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Abstract

Recently, we have introduced six types of
composition of crisp ternary relations. These
compositions are close in spirit to the defin-
ition of the composition of binary relations.
In this note, we extend these notions to the
fuzzy setting. Based on these types of com-
position, we introduce several types of trans-
itivity of a ternary fuzzy relation and invest-
igate their properties.

Keywords: Fuzzy ternary relation, rela-
tional compositions, Transitivity.

1 Introduction

One of the most important properties of binary rela-
tions is the transitivity property. The classical concept
of transitivity of relations is generalized in fuzzy set
theory by the ∗-transitivity property of fuzzy relations,
where ∗ is a t-norm [23]. In addition to its role as an
interesting condition of some useful classes of (fuzzy)
binary relations (e.g., preorder relations, order rela-
tions, equivalence relations), it is an essential tool in
many fields of application. For instance, in the fields
of (fuzzy) preference modelling and multi-criteria de-
cision making [6, 11, 13] and in fuzzy control [17].

Using the definition of composition of relations, the
transitivity property can be formulated more concisely,
such that a (fuzzy) binary relation R is transitive if
and only if R ◦ R ⊆ R. Algorithms that search for
the transitivity property can be used in many approx-
imate reasoning applications, including database man-
agement systems (DBMS), pattern recognition, expert
systems, artificial intelligence (AI), and intelligent sys-
tems.

In recent years, the interest in ternary relations is on
the rise, as they play an important role in many the-
oretical and applied areas. From a theoretical point of

view, ternary relations have been studied in mathem-
atics (e.g., in algebra [7, 19], in (fuzzy) triadic formal
concept analysis [5, 14, 18] and in logic [21]). In applic-
ations, (fuzzy) ternary relations can be found in many
different areas, for instance in social sciences (e.g.,
philosophy [3]), in biology (e.g., modelling of phylo-
genies [28]), in computer science (e.g., the Resource
Description Framework (RDF) [27]). Some classes
of ternary relations came to play an important role
in specific applications, e.g., betweenness relations in
models for decision making [25] and aggregation [24],
ternary order relation in string matching [16], cyclic
orders in qualitative spatial reasoning [15] and partic-
ular fuzzy ternary relations in models of choice beha-
vior [22].

In the ternary setting, the notion of transitivity has
received far less attention. It has appeared in few pa-
pers, for instance, Pitcher and Smiley [26] have defined
several notions of four point transitivity and five point
transitivity of a betweenness relation. Also, Novák and
Novotný [20], Chajda et al. [7], Barkat et al. [2] and
Zedam et al. [29] have defined other forms of transit-
ivity of a ternary relation.

Motivated by the increasing importance of ternary re-
lations and the usefulness of the transitivity property
of (fuzzy) binary relations, in this note we study the
transitivity property for ternary fuzzy relations. In
order to investigate this notion analogously to that of
(fuzzy) binary relations, we extend the six types of
composition of crisp ternary relations introduced by
Bakri et al. [1] to the fuzzy setting. Based on these
compositions of ternary fuzzy relations, we introduce
several types of transitivity and investigate their rep-
resentation and their properties.

This note is organized as follows. In Section 2, we
recall the necessary concepts of lattices, t-norms and
ternary fuzzy relations. In Section 3, we extend the
compositions of ternary relations to ternary fuzzy re-
lations and investigate their basic properties. In Sec-
tion 4, we introduce several types of transitivity of a
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ternary fuzzy relation and show several basic proper-
ties. Also, we study the interaction of these transit-
ivity properties with the binary projections and cyl-
indrical extensions, and we provide a representation
of a given transitive ternary fuzzy relation in terms of
its projections and a family of functions. Finally, we
present some concluding remarks in Section 5.

2 Preliminaries

This section serves introductory purposes. First, we
recall some basic concepts related to lattices and t-
norms. Second, we present some basic definitions re-
lated to ternary fuzzy relations.

