. Intuitively,

the continuation Qi is executed only when ori@li(~yi, ~xi, Pi) is the first to receive a

successful answer (i.e., not a fault notification). Thus, at most one of the Qi will be

executed (exactly one if a non-faulty answer is received).

In the following we extend the SOCK calculus with the MSR primitive.

Service behavior calculus - extension

We add to the syntax of the service behavior calculus the MSR primitive together

with some auxiliary operators that we need in order to define the MSR semantics.

P,Q : : = . . .

MSR{z1, . . . , zn} multiple solicit-response

Wait+(z1, . . . , zn . w1, . . . , wm) multiple wait

z : : = or@l(~y, ~x, P ) 7→ Q solicit with continuation

w : : = Wait(or, ~y, P ) 7→ Q wait with continuation

In a MSR the solicits are sent one after the other, and only when all the requests

have been sent the MSR can receive a response. For this reason we introduce the

multiple wait Wait+(z1, . . . , zn . w1, . . . , wm) that specifies the solicits that still have

to be sent z1, . . . , zn, and the ones that will wait for an answer w1, . . . , wn. Thus,

the MSR primitive MSR{z1, . . . , zn} above is a shortcut for Wait+(z1, . . . , zn . ).

Moreover, we have that a multiple wait with only one waiting process is structurally

equivalent to a standard wait, as shown at the bottom of Table 10.6. We formally

define the behavior of the MSR primitive by extending the service behavior semantics

with rules presented in Table 10.6.
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(MSR-Solicit)

z1 = or@l(~y, ~x, P ) 7→ Q wm+1 = Wait(or, ~y, P ) 7→ Q

Wait+(z1, . . . , zn . w1, . . . , wm)
or(~v)@l(∅:~v/~x)−−−−−−−−−→Wait+(z2, . . . , zn . w1, . . . , wm, wm+1)

(MSR-Response)

∀k ∈ {1, . . . , n} : wk = Wait(ork , ~yk, Pk) 7→ Qk i ∈ {1, . . . , n} J = {1, . . . , n} \ {i}

Wait+( . w1, . . . , wn)
ori (~v)(∅:~v/~yi)−−−−−−−−−→ Qi|

∏
j∈J Bubble(Wait(orj , ~yj ,0);Pj)

(MSR-Ignore Fault)

n > 1 wi = Wait(ori , ~yi, Pi) 7→ Qi i ∈ {1, . . . , n}

Wait+( . w1, . . . , wn)
ori (f)(∅:∅)−−−−−−−→Wait+( . w1, . . . , wi−1, wi+1, . . . , wn)

Wait+( . Wait(or, ~y, P ) 7→ Q) ≡Wait(or, ~y, P );Q

Table 10.6: Multiple request-response pattern rules

The multiple wait executes all the solicit-responses through rule MSR-Solicit.

Once all the solicits have been sent (and therefore the process Wait+( . w1, . . . , wm)

is obtained), the multiple wait receives a successful answer through rule MSR-

Response. It continues the execution with the corresponding continuation code,

and kills all the other solicits by creating a bubble for each remaining waiting process.

If a fault notification arrives as an answer, it is discarded by rule MSR-Ignore

Fault if there is at least another available wait (which may succeed). If instead

there is no other solicit waiting for an answer, the last fault received is raised (rule

Receive Fault described in Table 10.5 of the previous section). When an external

fault arrives a bubble containing a dead solicit response is created for every solicit

that has been sent, as specified by the function killable that is extended in the

following way:

killable(Wait+(z1, . . . , zn . w1, . . . , wm), f) =∏
Wait(orj , ~yj ,Pj)7→Qj∈{w1,...,wm}

Bubble(Wait(orj , ~yj,0);Pj)

The MSR primitive is perfectly suited to capture speculative parallelism sce-

narios. Consider, for instance, the parallel requests of news towards different news

servers. Suppose that we are interested only in the first answer and that we do not
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need to compensate the arrival of the other answers. If we have three news servers

located at sites A, B and C we can implement this pattern in the following way:

NEWS READER(news title) :==

msr {

get newsr@siteA(〈news title〉,〈result〉,0) 7→ 0

get newsr@siteB(〈news title〉,〈result〉,0) 7→ 0

get newsr@siteC(〈news title〉,〈result〉,0) 7→ 0

}

The MSR can also be used to easily solve the hotel reservation problem defined

in the introduction. Suppose for instance that you would like to use two booking

services for making the hotel reservation and that you would like to get the acknowl-

edgment in 1 minute. If the booking services are located at site A and B and if we

use the timeout service introduced before, this service could be defined as:

CLIENT:==

msr {

timeoutr@timeout(〈60〉,〈 〉,0) 7→ throw(tm)

bookr@H 1(〈CC,dates〉,〈res num〉, annul@H 1(〈res num〉) ) 7→ 0

bookr@H 2(〈CC,dates〉,〈res num〉, annul@H 2(〈res num〉) ) 7→ 0

}

The following proposition extends Proposition 10.1 to deal with MSR. Here either

one successful answer is received, or all faulty answers are received.

Proposition 10.2 Let Y
a1−→ Y1

a2−→ Y2 . . .
an−→ Yn be a computation of an engine.

Assume that the engine contains MSR{z1, . . . , zm} where zi = ori@li(~yi, ~xi,Hi, Pi).

