£

ATLANTIS
PRESS

Atlantis Studies in Uncertainty Modelling, volume 1

11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)

WordNet and Prolog: why not?

Pascual Julidan-Iranzo® and Fernando Saenz-Pérez

b

%Dept. of Information Technologies and Systems,
University of Castilla-La Mancha, Spain, Pascual.Julian@Quclm.es
®Dept. of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain, fernan@sip.ucm.es

Abstract

This paper describes a set of Prolog mod-
ules with predicates to access the information
stored in the lexical database WordNet. The
alm is to use the defined predicates for em-
powering (fuzzy) logic programming systems
for approximate reasoning tasks. To achieve
this goal it is necessary to have means to cal-
culate the degree of relationship between the
words. Because WordNet relates words but
does not give graded information of the re-
lation between those words, it is necessary
to implement standard methods to compute
that gradation.

Keywords: Prolog, WordNet, Similarity
Measures.

1 Introduction

WordNet is a lexical English language database that
was manually constructed and maintained by the Cog-
nitive Science Laboratory of Princeton University un-
der the direction of psychology professor George A.
Miller [11]. The project began in 1985 and later, has
been promoted by Christiane Fellbaum [3, 4] among
other researchers.

WordNet stores words of four syntactic categories:
(1) nouns, (2) verbs, (3) adjectives, and (4) adverbs.
These words are grouped into sets of synonyms called
synsets. Roughly speaking, the words of a synset have
the same meaning in a determined context and they
represent a concept (or word sense). Each synset has
a synset_ID which is a nine byte field, where the first
byte defines the syntactic category of the synset (i.e.,
synset_IDs of a noun starts with 1, verbs with 2, etc.)
and the remaining eight bytes are a synset_offset.
Because a word has different senses (meanings), it can
belong to different synsets. WordNet is structured as a

semantic net where words are interlinked by lexical re-
lations, and synsets by semantic relations. Synonymy
and antonymy are the major lexical relations. Seman-
tic relations serve to build knowledge structures (i.e.,
networks of synsets —concepts). Depending on the syn-
tactical category, there are different semantic relations
able to build that structures.

Among the semantic relations that create knowledge
structures, we are mainly interested by those that
build hierarchies of concepts. Only nouns (through the
hyponymy/hypernymy relation) and verbs (through
the hyponymy /hypernymy relation and their different
entailment relations) can be organized as hierarchical
structures. There are 25 of these hierarchies for nouns
and 15 for verbs. All are linked to a unique “root”
synset, in order to link these kinds of words. Noun
hierarchies are far deeper than verb hierarchies. Ad-
jectives are more complex. They can be visualized as
“dumbbells” rather than as “trees”.

In this paper, our will is to use Prolog technology
to access WordNet. Surprisingly, there has been lit-
tle activity when applying declarative technologies,
and in particular Prolog, to consult the information
stored in WordNet. We only know the work of trans-
forming the WordNet database into Prolog format
made by Eric Kafe (available at https://github.
com/ekaf/wordnet-prolog), a preliminary work by
Sarah Witzig [16] (which, although available to the
public, was never published in a conference), and
a SWI-Prolog package supplied by Jan Wielemaker
(available at https://github.com/JanWielemaker/
wordnet). Only the work of Witzig defines predicates
able to provide complex information such as chains
of hypernym and other semantic information (see be-
low). However, we believe that the use of Prolog to
access the contents of WordNet can provide efficiency,
ease of programming, and deductive capacity.

We have developed a library of Prolog programs, able
to retrieve informations from WordNet, that can be
loaded into a Prolog system or incorporated to other

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 827

£

ATLANTIS
PRESS

(fuzzy) logic programming system implemented in Pro-
log. As an additional motivation for this work, we have
incorporated this library into the Bousi~Prolog fuzzy
logic programming system [15, 8] to facilitate approx-
imate reasoning tasks and a more flexible query an-
swering process.

2 WordNet and Prolog

WordNet can be accessed via a web interface or lo-
cally. In the last case there are different options,
but we are interested in the Prolog version for the
ease of connection to our logic programming systems.
This version is the WordNet 3.0 database released by
Eric Kafe which can be found at the URL https:
//github.com/ekaf/wordnet-prolog. The informa-
tion stored in the WordNet database is provided as a
collection of Prolog files. Each file contains the def-
inition of what is called an operator, which corre-
sponds to a WordNet relation. Files are named as
wn_<operator>.pl, where <operator> is the name of
a specific operation (relation). Therefore, each Word-
Net relation is represented by a Prolog predicate which
is stored in a separate file and defined by a set of Prolog
facts. The specification of these predicates are detailed
in [5]. In the following, we describe those predicates
which are interesting for the present work.

