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Abstract

In this paper, we give the first steps towards
a formal definition of fuzzy relational Galois
connection between fuzzy sets with arbitrary
fuzzy transitive relations (fuzzy T-digraphs),
where the two components of the connection
are fuzzy relations. To this end we consider,
on the one hand, our definition of relational
Galois connection between T-digraphs in the
crisp case; and, on the other hand, our defini-
tion of fuzzy relational Galois connection be-
tween fuzzy preorders. We compare both def-
initions and conclude that some (fuzzy) gen-
eralization of the notion of clique is needed.

Keywords: Galois connection, Fuzzy tran-
sitive digraphs, Relational systems.

1 Introduction

Although introduced some time ago [24], Galois con-
nections are still a useful tool both for theoretical and
practical purposes. In fact, the underlying mathe-
matical ideas of the theory of Formal Concept Anal-
ysis [13] is that of Galois connections; this research
line has received considerable attention in the recent
years, and one can find a number of publications
on either its abstract generalization or its applica-
tions [2, 4, 11, 15, 19, 20, 23].

In this paper, we continue a research line initiated
in [17], where we aimed at characterizing the existence
of the residual (or right part of a Galois connection)
of a given mapping between sets with different struc-
ture (it is precisely this condition of different structure
which makes this problem to be outside the scope of
Freyd’s adjoint functor theorem). Since then, we have
obtained initial results in several frameworks: for in-
stance, in [18], given a mapping from a (pre-)ordered
set (A,≤A) into an unstructured set B, we character-
ized the problem of completing the structure of B, i.e.,

defining a suitable (pre-)ordering relation ≤B on B,
such that there exists a mapping such that the pair of
mappings forms an isotone Galois connection (or ad-
junction) between the (pre-)ordered sets (A,≤A) and
(B,≤B).

The initial steps for the extension to the fuzzy frame-
work were done in [16], in which the construction of
the right adjoint was done in terms of closure oper-
ators associated to Galois connection; this approach
was later, completed in [5] by considering the corre-
sponding problem for a function between a fuzzy pre-
poset (A, ρA) and an unstructured B; moreover, this
work was recently extended in [6], by considering that
equality is expressed by a fuzzy equivalence relation,
so that the problem considers a mapping between a
fuzzy preordered structure (A,≈A, ρA) and a fuzzy
structure (B,≈B). These two papers satisfactorily ex-
tend the problem to the fuzzy case in both the domain
and range of the Galois connection but, in both cases,
the components of the Galois connection are (crisp)
functions. Hence, the next logical extension is to con-
sider the possibility that those components are actu-
ally fuzzy functions. In our opinion the term ‘fuzzy
Galois connection’ [3, 27], should be reserved for the
case in which the involved mappings are actually fuzzy
mappings.

Our first attempt to obtain a properly fuzzy notion of
Galois connection was to go back to the crisp case and
consider a suitable relational generalization of Galois
connection, one in which the domain and range are just
sets endowed with arbitrary relations and whose com-
ponents are (proper) relations, and this is the content
of [7]. It is worth noting that, in order to preserve the
existing construction via closures, we needed to pro-
vide a relational definition of Galois connection which
allows the composition of the two components of the
connection, and this is something that is not guar-
anteed by some of the relational extensions of Galois
connection that can be found in the literature.

In this paper, we give the first steps towards a for-
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mal definition of fuzzy relational Galois connection be-
tween fuzzy sets with arbitrary fuzzy transitive rela-
tions (fuzzy T-digraphs), where the two components
of the connection are fuzzy relations. To this end
we consider, on the one hand, our definition of re-
lational Galois connection between T-digraphs in the
crisp case; and, on the other hand, our definition of
fuzzy relational Galois connection between fuzzy pre-
orders. We compare both definitions and conclude
that some (fuzzy) generalization of the notion of clique
is needed.

2 Preliminary definitions

We consider the usual framework of (crisp) relations.
Namely, a binary relation R between two sets A and B
is a subset of the Cartesian product A×B and it can
be also seen as a (multivalued) function R from the
set A to the powerset 2B . For an element (a, b) ∈ R,
it is said that a is related to b and denoted aRb.

Given a binary relation R ⊆ A×B, the afterset aR of
an element a ∈ A is defined as {b ∈ B : aRb}.

As our Galois connections are intended to be defined
between preordered structures, firstly, we will recall
several forms to lift a preorder to the powersets.