2.1 Lattices

A poset (L,≤) (see, e.g., [8]) is called a lattice if any
two elements x and y have a greatest lower bound,
denoted x ∧ y and called the meet (infimum) of x and
y, as well as a smallest upper bound, denoted x ∨ y

and called the join (supremum) of x and y. A lattice
can also be defined as an algebraic structure, namely
a set L equipped with two binary operations ∧ and
∨ that are idempotent, commutative and associative,
and satisfy the absorption laws (x ∧ (x ∨ y) = x and
x ∨ (x ∧ y) = x, for any x, y ∈ L). The order relation
and the meet and join operations are related as follows:
x ≤ y if and only if x∧y = x; x ≤ y if and only if x∨y =
y. A bounded lattice is a lattice that additionally has
a greatest element 1 and a smallest element 0, which
satisfy 0 ≤ x ≤ 1 for every x in L. Often, the notation
(L,∧,∨, 0, 1) is used. A lattice (L,∧,∨) is called a
complete lattice if any nonempty subset of L has an
infimum and a supremum. The corresponding infimum
and supremum operations are denoted as

∧

and
∨

,
respectively.

A triangular norm (t-norm, for short) ∗ on a bounded
lattice L (see, e.g., [9, 10]) is a binary operation on L

that is commutative (i.e., x∗y = y∗x, for any x, y ∈ L)
and associative (i.e., x ∗ (y ∗ z) = (x ∗ y) ∗ z, for any
x, y, z ∈ L), has neutral element 1 (i.e., x ∗ 1 = x,
for any x ∈ L) and is order-preserving (i.e., if x ≤ y,
then x ∗ z ≤ y ∗ z, for any x, y, z ∈ L). T-norms were
originally introduced on the real unit interval [0, 1],
but are readily extended to posets and lattices [10].

Throughout this paper, L always denotes a complete
lattice (L,∧,∨, 0, 1) and ∗ a t-norm on it.

2.2 Ternary fuzzy relations

The notion of an L-fuzzy relation on a set X gener-
alizes the classical notion of a {0, 1}-relation by ex-
pressing degrees of relationship in some bounded lat-
tice (L,∧,∨, 0, 1) [12].

Definition 2.1. A ternary (or triadic) L-fuzzy rela-
tion (ternary L-relation, for short) T on X is an L-
fuzzy subset of X3, i.e., a mapping T : X3 → L. If
L = {0, 1}, then ternary relations are obtained.

Inclusion, intersection and union of ternary L-relations
on X are defined through the corresponding notions
for L-fuzzy subsets of X3. We denote by T t the trans-
pose of T , i.e., for any x, y, z ∈ X , T t(x, y, z) =
T (z, y, x). For more details on (fuzzy) ternary rela-
tions, we refer to [1, 7, 19, 22, 29].

3 Compositions of ternary fuzzy

relations

In this section, we extend the types of composition of
crisp ternary relations introduced in [1] to the fuzzy
setting, and investigate their properties.

Definition 3.1. [1] Let T and S be two ternary re-
lations on a set X . The ◦i-compositions of T and S,
with i ∈ {1, . . . , 6}, are defined as

(i) T ◦1 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈
T ∧ (s, t, z) ∈ S)};

(ii) T ◦2 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈
T ∧ (t, s, z) ∈ S)};

(iii) T ◦3 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈
T ∧ (t, z, s) ∈ S)};

(iv) T ◦4 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((s, x, t) ∈
T ∧ (t, y, z) ∈ S)};

(v) T ◦5 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, s, t) ∈
T ∧ (t, y, z) ∈ S)};

(vi) T ◦6 S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, s, t) ∈
T ∧ (s, y, z) ∈ S)}.

Definition 3.2. Let T and S be two ternary L-
relations on a set X . The ◦i-compositions of T and
S, with i ∈ {1, . . . , 6}, are defined as

(i) T ◦1 S(x, y, z) =
∨

s,t∈X

(T (x, y, t) ∗ S(s, t, z));

(ii) T ◦2 S(x, y, z) =
∨

s,t∈X

(T (x, y, t) ∗ S(t, s, z));

(iii) T ◦3 S(x, y, z) =
∨

s,t∈X

(T (x, y, t) ∗ S(t, z, s));

(iv) T ◦4 S(x, y, z) =
∨

s,t∈X

(T (s, x, t) ∗ S(t, y, z));

(v) T ◦5 S(x, y, z) =
∨

s,t∈X

(T (x, s, t) ∗ S(t, y, z));
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(vi) T ◦6 S(x, y, z) =
∨

s,t∈X

(T (x, s, t) ∗ S(s, y, z)).

