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Preface

To meet high computational demands posed by latest consumer electronic devices (PDAs,
cell phones, laptops, cameras, etc.), current systems employ a multitude of multicore on
a single chip. The attraction of multicore processing for power reduction is compelling.
By splitting a set of tasks among multiple processor cores, we can reduce the operating
frequency necessary for each core, allowing to reduce the voltage on each core. Because
dynamic power is proportional to the frequency and to the square of the voltage, we get a
big gain, even though we may have more cores running. Even static power improves as we
turn down supply voltage. However, there are several barriers to designing general purpose
and embedded multicore systems. Software development becomes far more complex due to
the difficulties in breaking a single processing task into multiple parts that can be processed
separately and then reassembled later. This reflects the fact that certain processor jobs
cannot be easily parallelized to run concurrently on multiple processing cores and that load
balancing between processing cores — especially heterogeneous cores — is very difficult.
The other set of problems with multicore systems design are hardware-based.

The book consists of seven chapters. The first chapter introduces multicore system archi-
tecture and describes a design methodology for these systems. The architectures used in
conventional methods of MCSoCs design and custom multiprocessor architectures are not
flexible enough to meet the requirements of different application domains and not scalable
enough to meet different computation needs and different complexities of various applica-
tions. This chapter will emphasize on the design techniques and methodologies

Power dissipation continues to be a primary design constraint in single and multicore sys-
tems. Increasing power consumption not only results in increasing energy costs, but also
results in high die temperatures that affect chip reliability, performance, and packaging cost.
Energy conservation has been largely considered in the hardware design in general and also
in embedded multicore system’ components, such as CPUs, disks, displays, memories, and
so on. Significant additional power savings can be also achieved by incorporating low-
power methods into the design of network protocols used for data communication (audio,
video, etc.). Chapter two investigates in details power reduction techniques at components
and the network protocol levels.

Conventional on-chip communication design mostly use ad-hoc approaches that fail to
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viii Multicore Systems On-Chip: Practical Software/Hardware Design Issues

meet the challenges posed by the next-generation Multicore Systems-on-Chip (MCSoC)
designs. These major challenges include wiring delay, predictability, diverse interconnec-
tion architectures, and power dissipation.

A Network-on-Chip (NoC) paradigm is emerging as the solution for the problems of inter-
connecting dozens of cores into a single system-on-chip. However, there are many prob-
lems associated with the design of such systems. These problems arise from non-scalable
global wire delays, failure to achieve global synchronization, and difficulties associated
with non-scalable bus-based functional interconnects.

In chapter three, we explain low-power and low-cost on-chip architectures in terms of router
architecture, network topology, and routing for multi- and many-core systems.

To overcome challenges from high power densities and thermal hot spots in microproces-
sors, multi core computing platforms have emerged as the ubiquitous computing platform
from servers to embedded systems. But, providing multiple cores does not directly trans-
late into increased performance for most applications.

With the rise of multi-core systems and many-core processors, concurrency becomes a ma-
jor issue in the daily life of a programmer. Thus, compiler and software development tools
will be critical to help programmers create high performance software. Chapter four covers
software issues of a so-called parallelizing queue compiler targeted for future single and
multicore embedded systems.

Chapter five presents practical hardware design issues of a novel dual-execution mode pro-
cessor (DEP) architecture targeted for embedded applications. Practical hardware design
results and advanced optimization techniques are presented in a fair mount of details

Chapter six presents design and architecture of a produced order Queue core based on
Queue computing and suitable for low power computing.

With the proliferation of portable devices, new multimedia-centric applications are con-
tinuously emerging on the consumer market. These applications are pushing computer
architecture to its limit considering their demanding workloads. In addition, these work-
loads tend to vary significantly at run time as they are driven by a number of factors such
as network conditions, application content, and user interactivity. Most current hardware
and software approaches are unable to deliver executable codes and architectures to meet
these requirements. There is a strong need for performance-driven adaptive techniques to
accommodate these highly dynamic workloads. Chapter seven shows the potential of these
techniques in both software and hardware domains by reviewing early attempts in dynamic
binary translation on the software side and FPGA-based reconfigurable architectures on
the hardware side. It puts forward a preliminary vision for unifying runtime adaptive tech-
niques in hardware and software to tackle the demands of these new applications. This
vision will not be possible to realize unless the notorious reconfiguration bottleneck famil-
iar in FPGAs is addressed.

Abderazek Ben Abdallah
The University of Aizu
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