The file wn_s.pl contains all the information about
words stored in the WordNet database. It defines the
s operator, which has an entry for each word. The
structure of the s operator is:

s(Synset_id, W_num, Word, Ss_type,
Sense_number, Tag_count)

Where the W_num parameter indicates which word in
the synset is being referred to. The words in a synset
are numbered serially, starting with 1. The third ar-
gument is the word itself (which is represented by a
Prolog atom). The Ss_type parameter is a one char-
acter code indicating the synset type: n (noun); v
(verb); a (adjective); s (satellite adjective)! and r
(adverb). The Sense_number parameter specifies the
sense of the word, within the part of speech encoded in
the Synset_id. The higher the sense number, the less
common is the word. Finally, the Tag_count indicates
the number of times the word was found in a test cor-
pus. A higher tag count number means that the word
is more common than others with a lower tag count.

LA word is an adjective if it belongs to a head synset.
It is an adjective satellite if it belongs to a satellite
synset. Head synsets contain at least one word that has an
antonym. Satellite synsets do not contain any word that
has an antonym but their words are connected by similarity
with the words of a head synset. [16]

The file wn_hyp.pl stores hypernymy relations in the
binary predicate

hyp(synset_ID1,synset_ID2).

specifying that the second synset is a hypernym of the
first synset. This semantic relation only holds for nouns
and verbs. Because hyponymy is the inverse relation
of hypernymy, the operator hyp also specifies that the
first synset is a hyponym of the second synset.

The file wn_ent.pl stores entailment relations in the
binary predicate

ent (synset_ID1,synset_ID2).

which specifies that the second synset is an entailment
of first synset. As already commented, this semantic
relation only holds for verbs.

The file wn_sim.pl defines a relation between adjec-
tives which are similar in meaning.

sim(synset_ID1,synset_ID2).

Note that there is a symmetric entry sim(synset_ID2,
synset_ID1) defined for every clause, because similar-
ity works in both directions. This relation only holds for
adjectives. More precisely, it applies either two head
synsets, or one head synset and one satellite synset. It
does not apply to two satellite synsets.

3 The connection with WordNet

WN_CONNECT is a software application prototype that
aims to access the lexical database WordNet. One
of its main features is that it has been fully imple-
mented using Prolog. It is divided into ten mod-
ules, and some of them will be explained later on.
WN-CONNECT is available at https://dectau.uclm.
es/bousi-prolog/applications/. Since the source
code is well documented, in this paper we concentrate
in the functionality of predicates instead of a more
implementation oriented explanation of the predicates
implemented in the modules that conform this soft-
ware.

A general characteristic of the predicates implemented
in these modules is that the parameter Word (occur-
ring in that predicates) is a term that follows the syn-
tax Word[:SS_typel[:Sensenum]] and actually rep-
resents a concept identified by a synset ID. Where
SS_type is a one character code indicating the synset
type (n, v, a, s, or r) and Sense num specifies the
sense number (meaning) of the word, within the part
of speech encoded in the synset identifier. Sense_num
is a natural number: 1, 2, 3, ... Note that sometimes
this term may be partially specified; that is, SS_type

828

£

ATLANTIS
PRESS

and Sense_num could be variables (or even omitted).
Often, in this paper we call those terms word terms.

3.1 Base modules

Module wn This module was implemented by
Jan Wielemaker (available at: https://github.com/
JanWielemaker/wordnet). It discloses the Wordnet
Prolog files in a more SWI-Prolog friendly manner. It
exploits SWI-Prolog demand-loading and SWI-Prolog
Quick Load Files to load ‘just-in-time’ and as quickly
as possible.

The system creates Quick Load Files for each word-
net file needed if the .qlf file does not exist and the
wordnet directory is writeable. For shared installa-
tions it is adviced to run load_wordnet/0 as user with
sufficient privileges to create the Quick Load Files.

Module wn_synsets : This module implements pred-
icates to retrieve information about words and synsets
stored in WordNet. It uses the modules wn_portray
or wn depending on whether the evironment variable
WNDEVEL is set or not.

The public predicates implemented in this module are:

wn_word_info (+Word)

wn_gloss_of (+Word, -Gloss)

wn_synset_ID_of (+Word, -W_Synset_ID)
wn_synset_of (+Word, -W_synset)
wn_synset_components (+Synset_ID,-Synset_Words)

with the obvious declarative semantics. A couple of
goal examples follow:

?7- wn_word_info(lion).

