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ABSTRACT
Seismic soil liquefaction is one of the considerable challenges and disastrous sides of earthquakes that can generally happen
in loose to medium saturated sandy soils. The in-situ cone penetration test (CPT) is a widely used index for evaluating the
liquefaction characteristics of soils from different sites all over the world. To deal with the uncertainties of the models and
the parameters on evaluating the liquefaction, a mathematical probabilistic model is applied via logistic regression, and the
comprehensive CPT results are used to develop a model to predict the probability of liquefaction (PL). The new equation to
assess the liquefaction occurrence is based on two important features from the expanded CPT dataset. The maximum likelihood
estimation (MLE) method is applied to compute the model parameters by maximizing a likelihood function. In addition to that,
the sampling bias is applied in the likelihood function via using the weighting factors. Five curve classifiers are plotted for different
PL values and ranked using two evaluation metrics. Then, based on these metrics the optimal curve is selected and compared to
a well-known deterministic model to validate it. This study also highlights the importance of the recall evaluation metric in the
liquefaction occurrence evaluation. The experiment results indicate that the proposed method is outperform existing methods
and presents the state-of-the-art in terms of probabilistic models.

© 2021 The Authors. Publishing services by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The effects of soil liquefaction can be extremely catastrophic and
may damage structures, infrastructures, and individuals’ lives. Soil
liquefaction is a widespread phenomenon triggered by earthquakes
that is mainly happen due to a combination of all three major
factors: loose granular sediment, water-saturated sediment, and
strong shaking. The Cone Penetration Test (CPT) is one of the
most widely used indices for seismic liquefaction evaluation and it
is one of the preferred simplified tests based on in situ tests due to
the difficulty of performing soil dynamic laboratory tests and the
expensive cost of sampling.

Researchers have applied probabilistic and deterministic models to
predict and assess liquefaction occurrence. Considering the uncer-
tainty of the model is what gives an advantage to probabilistic
models over the deterministic ones. While deterministic models
output is determined by the parameter values and the initial con-
ditions, probabilistic models include some randomness, and the
same parameter values and initial conditions may lead to different
results. Generally, in deterministic model [1–5], in which a single
boundary line as a classifier, is used to separate the liquefied from
non-liquefied cases.

*Corresponding author. Email: fangyu@swpu.edu.cn
Peer review under responsibility of KEO (Henan) Education Technology Co. Ltd

On the other hand, due to the uncertainties in the soil properties
and sampling, it is more reasonable to represent models to predict
liquefaction occurrence probabilistically rather than classical deter-
ministic form. Several probabilistic models have been developed
for liquefaction potential evaluation [6–10]. However, there is a
shortage of models that are based on the expanded CPT dataset,
which includes various sites with different features. Furthermore,
the evaluation metrics do not include the recall metric, which is an
important metric in such classification problems.

The logistic regression model is a widely used model for liquefac-
tion potential assessment, which represents a bunch of triggering
curves that classify the liquefaction and non-liquefaction cases.
Logistic regression is a statistical model that is used for classification
problems, the logistic regression had been used for the first time
in the biological sciences of the early twentieth century [11,12].
Logistic regression is a supervised machine learning algorithm for
classification problems yes/no, liquefied/non-liquefied, it is one of
the most used classifiers in several fields such as Classification
of Movement-Related Potentials [13], Predicting Mortality Risk
of COVID-19 Patients [14], Determining landslide susceptibility
[15,16]. Logistic regression utilizes a link function called sigmoid
function (Equation 1) to limit the output value between zero and
one and then based on a threshold the output is being mapped to
one of the classes or categories.

To fit the logistic regression model coefficients, one of the most
widely used approaches is applied, Maximum likelihood estimation
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(MLE) [17]. It is a statistical method of estimating a probability
distribution coefficient by maximizing a likelihood function. The
maximum likelihood does not have a closed-form solution which
means it cannot be calculated in terms of a finite number of oper-
ations and functions, therefore, the problem is going to be solved
using an optimization approach through the use of the gradient
ascent algorithm.