More generally, other types of composition of ternary
L-relations can be obtained by combining the above
six types of composition, e.g. as follows:

T ◦I S =
⋃

i∈I

T ◦i S ,

for any I ⊆ {1, . . . , 6} .

Next, we investigate some properties of the composi-
tions of ternary L-relations. First, the following pro-
position shows that for any i ∈ {1, 2, 5, 6}, the ◦i-
composition is associative.

Proposition 3.3. Let T1, T2 and T3 be ternary L-
relations on a set X. Then it holds that

(T1 ◦i T2) ◦i T3 = T1 ◦i (T2 ◦i T3) ,

for any i ∈ {1, 2, 5, 6}.

In the following example, we show that the composi-
tions ◦3 and ◦4 are not associative.

Example 3.4. Le X = {a, b, c, d}, L = [0, 1] and ∗ =
∧. Let T1, T2 and T3 be the ternary L-relations on X

given by:

T1(x, y, z) =











0.7 , if (x, y, z) = (a, a, b)

0.5 , if (x, y, z) = (a, b, c)

0 , otherwise

T2(x, y, z) =



















0.9 , if (x, y, z) = (a, a, a)

0.65 , if (x, y, z) = (b, d, a)

0.4 , if (x, y, z) = (c, b, b)

0 , otherwise

T3(x, y, z) =



















0.8 , if (x, y, z) = (a, a, a)

0.6 , if (x, y, z) = (d, d, b)

0.25 , if (x, y, z) = (b, c, a)

0 , otherwise

One easily verifies that

(T1◦3T2)◦3T3(x, y, z) =











0.6 , if (x, y, z) = (a, a, d)

0.25 , if (x, y, z) = (a, b, c)

0 , otherwise

T1◦3(T2◦3T3)(x, y, z) =











0.65 , if (x, y, z) = (a, a, d)

0.25 , if (x, y, z) = (a, b, b)

0 , otherwise

It is clear that

(T1 ◦3 T2) ◦3 T3 6= T1 ◦3 (T2 ◦3 T3) .

In the same line, one can also verify that

(T1 ◦4 T2) ◦4 T3 6= T1 ◦4 (T2 ◦4 T3) .

The following proposition shows the interaction of the
◦i-composition with inclusion and set-theoretical op-
erations, for any i ∈ {1, . . . , 6}.

Proposition 3.5. Let T1, T2, S1, S2 and S be ternary
L-relations on a set X. For any i ∈ {1, . . . , 6}, the
following statements hold:

(i) If T1 ⊆ T2 and S1 ⊆ S2, then T1 ◦i S1 ⊆ T2 ◦i S2;

(ii) (T1 ∩T2) ◦i S = (T1 ◦i S)∩ (T2 ◦i S) and S ◦i (T1 ∩
T2) = (S ◦i T1) ∩ (S ◦i T2);

(iii) (T1 ∪T2) ◦i S = (T1 ◦i S)∪ (T2 ◦i S) and S ◦i (T1 ∪
T2) = (S ◦i T1) ∪ (S ◦i T2).

Combining Propositions 3.3 and 3.5 leads to the fol-
lowing corollary.

Corollary 3.6. The compositions ◦I with I ⊆
{1, 2, 5, 6} are associative.

The following proposition shows the interaction of the
◦I -composition with inclusion and set-theoretical op-
erations, for any I ⊆ {1, . . . , 6}.