If a1 = or1(~v), i.e. the start action in the MSR2, then there are three possible cases:

1. a successful response has been received: aj = ori(~v) for some j > 1 and some

i ∈ [1,m];

2. the process is waiting for a response: Yn
ori (~v)
−−−→ Y ′ for some i ∈ [1,m];

2We assume we have no other similar invocations enabled.
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3. the process has received all faulty responses: aj1 = or1(f), . . . , ajm = orm(f) for

some j1, . . . , jm > 1

10.4 Related works and conclusions

In this chapter we have presented a new approach to model request-response in-

teractions in Service Oriented Computing languages which allows a more natural

treatment of faults. According to our proposal, and differently from the case of

Jolie, a request-response invocation can be interrupted when a fault occurs, thus

avoiding slowing down or blocking of the computation. On the other hand, differ-

ently from the case of WS-BPEL, after a request-response is interrupted it is still

possible to trigger, upon arrival of a response, a fault-handler process which can

close gracefully the conversation with the invoked service. Our approach allows us

also to easily program timeouts.

This variant of Jolie will be used to improve the implementation of the frame-

work presented in Chapter 7 exploiting the timeouts and the new request response

primitive to handle the communications between the entities of the framework and,

at the same time, improving its reliability, its efficiency and fault tolerance.

Technically our proposal has been formalized in terms of the SOCK calculus

[60], by defining a new syntax and semantics for the request-response primitive.

This allows one to specify the compensation code to be executed when an answer

for a request-response whose client already failed arrives. The proposed solution

exploits SOCK management of sessions for executing the compensation in a separate

concurrent session.

We have also defined Multiple Solicit-Response (MSR), which allows one to in-

voke many services at once. Also in this case we allow graceful interruption, since,

after the first response has been received, the other pending invocations are inter-

rupted and later compensated. This primitive comes handy when developing real

applications, especially for programming speculative parallelism scenarios.
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Apart from Jolie and WS-BPEL there are several other languages for SOC which

have considered the problem of interrupting a pending invocation and/or faults.

Nevertheless the solution that we propose is different from the existing ones, both

in the way we interrupt a request-response interaction and in the compensation

mechanism.

Web-π [78, 79] is a language designed for modeling Web transactions and there-

fore it pays particular attention to compensation mechanisms. However web-π has

no request-response pattern and its treatment of faults and of scopes is rather dif-

ferent from ours. Orc [71] is a language designed to express orchestrations and

wide-area computations in a simple and structured manner. This language has a

pruning primitive that is conceptually similar to our MSR and that allows one to

wait for a result from one out of two services. However, since Orc has no notion

of fault, all the difficulties coming from error management do not emerged in their

framework. For instance in Orc implementing “one out of n” speculative parallelism

using “one out of two” is trivial, while this is not the case in presence of faults.

Finally, we compare our approach with the service oriented calculi CaSPiS [19] and

COWS [80]. CaSPiS is based on bi-directional sessions and includes a low-level

session closure mechanism: upon closure of one session side, an asynchronous no-

tification is sent to the opposite one. In order to close also the opposite side, it

is necessary to explicitly program a corresponding handler. Also the primitives for

fault handling and compensations in COWS [80] are more low level than ours, thus

leaving to the programmer the responsibility for defining error handling policies.

Our approach is the opposite one, since we aim at providing primitives which free

the programmer from this burden.
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Chapter 11

Conclusions

What happens when constraint meet concurrency ? In this thesis we give a partial

answer showing the benefits of using ideas of concurrency theory in the constraint

world and vice versa.

In the first part of the thesis we considered Constraint Handling Rules (CHR), a

well known concurrent language that supports constraints as primitive constructs.

We studied its expressive power focusing first on some of its fragments and then

considering what happens when priorities are added. In the second part of the

thesis we propose instead a framework that is written using a concurrent language

and uses a concurrent system to ease the resolution of constraint problems.

The original contributions of this thesis are the following:

• a study of two significant non Turing powerful fragments of CHR;

• an analysis of the expressive power of static and dynamic priorities in CHR;

• a definition and an implementation in Jolie of a modular and flexible framework

that allows to solve CSPs using a distributed system;

• a study of machine learning approaches to improve the CSP solving;

• a new approach based on classifiers to solve a set of CSPs;

• new algorithms for an efficient exchange of broadcast messages in Service Ori-

ented systems;
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• a new approach to handle faults within a Service Oriented Language.

We have just start to scratch the surface of the benefits deriving from the in-

teraction between ideas coming from concurrency and constraint theory. There are

hundreds of concurrent languages that can be enriched with constraint primitives

to improve their expressive power. We are experiencing an increasingly attention

towards this kind of tasks, e.g. [23, 17, 22], and we expect a continuation of this

trend in the feature.

As far as the use of concurrent system are concerned, we argue that in the feature

at least part of a constraint solving framework will be written using a concurrent

language and then deployed in a concurrent system. Like Gerard Holzmann pointed

out in [64] for the model checking community, in the past the tremendous improve-

ments obtained within the constraint programming community where due to the

Moore’s law and to the improving of algorithms and heuristics. Unfortunately, even

though we can not be certain, it seems that we are on the verge of the physical limits

of the transistor technology and we can not count on having every year always a

faster processor to use. However, we can expect to have systems with more and

more computing units. This means that, unless a new paradigm of computation

emerges, the only way to significantly improve the current state of the research is

to start considering algorithms that exploits concurrent systems. Communities like

model checking, SAT solving, data mining have already started this process and we

are currently seeing a great interest for these themes also in the constraint commu-

nity. The work described in the second part of thesis is certainly going towards this

direction.