Given A an arbitrary set and a preorder relation ≤
defined over A, it is possible to lift ≤ to the powerset
2A by defining

X � Y ⇐⇒ ∀x ∈ X ∃y ∈ Y such that x ≤ y

X b Y ⇐⇒ ∀y ∈ Y ∃x ∈ X such that x ≤ y

We will use the term powering to refer to the lifting of
a preorder to the powerset; thus, both b and� above
are powerings of ≤.

Note that the two relations defined above are actually
preorder relations, specifically those used in the con-
struction of the, respectively, Hoare and Smyth pow-
erdomains.

Naturally, each of the extensions above induces a par-
ticular notion of isotony, inflation, etc. For instance,
given two preordered sets (A,≤) and (B,≤),1 a binary
relation R ⊆ A×B is said to be:

• b -isotone if a1 ≤ a2 implies aR1 b aR2 , for all
a1, a2 ∈ dom(R);

• b -antitone if a1 ≤ a2 implies aR2 b aR1 , for all
a1, a2 ∈ dom(R).

A binary relation R ⊆ A×A is said to be:

1Notice that, as usual, we use the same symbol to de-
note both binary relations which need not be equal.

• b -inflationary if {a} b aR, for all a ∈ dom(R);

• b -deflationary if aR b {a}, for all a ∈ dom(R).

• b -idempotent if aR◦R b aR and aR b aR◦R, for
all a ∈ dom(R).

We use the prefix to distinguish the powering used in
the different definitions.

Traditionally, a Galois connection is understood as a
pair of antitone mappings whose compositions are both
inflationary, and has a number of different alternative
characterizations. In our generalized relational set-
ting, we have a wide choice for characterization used
to give the formal definition, and also to the differ-
ent notions of antitonicity and inflation (depending on
the powering), or even the relational composition to
be used.

In this paper, we will work with the usual notion of
relational composition. Let R be a binary relation
between A andB and S be a binary relation betweenB
and C. The composition of R and S is defined as
follows

R ◦ S = {(x, z) ∈ A× C | ∃b ∈ B with xRb and bSz}

Observe that for an element a ∈ A, the afterset aR◦S

can be written as
⋃
b∈aR b

S .

2.1 Fuzzy preliminaries

Given a complete residuated lattice L = (L,⊗,⇒), an
L-fuzzy set is a mapping from the universe set to the
membership values structure X : U → L where X(u)
means the degree in which u belongs to X.

An L-fuzzy binary relation on U is an L-fuzzy subset
of U ×U , that is RU : U ×U → L, and it is said to be:

• Reflexive if RU (a, a) = > for all a ∈ U .

• ⊗-Transitive if RU (a, b)⊗RU (b, c) ≤ RU (a, c) for
all a, b, c ∈ U .

From now on, when no confusion arises, we will omit
the prefix “L-”.

Definition 1. A fuzzy T-digraph is a pair A =
〈A, ρA〉 in which ρA is a ⊗-transitive fuzzy relation
on A.

Definition 2. A fuzzy preposet is a pair A = 〈A, ρA〉
in which ρA is a reflexive and ⊗-transitive fuzzy rela-
tion on A.

Definition 3. A fuzzy relation µ : A×B → L is said
to be total if and only if or all a ∈ A there exists b ∈ B
satisfying that µ(a, b) = >.
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3 A relational extension of Galois
connections

Our goal in this work is to define the notion of Galois
connection as a pair of relations between sets with the
least possible structure. As all of the results make use
in some way of the transitive property, although we
could work with arbitrary relations and use its transi-
tive closure, in order to improve the readability of the
results we will assume that the relations are transitive
from the beginning.

Hereinafter, we refer to a couple (A, τ), where τ ⊆
A × A, as a digraph, and when τ is transitive we call
T-digraph.

A T-digraph (A, τ) will be often represented as A, to
refer to the underlying set A, the accompanying rela-
tion will be written τ whenever no ambiguities arise,
similarly to what happens with ordered sets in which
the ordering relation are usually called ≤.

It is worth to remark that the powerings b and� can
be defined for any relation τ not necessarily being a
preorder relation.

A well-known characterization of a Galois connection
(f, g) between two posets is the so-called Galois con-
dition

a ≤ g(b) ⇐⇒ b ≤ f(a)

As stated above, in our general framework there are
several possible choices, which we will distinguish by
using the corresponding prefix. For instance, given two
relations R and S, the �-Galois condition is

{a} � bS ⇐⇒ {b} � aR

In [10], we studied the properties of the different ex-
tensions obtained in terms of the powerings � and
b used in the corresponding Galois condition. Later,
in [7], we focussed our attention on another desirable
characterization, the definition of Galois connection
in terms of closures. We introduce below the corre-
sponding relational extension of the notion of closure
operator.