Proposition 3.7. Let T1, T2, S1, S2 and S be ternary
L-relations on a set X. For any I ⊆ {1, . . . , 6}, the
following statements hold:

(i) If T1 ⊆ T2 and S1 ⊆ S2, then T1 ◦I S1 ⊆ T2 ◦I S2;

(ii) (T1 ∩ T2) ◦I S ⊆ (T1 ◦I S) ∩ (T2 ◦I S);

(iii) (T1 ∪ T2) ◦I S ⊆ (T1 ◦I S) ∪ (T2 ◦I S).

4 Transitivity of ternary fuzzy

relations

In this section, based on the compositions of ternary
fuzzy relations, we introduce several types of transit-
ivity of a ternary fuzzy relation and investigate their
properties.

4.1 Definitions and basic properties

For a given binary L-relation R on a set X , the ∗-
transitivity is defined as: R(x, y) ∗ R(y, z) ≤ R(x, z),
for any x, y, z ∈ X . This property is equivalent to
the condition that R ◦ R ⊆ R, where ◦ is the sup-
∗-composition of binary L-relations, i.e., for any two
binary L-relations R1 and R2 on X :

R1 ◦R2(x, z) =
∨

y∈X

(R1(x, y) ∗R2(y, z)) .

Analogously to the binary case, we introduce the no-
tions of transitivity of a ternary L-relation based on
the sup-∗-compositions of ternary L-relations intro-
duced above.
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Definition 4.1. Let T be a ternary L-relation on a
set X . T is called ◦i-transitive if T ◦i T ⊆ T , for any
i ∈ {1, . . . , 6} . This condition corresponds to

(i) ◦1-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, y, t) ∗ T (s, t, z) ≤ T (x, y, z) ;

(ii) ◦2-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, y, s) ∗ T (s, t, z) ≤ T (x, y, z) ;

(iii) ◦3-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, y, s) ∗ T (s, t, z) ≤ T (x, y, t) ;

(iv) ◦4-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, y, s) ∗ T (s, t, z) ≤ T (y, t, z) ;

(v) ◦5-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, y, s) ∗ T (s, t, z) ≤ T (x, t, z) ;

(vi) ◦6-transitive, if, for any x, y, z, s, t ∈ X , it holds
that T (x, s, t) ∗ T (s, y, z) ≤ T (x, y, z) .

For a given ternary L-relation, other types of transit-
ivity can be introduced as follows:

T is called ◦I -transitive if T ◦I T ⊆ T , where I ⊆
{1, . . . , 6} .

One can easily verify that T is called ◦I -transitive if it
is ◦i-transitive, for any i ∈ I ⊆ {1, . . . , 6} .

The following proposition shows that for any i ∈
{1, . . . , 6}, the ◦i-transitivity is preserved under inter-
section.

Proposition 4.2. Let (Tj)j∈J be a family of ternary
L-relations on a set X. For any i ∈ {1, . . . , 6}, it holds
that if Tj is ◦i-transitive for any j ∈ J , then ∩

j∈J
Tj is

◦i-transitive.

Proposition 4.3. Let T be a ternary L-relation on
a set X. For any i ∈ {1, . . . , 6}, it holds that T is
◦i-transitive if and only if T t is ◦7−i-transitive.

Note that the ◦I -transitivity of (Tj)j∈J implies the
◦I -transitivity of ∩

j∈J
Tj. Also, the ◦I -transitivity of

T is equivalent to the ◦7−I -transitivity of T t, where
7 − I = {7 − i | i ∈ I}, for any I ⊆ {1, . . . , 6}.

The following proposition expresses that any tern-
ary L-relation is the union of ◦i-transitive ternary L-
subrelations.

Proposition 4.4. Any ternary L-relation on a set
X is the union of ◦i-transitive ternary L-subrelations
on X, for any i ∈ {1, . . . , 6} .

Remark 4.5. In the finite case, maximal ◦i-transitive
L-subrelations (in the sense of inclusion) of a given
ternary L-relation can be obtained.

4.2 Interaction of the types of transitivity

with the projections and cylindrical

extensions

In this subsection, we discuss the interaction of sev-
eral types of transitivity of a ternary L-relation with
the binary projections and the cylindrical extensions.
First, we recall the following definitions.

Definition 4.6. Let T be a ternary L-relation on a
set X .