Two types of uncertainties are distinguished, one of them depends
on parameters and models, the other one depends on the
uncertainty of sampling, soil properties, field laboratory tests, ...,
etc. To deal with the uncertainty of the parameters and the models,
the probabilistic model is chosen instead of the deterministic
one, and to deal with the uncertainties of the sampling and
considering it, the weighting factor is applied to the likelihood
function.

This paper uses the expanded case history in CPT dataset [5] and
developed a new equation for the probability of liquefaction based
on the logistic regression probabilistic model and two features; the
equivalent clean sand normalized penetration resistance qc1N,cs and
the cyclic stress ratio CSR7.5 as it is expressed in the Equation 10.
The developed model has been evaluated using a very interesting
metric which is recall, as the past studies have not considered the
recall value in their assessments.

The recall metric gives the proportion of positive class identified
correctly. Since predicting a liquefied data point as non-liquefied
is considered to be more dangerous than predicting a non-
liquefied data point as liquefied, and that is what the recall metric
focuses on.

This study suggests a new equation to develop the seismic liquefac-
tion triggering curve to classify the gravelly soil predictions. The
new logistic regression equation is based on two features from
the expanded CPT dataset that contains 251 data points from
different earthquakes. The maximum likelihood estimation and
the gradient ascent algorithm are used to estimate the value of
the coefficients. Finally, the study highlights the importance of
using logistic regression which is state-of-the-art in probabilistic
models.

2. METHODOLOGY

To govern the uncertainty in liquefaction assessment, this study
has employed a probabilistic model applying the logistic regres-
sion model to predict the occurrence of seismic soil liquefaction,
probabilistic models using logistic regression have been performed
by some researchers [18–20]. The maximum likelihood estimation
is applied to fit the logistic regression coefficients by using the
gradient ascent algorithm.

2.1. Logistic Regression

Logistic Regression (also known as logit) is a commonly employed
classifier, used to assign the target value to a set of classes or
categories. Two types of classification to be distinguished, the binary
classification, in which the output can only take two classes, and
the multiclass classification, in this type the output can take more
than two classes. Using the sigmoid function (Equation 1), logistic

regression converts the output which can then be mapped to two
or more classes.

σ (z) = 1
1 + e−z (1)

2.2. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a commonly employed
method of estimating the parameters (also called weights or coeffi-
cients) of a probability distribution by maximizing the likelihood
function (Equation 2). Bernoulli distribution is the distribution
considered in this study which is an appropriate distribution for
binary classification. The parameters that maximize the likelihood
of the production of the data for m data points are considered as the
logistic regression parameters.

l(θ |Y) =
m∏

i=1

(
1

1 + exp {−[θ0 + θ1X1 + · · · + θnXn]}
)yi

×
(

1 − 1
1 + exp {−[θ0 + θ1X1 + · · · + θnXn]}

)(1−yi)

(2)
In logistic regression, the likelihood function does not have a
closed-form solution, therefore, the problem is solved using an
optimization approach that is gradient ascent algorithm. Gradient
ascent algorithm is the same as gradient descent, except maximizing
instead of minimizing. It is much easier to maximize the log of
the likelihood function instead of the likelihood function itself,
by taking the log the product is converted to the sum. Since the
logarithm is a monotonic function, this conversion would not affect
the values of the parameters. Finally, to apply the gradient ascent
algorithm, the partial derivative of the log-likelihood function is
taken for each parameter.

The sampling bias effect should be considered in the sample data.
Two major issues that trigger the sampling bias are; first one, the
researchers and investigators implement in situ tests in liquefied
sites more than non-liquefied tests; Secondly, the observed data
and results can be collected and arranged based on the researchers’
knowledge and experience. Thus, the weighting factors for liquefied
and non-liquefied cases WL and WNL (Equations 4 and 5) will
be added to the likelihood function as shown in Equation 3, the
weighted likelihood function has been used in several well-known
studies [7,8,10].