Definition 4. Given a T-digraph (A, τ), a power-
ing ∗ of ≤, and C ⊆ A × A, we say that C is a ∗-
closure relation, if C is ∗-isotone, ∗-inflationary, and
∗-idempotent.

Definition 5. A relational Galois connection between
two T-digraphs A and B is a pair of relations (R,S)
where R ⊆ A × B and S ⊆ B × A such that the fol-
lowing properties hold:

i. R and S are b -antitone.

ii. R ◦ S and S ◦ R are b -inflationary.

We can see below an example in which both R and S
are proper (non-functional) relations.

Example 1. Consider A = (A, τ) where
A = {1, 2, 3} and τ is the transitive relation
{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}. The pair of
relations (R,S) given by the tables below constitutes
a relational Galois connection between A and A.

A 2
$$ ''

3
zz

gg

1

__ ??

x xR

1 {2, 3}
2 {2}
3 {3}

x xS

1 {2, 3}
2 {2}
3 {2, 3}

The interesting part is that the b powering guarantees
that both compositions in a relational Galois connec-
tion lead to b-closure relation. Formally, we have the
following result:

Theorem 1. Given a relational Galois connection
(R,S) between A and B, we have that R◦S and S ◦R
are b-closure relations.

4 Comparison with other approaches

Essential Galois bonds between formal contexts were
introduced by Xia [26] in the framework of FCA, and
are important for our work in that its components
are relations. This definition was later renamed as
relational Galois connection in [14], where a unifying
language was provided in order to cope with similar
attempts, previously given by Domenach and Leclerc
[12] and by Wille [25].

Recall that for ordered sets (P,≤1) and (Q,≤2) to
state that (ϕ,ψ) is a Galois connection between the
contexts (P, P,≤1) and (Q,Q,≤2) translates to the
usual Galois condition

x ≤1 ψ(y)⇐⇒ y ≤2 ϕ(x)

The first approach natural notion of Galois connection
between arbitrary contexts (G,M, I) and (H,N, J)
is given in [14] as a pair of mappings (ϕ,ψ) where
ϕ : G→ N and ψ : H →M , satisfying the correspond-
ing Galois condition, namely,

g I ψ(h)⇐⇒ h J ϕ(g)
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Then, a further (and natural) generalisation in which
the pair of mappings are replaced by a pair of arbitrary
relations Φ ⊆ G×N and Ψ ⊆ H ×M should include
the corresponding relational version of the Galois con-
dition, which is called the relational Galois condition:

g I hΨ ⇐⇒ h J gΦ

This condition by itself is not strong enough in the re-
lational framework and, hence, Xia introduced a cer-
tain optimality of Φ and Ψ. This condition was sim-
plified in [14] in terms of intents of the corresponding
contexts as follows:

Definition 6. A relational Galois connection between
two contexts (G,M, I) and (H,N, J) is a pair of re-
lations (Φ,Ψ) where Φ ⊆ G × N and Ψ ⊆ H × M
satisfying

• g I hΨ ⇐⇒ h J gΦ for all g ∈ G, h ∈ H.

• gΦ is an intent of (H,N, J) and hΨ is an intent
of (G,M, I).

This definition, as stated in [14, Lemma 1], leads back
to the original definition of Galois connection between
lattices, in that every classical Galois connection be-
tween the concept lattices B(G,M, I) and B(H,N, J)
of two contexts (G,M, I) and (H,N, J) respectively,
defines a relational Galois connection between the con-
texts (G,M, I) and (H,N, J) and vice versa, being this
correspondence one-to-one.

The following two examples show that Definition 6 of
relational Galois connection does not imply nor is im-
plied by our definition.

Example 2. Let A and B be the T-digraphs shown
below, and R ⊆ A × B and S ⊆ B × A the relations
defined as follows:

A 2
$$

3
zz

1
zz

B a
##

b
{{

c
{{

x xR

1 {a, b, c}
2 {b}
3 {c}

x xS

a {1, 2, 3}
b {2}
c {3}

It is easy to check that (R,S) verifies Definition 6 but
does not satisfy our definition, because R ◦ S fails to
be inflationary in element 1. As a consequence, R◦ S
is not a closure relation.