(i) The left projection of T with respect to z ∈ X is
the binary L-relation zT on X defined as

zT (x, y) = T (z, x, y) ;

(ii) The middle projection of T with respect to z ∈ X

is the binary L-relation Tz on X defined as

T
z

(x, y) = T (x, z, y) ;

(iii) The right projection of T with respect to z ∈ X

is the binary L-relation Tz on X defined as

Tz(x, y) = T (x, y, z) .

Definition 4.7. Let T be a ternary L-relation on a
set X .

(i) The left projection of T is the binary L-relation
P∨

ℓ (T ) on X defined as

Pℓ(T )(x, y) =
∨

z∈X

zT (x, y) ;

(ii) The middle projection of T is the binary L-
relation P∨

m(T ) on X defined as

Pm(T )(x, y) =
∨

z∈X

T
z

(x, y) ;

(iii) The right projection of T is the binary L-relation
P∨

r (T ) on X defined as

Pr(T )(x, y) =
∨

z∈X

Tz(x, y) .

Definition 4.8. Let R be a binary L-relation on a
set X .

(i) The left cylindrical extension of R is the ternary
L-relation Cℓ(R) on X defined as

Cℓ(R)(x, y, z) = R(y, z) ;

(ii) The middle cylindrical extension of R is the tern-
ary relation Cm(R) on X defined as

Cm(R)(x, y, z) = R(x, z) ;
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(iii) The right cylindrical extension of R is the ternary
relation Cr(R) on X defined as

Cr(R)(x, y, z) = R(x, y) .

The following proposition expresses the interaction of
the ◦i-transitivity of a given ternary L-relation with
the ∗-transitivity of its binary projections.

Proposition 4.9. Let T be a ternary L-relation on a
set X. The following implications hold:

(i) If T is ◦1-transitive, then Pℓ(T ) is ∗-transitive;

(ii) If T is ◦2-transitive, then Pm(T ) is ∗-transitive;

(iii) If T is ◦5-transitive, then Pm(T ) is ∗-transitive;

(iv) If T is ◦6-transitive, then Pr(T ) is ∗-transitive.

The following proposition discusses the interaction of
the ∗-transitivity of a given binary L-relation with the
◦i-transitivity of its cylindrical extensions.

Proposition 4.10. Let R be a binary L-relation on a
set X. The following equivalences hold:

(i) R is ∗-transitive if and only if Cℓ(R) is ◦1-
transitive ;

(ii) R is ∗-transitive if and only if Cm(R) is ◦2-
transitive ;

(iii) R is ∗-transitive if and only if Cm(R) is ◦5-
transitive ;

(iv) R is ∗-transitive if and only if Cr(R) is ◦6-
transitive .

4.3 Representation of ◦i-transitive ternary

fuzzy relations

In this subsection, we provide a representation the-
orem for ◦i-transitive ternary L-relations, for any i ∈
{1, 2, 5, 6}. First, we need to recall the following defin-
ition of implication generated by a t-norm on a com-
plete lattice. For more details on implications, see,
e.g., Bělohlávek [4].

Let ∗ be a t-norm on a complete lattice L. Then the
∗-residuum (or the ∗-implication) is defined for any
x, y ∈ L by:

I∗(x, y) =
∨

{z ∈ L | x ∗ z ≤ y} .

In the following representation theorems for ◦i-
transitive (resp. reflexive and ◦i-transitive) ternary L-
relations with i ∈ {1, 2, 5, 6}, we consider only t-norms
that satisfy the following condition:

x ∗ z ≤ y ⇔ z ≤ I∗(x, y) ,

for any x, y, z ∈ L. Equivalently, one can suppose
that (L,∧,∨, ∗, I∗, 0, 1) is a complete residuated lat-
tice. For instance, on the unit interval, this condition
characterizes left-continuous t-norms, including min-
imum, product and the  Lukasiewicz t-norm.