In the remaining part of these conclusions we will not describe in detail all the

results obtained or the possible future directions that could be taken, the interested

reader could find them at the end of every chapter. Here we are more interesting in

presenting a more global, personal and philosophical view.

Today the research is “specialized”: scientist focus on always smaller sectors of

the human knowledge. This process is causing the estrangement between physics,

mathematics, computer science and biology and, even within the computer science
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community, we are experiencing a partition into smaller and smaller communities

that are focusing only on their own topics, sometimes without bothering to check if

others have interesting ideas that could be used inside their research.

In this thesis we try to go against the tide and see what ideas and concepts

can be borrowed from the concurrency and constraint communities to help both of

them. It is almost impossible to predict all the possible interactions between these

fields. This work is just a first step and much more could be done also considering the

contribution of other areas of research. In this thesis, as an example, we experienced

also with machine learning techniques coming from artificial intelligence, portfolio

theory studied in economics, game theory, and scheduling heuristics that are well

studied in the operative system community.

Certainly some readers will say that these kinds of research are not worth fol-

lowing. They will probably say that these studies will have a small impact, if not

none, on the real word or that there is no need to delve into the study of ideas that

have been already extensively studied and understood within a given field. To these

readers we would like just to remind that discoveries are unpredictable. There are

strong philosophical reasons that support this thesis, see for instance [105]. In this

context we would like just to recall some examples showing that discoveries were

not planned in advance and often discoverers were not even addressing the problem

they later solved.1. Cristoforo Colombo, for instance, was not planning to discover

America, he was simply trying to find a new route to India. Complex numbers,

discovered by Gerolamo Cardano, are now used in many fields of human knowledge

but originally they were invented to solve mathematical conundrums. Arno Penzias

and Robert Wilson were in charge of building a very sensitive antenna intended for

communicating with satellites. In the process they encountered radio noise which

was later identified as the cosmic microwave background radiation, one of the best

available evidence for the Big Bang theory. Arthur Leonard Schawlow, Nobel Prize

winner for the creation of the laser, said “We had no application in mind. If we

had, it might have hampered us and not worked out as well”. Alexander Fleming

1For a good and narrative presentation of this topic see [121] or [74]
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discovered the penicillin when he noticed the infection-fighting propriety of a fungus

that contaminated some experiments that he was conducting for investigating the

properties of staphylococci. He said “When I woke up just after dawn on Septem-

ber 28, 1928, I certainly didn’t plan to revolutionize all medicine by discovering

the world’s first antibiotic, or bacteria killer.” Viagra was not discovered with the

purpose of treating erectile dysfunction, in fact the Pfizer scientists that discovered

the drug were just testing out a novel way to control high blood pressure. And what

about Internet that was created for military reasons ?

The list of accidental discoveries that changed the world can go on. But let

us not forget that history is full of silly predictions like the one attributed to the

commissioner of the US Patent Office that in 1899 said “Everything that can be

invented has been invented” or the physicist and Nobel laureate Albert Abraham

Michelson that at the beginning of the 20th century said “The most important

fundamental laws and facts of physical science have all been discovered, and these

are now so firmly established that the possibility of their ever being supplemented

by new discoveries is exceedingly remote”. Another funny prediction is due to the

French philosopher Auguste Comte that said “Of all objects, the planets are those

which appear to us under the least varied aspect. We see how we may determine their

forms, their distances, their bulk, and their motions, but we can never know anything

of their chemical or mineralogical structure; and, much less, that of organized beings

living on their surface”. However the ink was not yet dried when the spectroscope

allowing astronomers to identify elements in the solar atmosphere was invented.

Famous are also the statements of people that did not understood the greatness of

a discovery. For instance the president of the Linnean Society of London remarked

in May 1859 that the previous year had not been marked by any revolutionary

discoveries. Note that in June 1858 Darwin presented his work on the evolution of

species and it was presented at the Linnean Society of London.

As opposed to these people we consider more trustworthy people that have an

open mind like the polymath John von Neumann that once said “It would appear

that we have reached the limits of what it is possible to achieve with computer
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technology, although one should be careful with such statements, as they tend to

sound pretty silly in 5 years”.

Discoveries can not be predictable, it is not possible to say a priori that something

is not worth following. That is its beauty but also the tragedy of research. We

need to understand that, be humble enough to consider every possible idea, dream

the impossible, and, in case of failure, continue searching. Serendipity2 is after all

everywhere.

2Note that the etymology of the word “serendipity” comes from the Persian fairy tale “The

Three Princes of Serendip”, whose heroes “were always making discoveries, by accidents and sagac-

ity, of things they were not in quest of”



178 Chapter 11. Conclusions



Appendix A

Proofs

A.1 Lemma 5.1

Lemma 5.1 ≤ is a well-quasi-order on Conf .

Proof: ≤ is trivially a transitive and reflexive relation. To prove that ≤ is a well-

quasi-order we have to prove that, for every infinite sequence seq = s0, s1, . . . of

configurations, there exist i, j s.t. i < j and si ≤ sj.

The proof is by contradiction. Suppose that there exists a sequence seq =

s0, s1, . . . such that there are no i, j with i < j and si ≤ sj. Since the variables

and constants in Conf are finite the possible number of built-in stores in a state in

Conf is finite. Since seq is infinite this implies that there is an infinite subsequence

seq0 = s0,0, s0,1, . . . of seq such that every state in seq0 has the same built-in store.