Example 3. Let A and B be the T-digraphs shown
below, and R ⊆ A × B and S ⊆ B × A the relations
defined as follows:

A 2
$$$$
3dd
zz

1

ZZ DD
B a

$$##
bdd
{{

c

ZZ DD

x xR

1 {a, b}
2 {a}
3 {b}

x xS

a {2}
b {2, 3}
c {2, 3}

The pair (R,S) constitutes a relational Galois con-
nection between (A, τA) and (B, τB) by our definition.
However, it does not verify Definition 6. For instance,
2R = {a} is not an intent since 2Rτ

−1τ = {a, b} 6= 2R.

5 Characterization of relational Galois
connections

Having in mind the different characterizations of clas-
sical Galois connections between posets in terms of the
Galois condition, the definition of a relational Galois
connection (Definition 5) might also be equivalent to
the corresponding Galois condition, namely:

{a} b bS ⇐⇒ {b} b aR, ∀ a ∈ A, b ∈ B (1)

In order to characterize the notion of relational Galois
connection, we will introduce an alternative powering
of a relation τ to the powersets:

X ∝ Y ⇐⇒ x τ y for all x ∈ X and for all y ∈ Y

Remark 1. Note that ∝ need not be either reflexive
nor transitive. Nevertheless, for a T-digraph it satis-
fies the following weakened version of transitivity:

For any Y 6= ∅, if X ∝ Y and Y ∝ Z, then X ∝ Z.

We will see that the Galois condition (1), together with
a certain technical condition somewhat related to the
reflexivity of ∝, is equivalent to the definition of a
relational Galois connection.

Definition 7. Let A be a T-digraph and X ⊆ A. It is
said that X is a clique if X ∝ X.

Now, we will give the following technical result.

Lemma 1. Let A be a T-digraph and x ∈ X ⊆ A.
If X is a clique then, for all Y ⊆ A, the following
statements hold:

i. Y ∝ {x} implies Y ∝ X.

ii. {x} ∝ Y implies X ∝ Y .

iii. X b Y if and only if X ∝ Y .
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Note that there exists a tight relation between b and
∝, since for all x ∈ A and all Y ⊆ A we have that

{x} b Y ⇐⇒ {x} ∝ Y

particularly, the notions of b-inflation and ∝-inflation
are equivalent and, moreover, the corresponding ver-
sions of the Galois condition are also equivalent.

Our first characterization of relational Galois connec-
tions is based on the fact that the direct images of
singletons should be cliques for both components of
the relational Galois connection. The formal result is
as follows:

Proposition 1. (R,S) is a relational Galois connec-
tion between (A, τ) and (B, τ) iff the following proper-
ties hold:

i. {a} b bS iff {b} b aR for all a ∈ A, and b ∈ B.

ii. aR and bS are cliques for all a ∈ A and b ∈ B.

The next result shows that our definition of b-based
relational Galois connection coincides exactly with the
corresponding ∝-version.

Proposition 2. (R,S) is a relational Galois connec-
tion between (A, τ) and (B, τ) iff the following proper-
ties hold:

i. R and S are ∝-antitone.

ii. R ◦ S and S ◦ R are ∝-inflationary.

6 Towards fuzzy relational Galois
connections

In this section, we adapt the definition of relational
fuzzy adjunction given in [9] between fuzzy preposets
to the case of Galois connections.

Definition 8. Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy pre-
posets and µ : A × B → L and ν : B × A → L be
total fuzzy relations. The pair (µ, ν) is said to be
a relational fuzzy Galois connection between 〈A, ρA〉
and 〈B, ρB〉 if the following conditions hold for all
a1, a2 ∈ A and b1, b2 ∈ B:

i) ρA(a1, a2)⊗ µ(a1, b1)⊗ ν(b2, a2) ≤ ρB(b2, b1).

ii) ρB(b2, b1)⊗ µ(a1, b1)⊗ ν(b2, a2) ≤ ρA(a1, a2).

In order to study the properties of relational fuzzy
Galois connections, we need to adapt the well-known
notions of antitone and inflationary mapping.

Definition 9. Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy pre-
posets. A fuzzy relation µ : A×B → L is said to be an-
titone if ρA(a1, a2)⊗ µ(a1, b1)⊗ µ(a2, b2) ≤ ρB(b2, b1)
for all a1, a2 ∈ A and b1, b2 ∈ B.

Definition 10. Let 〈A, ρA〉 be a fuzzy preposet. A
fuzzy relation µ : A×A→ L is said to be inflationary
if µ(a1, a2) ≤ ρA(a1, a2) for all a1, a2 ∈ A.