The weighting factors estimation of WL and WNL (Equations 4 and
5) was proposed by Ku et al. 2012 [8], in order to decrease the
uncertainty in the sample.

l(θ |Y) =
NL∏
i=1

(
1

1 + exp {−[θ0 + θ1X1 + · · · + θnXn]}
)WL

×
NNL∏
j=1

(
1 − 1

1 + exp {−[θ0 + θ1X1 + · · · + θnXn]}
)WNL

(3)

WL = NL + NNL
2NNL

(4)

WNL = NL × NNL
2NNL

(5)



100 I. Jairi et al. / Human-Centric Intelligent Systems 1(3-4) 98–104

NL is the total number of liquefied cases, and NNL is the total
number of non-liquefied cases.

log[l(θ |Y)] = WL

NL∑
i=1

log
(

1
1 + exp {−[θ0 + · · · + θnXn]}

)

+ WNL

NNL∑
j=1

log
(

1 − 1
1 + exp {−[θ0 + · · · + θnXn]}

)

(6)

θj = θj + α × ∂ ll
∂θj

(7)

As it is mentioned before, it is easier to maximize the logarithm
of likelihood by converting the product to the sum (Equation 6).
Gradient ascent is an optimization algorithm that computes the
weights (Algorithm 1), and here are the main steps of gradient
ascent; 1. Initializing weights randomly. 2. Loop until convergence.
3. Computing the gradient ∂ ll

∂θj
. 4. Updating the weights (Equation 7)

in each iteration and increasing the likelihood by taking the learning
step towards the maximum point. 5. Eventually reaching the maxi-
mum. 6. Getting the last values of weights.

Algorithm 1 Gradient ascent algorithm

Input: featuresL, features for the liquiefied cases, and featuresNL
for non-liquiefied cases, number of iterations (numIterations) and
learning step alpha (learningRate)
Output: The coefficients(weights) of the sigmoid function θ0, θ1
and θ2
Method: Gradient ascent

1: weights ← [0, 0, 0];
2: for (i ← 0; i < numIterations; i + +) do
3: scoresL ← np.dot(featuresL, weights);
4: scoresNL ← np.dot(featuresNL, weights);
5: predictionsL ← sigmoid(scoresL);
6: predictionsNL ← sigmoid(scoresNL);
7: ww ← np.dot((WL ∗ featuresL.T), (1/(1 +

np.exp(scoresL.T))));
8: wx ← np.dot((WNL ∗ −featuresNL.T), (1/(1 +

np.exp(−scoresNL.T))));
9: weights ← weights + learningRate ∗ (ww + wx);

10: end for
11: return weights;

2.3. Model Assessment Criteria

Two main evaluation metrics for classification problems were
selected to perform the developed model and select the optimal one.
The first one is the accuracy and the second one is the recall factor.
Before explaining these two metrics and how they are calculated,
it is important to first explain the confusion matrix which is a
necessary part of computing accuracy and recall. The confusion
matrix is a specific table layout to visualize the performance of
our model’s prediction. As can be seen in Figure 1 each row of
the matrix represents the instances in a predicted class, while each
column represents the instances in an actual class.

0 is the negative class and 1 is the positive class. TP: or True
Positives, means the number of cases where the actual class was 1

Figure 1 The confusion matrix layout.

and also the predicted class was 1. TN: or True Negatives, means
the number of cases where the actual class was 0 and also the
predicted class was 0. FP: or False Positives, means the number of
cases where the predicted class was positive 1 and the actual class
was negative 0. FN: or False Negatives, means the number of cases
where the predicted class was negative 0 and the actual class was
positive 1.

The accuracy (Equation 8) is calculated then by dividing the total
number of true predictions (TP + TN) by the total number of all
the predictions (TP + TN + FP + FN).

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Accuracy is not always the best metric to perform a model, espe-
cially for imbalanced classification problems, where a given class is
representing the overwhelming majority of the data points in our
dataset. So, for this reason, accuracy may not provide a better idea
about our model performance. In this case, the metric we should
focus on and maximize is known as recall (Equation 9).

Recall = TP
TP + FN

(9)

False Negatives (FN) are the data points classified as non-liquefied
that actually are liquefied. So, this is a major problem that should be
considered while evaluating the model.