Starting with seq0 if seqk = sk,0, sk,1, . . . and if sk,0 6≤ sk,1 let us define the

sequence seqk+1 in the following way:

• given a configuration s = 〈G,S,B〉i and a constraint c let θgoal(s, c) = |{c ∈
G}| and θstore(s, c) = |{i . c#i ∈ S}|

• let c be a constraint in sk,0 s.t. θgoal(sk,0, c) > θgoal(sk,1, c) or θstore(sk,0, c) >

θstore(sk,1, c) (this constraint exists since sk,0 6≤ sk,1)
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• let seq′k be the subsequence of seqk obtained by deleting all the configurations

s in seqk s.t. θgoal(s, c) = m if θgoal(sk,0, c) > θgoal(sk,1, c) = m or otherwise

θstore(s, c) = n if θstore(sk,0, c) > θstore(sk,1, c) = n

• if the sequence obtained from seqk by deleting the configurations in seq′k is

infinite let seqk+1 be this sequence, seqk+1 = seq′k otherwise

Since the number of variables and constants in Conf is finite, the number of

different constraints in Conf is finite. Therefore seqk+1 is equal to seq′k only a finite

number of times. On the other hand every configuration contains a finite number of

constraints and therefore after a finite number of configuration deletions (i.e. when

seqk+1 6= seq′k) we will have that the first configuration of the sequence is smaller

than all the others.

Thus there is an l s.t. sl,0 ≤ sl,1. But this is impossible because for definition of

seql there exist i, j s.t. i ≤ j, si = sl,0 and sj = sl,1. �

A.2 Lemma 5.2

Lemma 5.2 Given a CHRωa(C) program P , (Conf ,
ωo→P ,≤) is a well-structured

transition system with strong compatibility.

Proof: Given Lemma 5.1 it suffices to prove property 2. of Definition 5.1. Suppose

that s1 ≤ t1 and s1
ωo→P s2. There are three possible cases:

1. if
ωo→P is a Solve transition then the same transition can be executed from

the configuration t1. If t1
ωo→P t2 we trivially have that s2 ≤ t2.

2. if
ωo→P is an Introduce transition then the same transition can be executed

from the configuration t1. If t1
ωo→P t2 we trivially have that s2 ≤ t2.

3. if
ωo→P is an Apply transition since every constraint in s1 is also present in t1

a head rule that matches with s1 matches also with t1. Since the built-in stores of

s1 and s2 are equal then every guard satisfied in s1 is also satisfied in t1. Therefore

from t1 it is possible to fire the same rule fired from s1. If t1
ωo→P t2 we have that
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s2 ≤ t2 since the number of constraints added or removed in both transitions are

the same. �

A.3 Lemma 5.3

Lemma 5.3 Let X be a set of variables and let s = 〈c1, c2〉 · · · 〈cn−1, cn〉 be a strictly

increasing sequence with respect to X. Then n ≤ |X|+ 2.

Proof: The proof follows by observing that if s = 〈c1, c2〉 · · · 〈cn−1, cn〉, then by

definition of strictly increasing sequence, for each i ∈ [1, n− 1] we have that CT |=
di 6→ ci+1 and CT |= ci 6→ di. �

A.4 Lemma 5.4

Lemma 5.4 Let Const be a finite set of constants and let S be a finite set of

variables such that u = |Const| and w = |S|. The set of sequences s which are

strictly increasing with respect to S (up to logical equivalence) is finite and has

cardinality at the most

2w(u+w)(w+3) − 1

2w(u+w) − 1
.

Proof: The proof follows from the following observations:

• For each variables in X ∈ S we have at the most u+w possible instantiations

and therefore for the variables in S, we have at the most w(u + w) different

combinations of instantiations of variables.

• Each constraint c such that Fv(c) ⊆ S can be viewed as a subset of all the

possible combinations of instantiations of the variables in S and therefore there

are at the most k = 2w(u+w) different constraints (up to logical equivalence)

such that Fv(c) ⊆ S.
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• By Lemma 5.3, if s is a strictly increasing sequence with respect to S, then s

contains at the most w + 2 constraints. Moreover, by the previous point for

i ≤ w + 2 the number of distinct strictly increasing sequences (up to logical

equivalence) is at the most ki.

Then the number of sequences s which are strictly increasing with respect to S (up

to logical equivalence) is at most

w+2∑
i=0

ki =
kw+3 − 1

k − 1
=

2w(u+w)(w+3) − 1

2w(u+w) − 1
.

�

A.5 Lemma 5.5

Lemma 5.5 Let δ be a terminating computation for the goal G in the CHRωa
1 (C)

program P . Assume that Fδ is l-repetitive with p = dg(Fδ) and assume that there

exist an l-repetitive sc-computation σ of Fδ and a repetition k#li ∈ σ such that

l = |{h#nj ∈ σ | h#nj == k#li}|.
Moreover assume that there exist two distinct nodes n and n′ in σ such that n′

is a node in Tδ(n), AFδ(n) == k#li, AFδ(n
′) == k′#l′i

′
and ρ is a renaming such

that SFδ(n) = SFδ(n
′)ρ and k = k′ρ.

Then there exists a terminating computation δ′ for the goal G in the program P ,

such that either Fδ′ is l′-repetitive with l′ < l, or Fδ′ is l-repetitive and dg(F ′δ) < p.