The following theorem gives a characterization of re-
lational fuzzy Galois connections between preposets.

Theorem 2 (See [8]). Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy
preposets and µ : A × B → L and ν : B × A → L be
total fuzzy relations. Then, (µ, ν) is a relational fuzzy
Galois connection if and only if µ and ν are antitone,
and both ν ◦ µ and µ ◦ ν are inflationary.

Now, we translate the conditions in the previous Def-
inition 8 to the crisp case.

Definition 11. Let A and B be two T-digraphs, R ⊆
A×B and S ⊆ B×A. The pair of relations (R,S) sat-
isfies the F-Galois condition if the two following con-
ditions hold, for all a ∈ A and b ∈ B:

i. a� bS implies b b aR.

ii. b� aR implies a b bS .

The following result links the notion of crisp relational
Galois connection presented in Definition 5 to the no-
tion of fuzzy relational Galois connection given in Def-
inition 8.

Theorem 3. If A and B are preorders, the following
conditions are equivalent:

i. (R,S) satisfies F-Galois condition.

ii. (R,S) satisfies b-Galois condition and aR and bS

are cliques, for all a ∈ A and b ∈ B.

iii. (R,S) is a relational Galois connection.

Proof. Notice that (ii) and (iii) are equivalent by
Proposition 1. Let us prove now that (i) and (ii) are
equivalent.

Let us prove first that the F-Galois condition implies
the b-Galois condition. For all a ∈ A and b ∈ B, if
a b bS then, as S is total, a� bS , and by (i), b b aR

or, equivalently, b b aR. The other implication is
similarly proved. For any b ∈ aR, as τ is reflexive,
we have that b τ b, hence b � aR, which implies, by
hypothesis, that a b bS . Since S is total, this also
implies a � bS . Again by hypothesis, this leads to
b b aR, which proves that aR is a clique. The proof
that bS is a clique is similar.

Conversely, assume that the b-Galois condition holds,
and that aR and bS are cliques, for all a ∈ A and b ∈ B.
If a � bS , there exists x ∈ bS such that a τ x. As bS

is a clique, by Lemma 1, we have that a b bS , and this
implies, by hypothesis, that b b aR, that is, b b aR,
proving the first item of the F-Galois condition. The
proof of the second item is similar.
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The following example shows that the Galois condition
does not imply the F-Galois condition.

Example 4. Consider the T-digraph A and the rela-
tions R and S depicted below.

A 2
$$ ''

3
zz

gg

1

__ ??

zz

x xR = xS

1 {3}
2 {1, 2}
3 {1, 3}

It is routine to prove that (R,S) verifies the Galois
condition, but it does not verify the F-Galois condition,
because, for instance, 2� 3S but 3 6b 2R.

The following example shows that the F-Galois condi-
tion is not enough to have a relational Galois connec-
tion in the non-reflexive case.

Example 5. Consider the T-digraphs A, B, and the
relations R and S depicted below.

A 2 3
zz

1

OO

$$

B a
$$

c
zz

b

OO

x xR

1 {a}
2 {b}
3 {c}

x xS

a {1}
b {1, 2}
c {3}

It is easy to check that (R,S) verifies the F-Galois
condition, but it is not a relational Galois connection,
because {1} ∈ 2R◦S , while 2 \τ 1, which contradicts
{2} bA 2R◦S .

7 Conclusions and future work

We presented the first steps towards a formal defi-
nition of fuzzy relational Galois connection between
fuzzy T-digraphs, where the two components of the
connection are fuzzy relations. A comparison between
our definition of relational Galois connection between
T-digraphs in the crisp case, and our definition of
fuzzy relational Galois connection between fuzzy pre-
orders has been done, reaching the conclusion that
some (fuzzy) generalization of the notion of clique is
needed. Moreover, we compared the (crisp) approach
with similar ones presented in the framework of FCA.

Concerning future work, we are working on a suit-
able definition of fuzzy clique which would allow to
define the notion of fuzzy relational Galois connection
in terms of the Galois condition, adding this notion of
clique. This would open the door towards the search
for a characterization of the existence of residual in
a fuzzy setting given a fuzzy relation between unbal-
anced fuzzy structures; Moreover, this study also en-
ables a new approach to FCA, and could also have
implications in further advances in the study of gener-
alized Chu correspondences, which will pave the way
to use the approach given in [21] to analyze more struc-
tures related to quantum logics, such as those in [1, 22].
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