There are many other evaluation metrics for classification prob-
lems such as Precision, F1-Score, ROC, AUC, ..., etc. To perform
a comparison between the developed model and the deterministic
model selected, only accuracy and recall metrics are chosen. For
accuracy, it gives a general idea about how many data points were
classified correctly, on the other hand, the recall metric is more
accurate and gives a better intuition about our problem. Recall
metric focuses more on the False Negatives, in our case the data
points that are classified as non-liquefied but were liquified, so it
is more important to maximize the Recall metric. In the selected
deterministic model, the ROC and AUC metrics can not be calcu-
lated because it is a deterministic model and there is no threshold
value.
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3. PROPOSED MODEL AND COMPARISON
WITH THE AVAILABLE MODEL

In this study, liquefaction occurrence prediction which is the output
can only have two classes, class 0 for non-liquefied cases and class
1 for liquefied cases. To apply the logistic regression function on
liquefaction assessment, the input of the sigmoid function z in the
Equation 1 is set to θT · X, θT = (

θ0 θ1 θ2
)

is the transpose

matrix of the matrix θ =
⎛
⎝θ0

θ1
θ2

⎞
⎠ where θ0, θ1 and θ2 are the coeffi-

cients (or weights) to be calculated using the maximum likelihood

estimation. X =
⎛
⎝ 1

qc1N,cs
ln(CSR7.5)

⎞
⎠ is the features matrix, where qc1N,cs

and ln(CSR7.5) are the features from the CPT dataset and 1 is for
considering the intercept or bias. The probability of liquefaction PL
is expressed as:

PL = 1
1 + exp

{−(θ0 + θ1 · qc1N,cs + θ2 · ln(CSR7.5))
} (10)

PL will produce the probability that the output is class 1 for liquefied.
If PL = 0.9 it gives a probability of 90% that the output is liquefied.
the probability that the output is class 0 for non-liquefied is just the
complement of the probability that it is class 1. For example, if the
probability of class 1 is 90%, then the probability of class 0 is 10%.{

PL = P(y = 1|X; θ)

P(y = 1|X; θ) + P(y = 0|X; θ) = 1 (11)

In the liquefaction potential assessment considered in this study,
the output variable yi can only have two possible values, 0 for no
liquefied cases and 1 for liquefied cases. The probability of the target
yi can be defined as follow:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(y = 1|X; θ) = 1
1 + exp {−[θ0 + θ1X1 + · · · + θnXn]} = PL

P(y = 0|X; θ) = 1 − 1
1 + exp {−[θ0 + θ1X1 + · · · + θnXn]}

= 1 − PL
(12)

3.1. Logistic Regression Model Based on
Maximizing the Likelihood Function

The logistic regression model based on maximum likelihood
estimation is proposed using the CPT index and considering the
sampling bias by adding the weighting factors WL and WNL to
the likelihood function. In Figure 2, five different curves were
plotted for five PL levels (15%, 30%, 50%, 70%, and 90%). The
way we plotted these curves is by applying the Equation 15 based
on the same coefficients, the curves can be seen as thresholds for
the logistic regression model. These curves are ranked based on the
accuracy and recall metrics. The results are shown in Table 1. It can
be concluded that the curve with PL = 50% seems to be the optimal
one since it classifies the points ideally with the highest accuracy
and recall values as it was expected. Despite the existence of curves
(thresholds) with the highest recall value, but the commonly used
and applied threshold in liquefaction occurrence evaluation is
PL = 50%, if PL > 50% liquefaction occurs, else, no liquefaction is
detected.

Figure 2 Different curve classifiers with different PL values.

Table 1 Characteristics of the logistic regres-
sion models developed with different PL values

PL values Accuracy Recall

15% 79% 100%
30% 82% 99%
50% 84% 94%
70% 80% 83%
90% 56% 42%

Table 2 Characteristics of the developed logistic regression model with
PL = 50%

This study’s model Coefficients Actual - predicted

ACC. RECALL θ0 θ1 θ2 0-0 0-1 1-1 1-0

0.84 0.94 9.192 −0.046 2.362 43 28 170 10

Before predicting liquefied or non-liquefied target based on the
Logistic Regression model, three fitting coefficients should be com-
puted based on maximum likelihood estimation (MLE), θ0 is the
intercept or the bias, θ1 and θ2 are respectively the coefficients
(weights) of the features qc1N,cs and ln(CSR7.5).