Proof: Let AFδ(n) = ks#ls
is and let AFδ(n

′) = kt#lt
it . From Fδ we can construct

a new forest F ′ by replacing the subtree Tδ(n) with the subtree T ′ = Tδ(n
′) and we

can define two functions AF ′ and SF ′ such that for each node v in F ′

• if v 6∈ T ′, then AF ′(v) = AFδ(v) and SF ′(v) = SFδ(v),

• if v ∈ T ′ and AFδ(v) = k#li
′
, with l 6= lt, then AF ′(v) = AFδ(v)ρ and SF ′(v) =

SFδ(v)ρ,
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• if v ∈ T ′ and AFδ(v) = kt#lt
i, then AF ′(v) = ks#ls

i−it+is and SF ′(v) =

SFδ(v)ρ.

By construction since F ′ is obtained from Fδ by deleting at least a constraint h#l′z

such that h′#l′z == k#li (and therefore |{h#nj ∈ d | h#nj == h′#l′z}| = l) we

have that either F ′ is l′-repetitive with l′ < l, or F ′ is l-repetitive and dg(F ′) < p.

Moreover, since SFδ(n) = SFδ(n
′)ρ, all the possible interactions between the con-

straints of input-output in Tδ(n) follow the same pattern of interactions between

the constraints of input-output in Tδ(n
′). Then there exists a terminating compu-

tation δ′ for the goal G in the program P such that δ′ obtained from δ by replacing

all the applications of rule in Tδ(n) with only the rules in Tδ(n
′). Therefore, by

construction, Fδ′ = F ′, AFδ′ = AF ′ and SFδ′ = SF ′ (up to renaming of identifiers)

and then the thesis. �

A.6 Theorem 6.1

Theorem 6.1 The triple (α(), INP(),OUT ()) provides an acceptable encoding from

static CHRωp into static CHR
ωp
2 .

Proof: By definition, we have to prove that for all static CHRωp programs P and

goals G,

QAP (G) = OUT (QAα(P )(INP(G)))

holds.

By construction, the functions INP() and OUT () are compositional and defined

as:

INP(b(t̄)) =

 b(t̄) if b(t̄) is a built-in constraint

ab(t̄) otherwise

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint

k(t̄′) if b(t̄) = newak(V, t̄
′)

k(t̄) if b(t̄) = ak(t̄).
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Let P be a static CHRωp program and let G be a goal. From definition of

INP() we have that the predicate symbols id, end, rC[N ]i, rAi, newk (with k ∈
INP(Head(P ))) can not be in the encoded goal INP(G).

Therefore if G = ∅ or G does not contain predicate symbols that are in Head(P )

we have that QAP (G) = OUT (QAα(P )(INP(G))) since no rule from both the two

programs can be applied. If however the goal G contains a predicate symbol in

Head(P ) (and therefore INP(G) contains a predicate symbol in INP(Head(P )))

then rule(2 ,k) ∈ α(P ) is fired first. At this point all the constraints k(t̄) in G,

such that k ∈ Head(P ), are transformed by rules rule(1 ,k) into the constraint

newINP(k)(n, t̄) in INP(G), where n is a unique identifier (intuitively this iden-

tifier can be considered as the identifier assigned to the original constraint by the

Introduce transition step). Let us define the mapping between the original con-

straint k(t̄) with the corresponding n identifier of the newINP(k)(n, t̄) constraint as

ϕ.

After this phase we obtain a new goal G′ in α(P ) and the rules rule(2 ,k) and

rule(1 ,k) are no longer used in this derivation in α(P ). Since there is no end or rAi

predicate symbol in G′, the next rules that are applied in the derivation in α(P )

are rules rule ′(i ,N ). By definition of these rules a constraint rC[N ]i(V1, . . . , VN , t̄)

is generated if in the original program the constraints ϕ−1(V1), . . . , ϕ−1(VN) in G

can be used as a match for the application of the rule rulei in P . Thus a constraint

rC[ri]i(V̄ , t̄) is created for every possible match of constraints that can fire rule rulei .

When all the possible rule ′(i ,N ) have fired there are two possibilities:

1. if in the original program a rule can fire than at least one rule rule(7 ,i) fires.

The firing of this rule corresponds to the firing of a rule rulei in the original

program. For every constraint k(t̄) in the body of the original rule a new

newINP(k)(V, t̄) constraint is added to the store of the derivation in the encoded

program, with its new unique identifier V . This rule also adds to the store

the constraint rAi(V̄ ) where V̄ are the identifiers ϕ(k(t̄)) of all the constraints

k(t̄) that are removed from the store by the application of rulei in the original

program P . The removal of this constraints in the encoded program is done by
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rules rule(4 ,i ,k) that are eventually fired immediately after rule rule(7 ,i). Rules

rule(5 ,j ,i ,k) are then fired for removing all the constraints rC[N ]i that have no

more sense to exist since one of the constraints identified by their arguments

has been removed. After that, the constraint rAi(V̄ ) is no longer useful and

it is removed by rule rule(6 ,i). When the constraint rAi(V̄ ) is removed other

rules rule ′(i ,N ) can fired (new newINP(k)( ) constraints have potentially been

added to the store by rule(7 ,i)) repeating the cycle.

2. if in the original program no rule can fire then no rule rule(7 ,i) in α(P ) can

fire and therefore rule8 fires. This removes the constraint id and adds the

constraint end that triggers the rules rule(3 ,i ,N ). These rules remove all the

constraints rC[N ]i and when all these constraints are removed the end con-

straint is removed too by rule9. After the firing of this rule, no rule of the

program can fire anymore.