Theorem 4.11. Let T be a ternary L-relation on a
set X. The following equivalences hold:

(i) T is ◦1-transitive if and only if there exist a fam-
ily (fa)a∈X of functions from X to L such that
Ta(x, y) ≤ fa(y), for any x, y, a ∈ X and

T (x, y, z) =
∧

a∈X

I∗(fa(z), Ta(x, y)) ,

for any x, y, z ∈ X ;

(ii) T is ◦2-transitive if and only if there exist a fam-
ily (fa)a∈X of functions from X to L such that
Ta(x, y) ≤ fa(x), for any x, y, a ∈ X and

T (x, y, z) =
∧

a∈X

I∗(fa(z), Ta(x, y)) ,

for any x, y, z ∈ X ;

(iii) T is ◦5-transitive if and only if there exist a fam-
ily (fa)a∈X of functions from X to L such that

aT (x, y) ≤ fa(y), for any x, y, a ∈ X and

T (x, y, z) =
∧

a∈X

I∗(fa(x), aT (y, z)) ,

for any x, y, z ∈ X ;

(iv) T is ◦6-transitive if and only if there exist a fam-
ily (fa)a∈X of functions from X to L such that

aT (x, y) ≤ fa(x), for any x, y, a ∈ X and

T (x, y, z) =
∧

a∈X

I∗(fa(x), aT (y, z)) ,

for any x, y, z ∈ X .

5 Conclusion

In this note, we have extended the types of composi-
tion of ternary relations to the fuzzy setting. We have
introduced several types of transitivity of a ternary
fuzzy relation close in spirit to the ∗-transitivity of
a binary fuzzy relation. We have investigated their
properties, and their interaction with the binary pro-
jections of ternary fuzzy relations and cylindrical ex-
tensions of binary fuzzy relations. Moreover, we have
provided a representation of transitive (resp. reflexive
and transitive) ternary fuzzy relations for four types
of transitivity. Consequently, the representation ob-
tained can be applied to represent some important
classes of ternary fuzzy relations, like fuzzy between-
ness relations and ternary fuzzy equivalence relations.
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[7] I. Chajda, M. Kolař́ık, H. Länger, Algebras as-
signed to ternary relations, Miskolc Mathematical
Notes 14 (2013) 827–844.

[8] B.A. Davey, H.A. Priestley, Introduction to Lat-
tices and Order, Cambridge University Press, 2nd
ed, Cambridge, 2002.

[9] B. De Baets, R. Mesiar, Triangular norms on
product lattices, Fuzzy Sets and Systems 104
(1999) 61–75.

[10] G. De Cooman, E.E. Kerre, Order norms on
bounded partially ordered sets, Journal of Fuzzy
Mathematics 2 (1994) 281–310.

[11] J. Fodor, M. Roubens, Fuzzy Preference Model-
ling and Multicriteria Decision Support, Kluwer
Academic Publishers, Dordrecht, 1994.

[12] J.A. Goguen, L-fuzzy sets, Journal of Mathemat-
ical Analysis and Applications 18 (1967) 145-174.

[13] Z.W. Gong, Y. Lin, T.X. Yao, Uncertain Fuzzy
Preference Relations and Their Applications,
Springer-Verlag, Berlin, Heidelberg, 2013.

[14] D.I. Ignatov, D.V. Gnatyshak, S.O. Kuznetsov,
B.G. Mirkin, Triadic formal concept analysis and
triclustering: searching for optimal patterns, Ma-
chine Learning 101 (2015) 271–302.

[15] A. Isli, A. Cohn, A new approch to cyclic ordering
of 2D orientations using ternary relation algebra,
Artificial Intelligence 122 (2000) 137–187.

[16] J. Kim, A. Amir, J.C. Na, K. Park, J.S. Sim, On
representations of ternary order relations in nu-
meric strings, Mathematics in Computer Science
11 (2017) 127–136.

[17] F. Klawonn, R. Kruse, Equality relations as a
basis for fuzzy control, Fuzzy Sets and Systems
54 (1993) 147–156.

[18] J. Konečný, P. Osička, Triadic concept lattices in
the framework of aggregation structures, Inform-
ation Sciences 279 (2014) 512–527.

[19] V. Novák, M. Novotný, Pseudodimension of re-
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