To estimate these coefficients or parameters, the dataset was derived
from case history CPT documentation at different sites from dif-
ferent earthquakes all around the world. The dataset includes 180
liquefied and 71 non-liquefied cases, entirely 251 cases with several
variables (features) including the main variables of CSR7.5 and
qc1N,cs to develop triggering curve classification. The maximizing
likelihood function is applied as an optimization algorithm for
fitting curve parameters estimation. The model is then developed
for PL equal to 15%, 30%, 50%, 70% and 90%, as can be seen in
Figure 2.

Table 2 lists the coefficients, accuracy value, and recall value for the
model developed for PL = 50%.

As mentioned before PL is the probability of predicting liquefied
cases 1, consequently (1 − PL) is the probability of predicting non-
liquefied cases 0. The weighting factors (WL and WNL) are included
in the likelihood function (Equation 3) to calibrate the developed
models. Finally, the optimal model is developed as below:

log
(

PL
1 − PL

)
= 9.192−0.046·qc1N,cs+2.362·ln(CSR7.5) (13)
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Figure 3 ROC curve for the developed model.

or,

PL = 1
1 + exp

{−[9.192 − 0.046 · qc1N,cs + 2.362 · ln(CSR7.5)]
}

(14)
With WL = 0.6972 and WNL = 1.767, from Equations 4 and 5.

CSR7.5 = exp
{
(−9.192 + (0.046 · qc1N,cs)

− ln((1/PL) − 1))/2.362
}

(15)

The receiver operating curve, also known as ROC, is one of the
employed metrics to select the best threshold of the logistic regres-
sion model. It is a curve plotted by varying the threshold and
computing the TPR and FPR (Equations 16 and 17) values for each
threshold. Figure 3 shows the plotted ROC curve for the developed
model, and the red point on the curve is the point with the optimal
threshold which is 0.72, however, in the liquefaction occurrence
classification, the threshold with the value of 0.5 seems to be optimal
and the most commonly used one.

TPR = TP
TP + FN

(16)

FPR = FP
TN + FP

(17)

Due to the lack of data, the developed model is not verified using
other data, the used expanded CPT dataset which contains 251 data
points from different earthquakes is the only dataset used to build
the model. There are some other datasets like SPT, DPT, Shear wave
velocity dataset, ..., etc, but the mentioned datasets do not include
the same features and characteristics, that is why it is impossible to
verify this study’s model using those datasets.

3.2. Comparison of the Logistic Regression
Model Presented with the Available
Model

The developed model in this study using probabilistic framework
via logistic regression is compared to a well-known deterministic
model proposed by Robertson and Wride [2] (Robertson’s model)
for liquefaction potential evaluating, which is a CPT-based model
with the same dataset and the same features to assess the liq-
uefaction probability. The proposed model is then validated by
comparing the triggering curves liquefaction assessment and the
liquefaction occurrence predictions.

Table 3 Characteristics of Robertson and Wride’s model

Robertson and Wride’s model Actual - predicted

ACC. RECALL 0-0 0-1 1-1 1-0

0.82 0.88 48 23 160 20

Figure 4 Performance of the proposed model and Robertson’s model.

The reason behind choosing Robertson’s model to compare it
with the developed model is that both models used the same features
and the same dataset. Some of the logistic regression models
mentioned in the first paragraph of the Methodology section,
do not use the CPT dataset, and the others do not use the same
features for studying liquefaction occurrence. Moreover, this study
aims to prove the effectiveness of the probabilistic models over the
deterministic models.

Robertson’s model as expressed in Equation 18, predicts the
liquefaction target by comparing the Cyclic Resistance Ratio
(CRR7.5) values with the Cyclic Stress Ratio (CSR7.5). The CRR7.5 >

CSR7.5 predicts non-liquefied case and CRR7.5 < CSR7.5 shows
liquefaction.