For every rule rulei that can fire in the original program there is a correspond-

ing rule rule(7 ,i) that can fire in the encoded program. Moreover for every CHR

constraint k(t̄) in every configuration during the execution of the goal G in P we

have two possibilities. If k 6∈ Head(P ) and k(t̄) is in the initial goal G, then there

is a INP(k)(t̄) constraint in the correspondent configuration during the execution

of INP(G) in α(P ). If k ∈ Head(P ) or k(t̄) is introduced by an Apply transition

step, then there is a newINP(k)(V, t̄) constraint in the correspondent configuration

during the execution of INP(G) in α(P ). The built-in constraints are not modified

and are processed in the same way by both the two programs.

When the encoded program terminates no id, end, rC[N ]i, rAi are in the store.1

Hence applying the decoding function to the qualified answer of the encoded program

produces the equivalent qualified answer of the original program. �

1Technically speaking rules rule(3 ,i,N ), rule8 and rule9 are not needed because the constraint

can be removed using the decoding function. We chose to add them to exploit the same encoding

also for the Theorem 6.2
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A.7 Lemma 6.1

Lemma 6.1 Let P be a static CHRωp program and let q be a predicate symbol.

For every goal G, if G does not contain the predicate symbol q then SAP (G) =

SAβ(P,q)(G), SAβ(P,q)(G) = ∅ otherwise.

Proof: By our assumptions start and init are not contained in Head(P ). Moreover,

by construction, f is a function that maps predicate symbols into fresh predicate

symbols (i.e. not in Pred(P ) ∪ {start, init, q}).
The proof is by cases on the form of the goal G.

If G = ∅ or G does not contain predicate symbols that are in Head(P ) we have

that SAP (G) = ∅. Moreover since in β(P, q) there is no rule which produces an

atom of the form k(t̄), with k ∈ Head(P ), we have that rule(m+9 ,k) cannot be used

and therefore SAβ(P,q)(G) = ∅.
Now, let us to assume that the goal G contains a predicate symbol in Head(P ).

We have the following cases.

(G = start, G′) In this case, since by our assumptions start 6∈ Head(P ) we have

that SAP (G) = ∅. Moreover we have the following possibilities

1. (init ∈ G′ or q( ) ∈ G′ or f(k)( ) ∈ G′, with k ∈ Head(P )). In this

case

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′′, false, T 〉n

by using one of the three clauses with priority 1. Therefore SAβ(P,q)(G) =

SAP (G) = ∅.

2. (init 6∈ G′, q( ) 6∈ G′, f(k)( ) 6∈ G′ with k ∈ Head(P ), and start ∈ G′).
In this case

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, (G′′, start#l, start#p), B, T 〉k

ωp→β(P,q)

〈∅, (G′′, start#l, init#n), B, T ′〉n+1
ωp→β(P,q)

∗
〈∅, G′′, false, T ′′〉n+1

by using in the order the rules rulem+4 and rulem+3 and therefore

SAβ(P,q)(G) = SAP (G) = ∅.
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3. (G′ = k1(t̄1), . . . , kr(t̄r), with ki ∈ Head(P ), for i = 1, . . . , r). In this

case, after some Solve and Introduce transition steps and an Apply

transition step we have that

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′, B, T 〉n

where

• eitherG′ is of the form (G′′, start#l, start#p) if the Apply transition

step uses rule(m+5 ,k)

• or G′ is of the form (G′′, start#l, f(k′(t̄′))#p) if the Apply transition

step uses a rule rule(m+6 ,k ,k ′).

By using the same arguments of the cases 1 and 2, we have that

SAβ(P,q)(G) = SAP (G) = ∅.

(start 6∈ G) We have two further cases.

1. (G contains an atom of the form init or f(k(t̄)) with k ∈ Head(P )).

Since by our hypothesis init, f(k) 6∈ Head(P ) we have that SAP (G) = ∅.
Moreover since G contains at least an atom of the form k(t̄), with k ∈
Head(P ), it is easy to check that

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, (G′, start#p), B, T 〉n

by using some Apply transition steps with rule(m+6 ,k ,k ′) and then an

Apply transition step with rule(m+5 ,k), where G′ contains an atom of the

form init or f(k(t̄)) with k ∈ Head(P ). In this case, analogously to point

1 of the case (G = start, G′), we have that the derivation ends in a failed

configuration and then SAβ(P,q)(G) = SAP (G) = ∅.

2. (G contains an atom of the form q(t̄)). Then, analogously to the

previous point, we have that the derivation of G in β(P, q) ends in a

failed configuration and then SAβ(P,q)(G) = ∅.

3. (G = k1(t̄1), . . . , kn(t̄n)). Let us consider a derivation δ for G in β(P, q).

We distinguish two cases:
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(the first Apply transition step uses a rule rule(m+6 ,k ,k ′)). In this case,

analogously to point 3 of the case (start ∈ G), we have that δ ends

in a failed configuration.

(the first Apply transition step uses a rule rule(m+5 ,k)). Without loss

of generality, we can assume that rule(m+5 ,kl ) rewrites an atom of the

form kl(t̄l). Then we have that

δ = 〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′, B, ∅〉n

ωp→β(P,q)

〈∅, (G′, start#n), B, {[s, rule(m+5 ,kl )]}〉n+1

〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2 · δ′

Now, we have two further possibilities.