Robertson’s model assessment as listed in Table 3 provides 82% for
accuracy and 88% for recall with 48 and 160 correct predictions
of non-liquefied (True Negatives) and liquefied (True Positives)
cases, respectively. In comparison with the model presented in this
study for PL of 50%, the accuracy is 84% and recall is 94% with 43
and 170 accurate predictions of non-liquefied (True Negatives) and
liquefied (True Positives) cases, respectively. The developed model
for different PL values as shown in Figure 2, by increasing PL value,
the curves move to the liquefied zone as it is expected. And for PL
of less than 50% the graphs seem to be more conservative, which
can be seen in Table 1. Figure 4 illustrates the comparison between
the optimal model with PL = 50% and Robertson’s model. The two
triggering curves liquefaction assessment are presented to classify
the liquefied and non-liquefied cases. Predicting liquefied points as
non-liquefied is a serious issue that the developed models should
consider and have to minimize, and it is quite obvious that the
model in this study has only 10 false-negative predictions meaning
that the points were actually liquefied and the model classified them
as non-liquefied, comparing to Robertson’s model which presents
20 false-negative predictions and that is a big number. This is
where recall evaluation metrics come, it focuses more on the False
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Negatives (FN) value, and this metric should be maximized by
minimizing the FN value.

This comparison shows that the probabilistic models are much
better when it comes to liquefaction occurrence assessment. Prob-
abilistic models can consider uncertainties and include some ran-
domness, on the other hand, deterministic models do not include
randomness and follow a definite equation of certainty. In Robert-
son’s model, the liquefaction occurrence is determined through the
comparison between CRR7.5 and CSR7.5, if CRR7.5 > CSR7.5 no
liquefaction is detected, else, liquefaction exists, and this is not
always true, that is why it is highly recommended to develop and
build probabilistic models over deterministic ones.

CRR7.5 =
⎧⎨
⎩

0.833 ∗ ( qc1N,cs
1000

) + 0.05 for qc1N,cs < 50

93 ∗ ( qc1N,cs
1000

)3 + 0.08 for qc1N,cs � 50
(18)

Where 0-0 is True Negatives (TN), 0-1 is False Positives (FP), 1-1 is
True Positives (TP) and 1-0 is False Negatives (FN).

4. SUMMARY AND CONCLUSIONS

This study demonstrates the importance of developing probabilistic
models rather than deterministic models to consider the uncertain-
ties of the parameters and models. In this study, the probabilistic
model is developed for liquefaction probability assessment based on
the CPT dataset. The logistic regression model for classification and
maximum likelihood estimation to determine the coefficients, the
weighting factors are applied for the likelihood function to decrease
the uncertainty in the sample and the model. Five curves for dif-
ferent PL values (15%, 30%, 50%, 70%, and 90%) are developed and
ranked by the accuracy and recall evaluation metrics. Then, the opti-
mal curve classifier has been selected and validated by comparing
it with a well-known model’s prediction results. The experiment
results indicate that the proposed method is outperform existing
methods and presents the state-of-the-art in terms of probabilistic
models. The main conclusions are summarized as follow:

1. The logistic regression model which is a probabilistic model
seems to be an optimal classifier and a better choice when it
comes to liquefaction potential assessment.

2. Among the five plotted PL curves developed, the curve with
PL = 50% is the excellent classifier based on the accuracy
and the recall evaluation metrics. The logistic model based on
maximum likelihood estimation which is a probabilistic model
is recommended for assessing liquefaction probability.

3. The sampling bias is considered in the likelihood function to
consider the uncertainty in the sampling. Ku et al. 2012 [8]
approach to obtain weighting factors WL and WNL is effective
for overcoming this shortage.

4. The developed model in this study with PL = 50% provides
an optimal classifier compared to Robertson’s model, with the
highest accuracy and especially with the highest recall value
which focuses more on the false negatives. In the liquefaction
potential problem, false negatives are the datapoints predicted
as not liquefied that actually were liquefied. Therefore, the pre-
sented model seems to be a safer risk assessment analysis of
seismic liquefaction.

5. The recall metric is a very important metric for assessing the
liquefaction occurrence, it expresses the ability to extract all

relevant instances from the dataset. Predicting a liquefied point
as non-liquefied seems to be a very risky and catastrophic model.
Therefore, the recall assessment criteria should be maximized
and that was the case of the developed model which shows a
higher capability and economic model for risk assessment and
predicting liquefaction occurrence. In the five developed curves,
the recall value decreases by increasing the PL value, and that was
expected because as the PL value increases the total number of
false negatives increases too, consequently, the recall decreases.
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