(a) There exists an atom in G′, which is rewritten by using a clause

rule(m+5 ,j ).

In this case

δ′ = 〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2

ωp→β(P,q)

∗
〈∅, (G′′, init#n+ 1, start#n′), B′, T ′〉n′+1

ωp→β(P,q)

∗
〈∅, G1, false, T

′〉n′+1

where the last Apply transition step uses either rule(m+2 ,k) or

rulem+3

(b) There exists no atom in G′, which is rewritten by using a clause

rule(m+5 ,k).

In this case

〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2

ωp→β(P,q)

∗
〈∅, (G′′, init#n+ 1, kl(t̄l)#s, B

′, T ′〉n′′

where chr(G′′) = f(k1(t̄1)), . . . , f(kn(t̄n)), all the Apply transi-

tion steps except the last one use one of the rules rule(m+6 ,k ,k ′),

[s, rule(m+5 ,kl )] ∈ T ′ and the last Apply transition step rewrites

the atom kl(t̄l)#s by using the rule rule(m+7 ,kl ) (and therefore

[s, rule(m+7 ,kl )] ∈ T ′). From this point the only applicable rules

are rule ′i , rule(m+8 ,k) and rule(m+9 ,k).
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Then the proof is immediate by previous results and by definition of

rulei , rule ′i , rule(m+8 ,k) and rule(m+9 ,k).

�

A.8 Theorem 6.3

Theorem 6.3 The triple (T (), INP(), OUT ()) provides an acceptable encoding

between CHRωp and static CHRωp.

Proof: By definition, we have to prove that for all CHRωp programs P and goals

G,

QAP (G) = OUT (QAT (P )(INP(G)))

holds.

By construction, the functions INP() and OUT () are compositional and defined

as:

INP(b(t̄)) =

 b(t̄) if b(t̄) is a built-in constraint

ab(t̄) otherwise

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint

k(t̄′) if b(t̄) = newak(V, t̄
′)

k(t̄) if b(t̄) = ak(t̄).

Let P be a CHRωp program and let G be a goal.

For the definition of INP() we have that the constraints start, id, end, instancei,

highest priority, newak (where ak ∈ INP(Head(P ))) can not be in the encoded

goal INP(G).

Therefore if G = ∅ or G does not contain constraints that are in Head(P ) we

have thatQAP (G) = OUT (QAT (P )(INP(G))) since no rule from both the two pro-

grams P and T (P ) can be applied. If however the goal G contains a constraint in

Head(P ) then rule(2 ,k) is fired first. At this point each constraint ak(t̄) in INP(G)

(corresponding to a constraint k(t̄) in G) such that k ∈ Head(P ) is transformed
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by rules rule(1 ,k) into the constraint newak(V, t̄) where V is a unique identifier (in-

tuitively this identifier can be considered as the identifier assigned to the original

constraint by the Introduce transition step). Let us define the mapping between

the original constraint k(t̄) ∈ G with the corresponding V identifier of the newak

constraint as ϕ.

After this phase the rules rule(2 ,k) and rule(1 ,k) are no longer used in a derivation

in T (P ) and the configuration S is generated. Since there is no start, end or

instancei constraint in S (they can not be in the encoded goal INP(G) due to

the goal encoding function) the next rules that are applied in T (P ) are rules in

EVALUATE PRIORITIES(i). By definition of these rules, if in the original program P

it is possible to fire the j-th rule starting from G, the constraint highest priority(pj)

can added to the CHR store of S in T (P ) after all the possible rules in

EVALUATE PRIORITIES(i) have fired.

Note that, after all the possible rules in EVALUATE PRIORITIES(i) (for i = 1, . . . , n)

have fired at most a constraint highest priority(pj) is present in the constraint store.

When all the possible EVALUATE PRIORITIES(i) (for i = 1, . . . , n) have fired there

are two possibilities:

1. if in the original program a rule can fire than at least one rule ACTIVATE RULE(i)

(for i = 1, . . . , n) fires. The firing of the rule rule(10 ,j ) in T (P ) corresponds to

the firing of the j-th rule in the original program P . Moreover, the application

of the rule rule(10 ,j ) in T (P ) uses the atoms

p1(V1, t̄1), . . . , pm(Vm, t̄m), highest priority(pj), id(l) if and only if in the orig-

inal program rulej in P can fire by using the atoms ϕ−1(V1), . . . , ϕ−1(Vm).

For every constraints k(t̄) in the body of the original rule a newak(V, t̄) con-

straint is added with its new unique identifier V . This rule also adds to the

store the constraint highest priority(inf) and then the computation starts

from EVALUATE PRIORITIES(i) (for i = 1, . . . , n), repeating the cycle.

2. if in the original program no rule can fire then no rule EVALUATE PRIORITIES(i)

(for i = 1, . . . , n) can fire and therefore rule9 fires. This removes the constraints
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highest priority(inf) and id(V ) from the constraint store. It also adds the

constraint end that triggers the rules rule(4 ,i) (for i = 1, . . . , n). These rules

remove all the constraint instancei(V̄ ) and when all these constraints are

removed the end constraint is removed too by rule5 . After the firing of this

rule no rule of the program can fire anymore.

For every rule rulei that can fire in the original program P there is a correspond-

ing rule rule(10 ,i) that can fire in the encoded program T (P ). Moreover for every

CHR constraint k(t̄) in every configuration during the execution of the goal G in

P we have two possibilities. If k ∈ Head(P ) or k(t̄) is introduced by an Apply

transition step then there is a newak(V, t̄) constraint in the correspondent configu-

ration during the execution of INP(G) in T (P ). If k 6∈ Head(P ) and k(t̄) is in

the initial goal G then there is a ak(t̄) constraint in the correspondent configuration

during the execution of INP(G) in T (P ). The built-in constraints are not modified

and are processed in the same way by both the two programs. When the execution

of INP(G) in T (P ) terminates no id, start, highest priority, end, instancei are

in the store.2 Hence applying the decoding function to the qualified answer of the

encoded program produces the equivalent qualified answer of the original program.

�

A.9 Theorem 9.1

Theorem 9.1 If W ⊆ P(V ) the result of radix trees(W ) is a graph containing at

maximum
(

n
dn/2e

)
maximal paths. Hence the algorithm produces at maximum

(
n
dn/2e

)
radix trees schemas.

Proof: The worst case scenario is obtained when W = P(V ). In this case we have

that:

• |levelW (i)| ≤ |levelW (i+ 1)| for every i ∈ [0, bn/2c]
2Technically speaking rules rule(4 ,i), rule5 and rule9 are not needed because the constraint can

be removed using the decoding function.
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• |levelW (i− 1)| ≥ |levelW (i)| for every i ∈ [0, dn/2e]

If i ∈ [0, bn/2c] and we are computing the maximal matching between

radix trees(levelW (0) ∪ · · · ∪ levelW (i)) and levelW (i+ 1), every node of levelW (i)

will have an outgoing arc. At the same time if instead i ∈ [dn/2e, n] we have

that a node of levelW (i) has an incoming arc. This means that the number of the

non extensible paths is equal to the cardinality of the level having more elements.

Since dn/2e level is the level with the maximal number of elements (this is a basic

combinatoric result, see [36] for more details) and |levelW (dn/2e)| =
(

n
dn/2e

)
we have

the thesis. �

A.10 Theorem 9.2

Theorem 9.2 Let m be a message and V1, . . . , Vk be all the subsets of c-set variables

that are defined by all the possible c-tokens. Then there exists a radix tree schema

produced by radix trees({V1, . . . , Vk}) which allows us to check if the message cor-

relates with a session.

Proof: Since every node of the graph is covered at least by a path having length

0 we have that for every set Vi there exist a radix tree schema RT (seq1, . . . , seqm)

covering it. RT (seq1, . . . , seqm) is therefore the schema required. �

A.11 Theorem 9.3

Theorem 9.3 The graph produced by radix trees(P ) contains the minimal number

of maximal paths covering all the nodes in P .

Proof: The proof is by induction on the number of the levels of P .

First of all let us underline that the minimal number of maximal paths covering

all the nodes in a graph never decreases when new nodes are added to the graph.

Let us suppose that the first non empty level is k0 (i.e. the smallest set of P has

k0 elements).
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• if i < k0 the propriety is trivially satisfied because levelP (0)∪· · ·∪levelP (i) = ∅.

• if i = k0 radix trees(levelP (k0)) will be the graph containing only the nodes of

level k0. Since there are no arcs between these nodes radix trees(levelP (k0))

produces the optimal solution (in this case for covering the levelP (k0) we need

|levelP (k0)| paths of length 0).

• if i > k0 let suppose for inductive hypothesis that (V,E) = radix trees(levelP (0)∪
· · ·∪ levelP (i−1)) produces the minimal amount of maximal walks covering all

the nodes in levelP (0)∪ · · · ∪ levelP (i− 1). A maximal matching is computed

to select the arcs added to the radix trees(levelP (0) ∪ · · · ∪ levelP (i)). This

maximal matching is performed on the bipartite graph between the nodes of

V not having an outgoing arc and the nodes of level i. Now:

– if V ′ are the nodes of level i having an incoming arc and E ′ are the arcs

selected by the matching algorithm arriving in a V ′ node we have that

the graph (V ∪ V ′, E ∪ E ′) is optimal since it has the same number of

maximal paths of the graph (V,E)

– if V ′′ are the nodes of level i that have no incoming arc because no node

of V ′′ has a subset in V we have that for covering a V ′′ node a new path

of length 0 is required. The graph (V ∪ V ′ ∪ V ′′, E ∪ E ′) is therefore

optimal

– if V ′′′ are the remaining nodes of the i level we have that u belongs to

V ′′′ iff u has no incoming arcs and there exists a node v ∈ V that is a

subset of u. This means that the arc (v, u) has not been selected by the

maximal matching algorithm and that for every node v′ that is a subset

of u there is a node u′ ∈ V ′ s.t. (v′, u′) ∈ E ∪E ′. Since there are no arcs

between nodes of the same level we have that for covering u a new path

is required. Therefore (V ∪ V ′ ∪ V ′′ ∪ V ′′′, E ∪ E ′) is one of the optimal

solutions

Since radix trees(levelP (0)∪ · · · ∪ levelP (i)) = (V ∪V ′ ∪V ′′ ∪V ′′′, E ∪E ′) we

have proven our initial claim.
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nating execution model for Constraint Handling Rules. TPLP, 10(4-6):597–

610, 2010.
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[44] Thom W. Frühwirth. As Time Goes By II: More Automatic Complexity

Analysis of Concurrent Rule Programs. Electr. Notes Theor. Comput. Sci.,

59(3), 2001.
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