INFORMATION ABOUT THE WORD ’lion’

Synset_id = 102129165

Word Order num. = 1

Synset type (n, v, a, s, r) =n

Sense number = 1

Tag_count = 2

Gloss:

large gregarious predatory feline of Africa
and India having a tawny coat with a shaggy
mane in the male

7- wn_synset_of(lion:n:1, W_synset).
W_synset = [lion:n:1, ’king of beasts’:n:1,
’Panthera leo’:n:1].

Module wn_hypernyms This module implements
predicates to retrieve information about hypernyms of
a concept (synset). These predicates only work with
either nouns or verbs. It uses the modules wn_synsets
and wn_utilities.

The public predicates implemented in this module are:

wn_hypernyms (+Hyponym, -List_SynSet_HyperNym)

wn_display_hypernyms (+Hyponym)
wn_display_graph_hypernyms (+Hyponym)
wn_lcs(+List_of_Words, -LCS)
wn_lcs/(+Wordl, +Word2, -LCS)

Notably, wn_hypernyms/2 returns a list List_SynSet
_HyperNym of hypernym synset_IDs of a word (term)
Hyponym. This is a non-deterministic predicate and,
therefore, it can compute all the HyperTrees of the
word Hyponym, and wn_display_graph_hypernyms/1
displays them graphically.

The predicates wn_lcs/2 and wn_lcs/3 compute the
Least Common Subsumer (LCS) of a set of words and
two words, respectively.

These predicates play an important role in the com-
putation of similarity measures between concepts.

Figure 1 shows the result of invoking the goal
wn_display_graph_hypernyms (person).

physical_entity_n_1

Figure 1: Hypernyms of the word person (all senses)

Note that, in Figure 1, each node draws the represen-
tative word of the respective synset (i.e., those with
W_num equal to one). For obtaining information about
all the words compounding the related synsets, the
predicate wn_display_hypernyms/1 is available:

7- wn_display_hypernyms (person:n:3).
[entity:n:1]
>> [abstraction:n:6,abstract entity:n:1]
>> [group:n:1,grouping:n:1]
>> [collection:n:1,aggregation:n:1,
accumulation:n:2, assemblage:n:4]
>> [class:n:1,category:n:1,family:n:3]
>> [grammatical category:n:1,
syntactic category:n:1]
>> [person:n:3]

829

£

ATLANTIS
PRESS

Module wn_hyponyms This module implements
predicates to retrieve information about hyponyms of
a concept (synset). These predicates only work with
either nouns or verbs. It uses modules wn_synsets and
wn_utilities.

The public predicates implemented in this module are:

wn_hyponyms (+Hypernym, -List_SynSet_Hyponyms)
wn_gen_all_hyponyms_of (+Synset_ID,
-List_all_Hyponym_IDs)
wn_hyponyms_upto_level (+Hypernym, +Level,
-List_SynSet_Hyponyms)
wn_gen_hyponyms_upto_level (+Synset_ID,+Level,
-List_Hyponym_IDs)
wn_display_graph_hyponyms (+Word, +Level)

These predicates works with a either a word term
(Hypernym) or a synset identifier (Synset_ID), giving
a list of synset identifiers of its hyponyms.

The predicate wn_gen_all hyponyms_of/2 generates
all the hyponyms of a concept (Synset_ID) and it is
specially useful for computing the information content
of a concept.

Among the predicates implemented in this module,
wn_display_graph_hyponyms/2 is relevant because it
shows a graphic representation of all the hyponyms
corresponding to all the senses of the word (term),
level by level. Nodes of the graph only show the
most representative word associated to that hyponym
synset. For instance, Figure 2 shows the result of sub-
mitting the goal wn_display_graph hyponyms (’Homo
sapiens’,2).

Cro_magnon_n_1

Boskop_man_n_1

Homo_sapiens_sapiens_n_1

Figure 2: Hyponyms of Homo sapiens (sense 2)

Module wn_similar_adjectives : This module defines
predicates that find the adjectives which are similar in
meaning to a input adjective. Do not confuse “similar”
with “synonym”. Synonym words are grouped in a
synset and they are words equal in meaning. In other
words, synonym words must have the maximum (top)
degree of similarity.

Most of the predicates defined in this module are based
on the operator sim: sim(synset_id,synset_id).
The sim operator specifies that the second synset is
similar in meaning to the first synset. This means
that the second synset is a satellite of the first synset
(or viceversa), which is the cluster head. This relation

only holds for adjective synsets contained in adjective
clusters.

This module uses module wn_synsets and implements
the following public predicates:

wn_sim_adjectives_of (+Adjective,
-List_sim_SynSets)
wn_display_sim_adjectives_of (+Adjective)
wn_display_graph_sim_adjectives_of (Adjective)
wn_display_graph_cluster_of (Adjective)

with the obvious declarative meaning.

The predicate wn_display_graph_cluster_of/1 dis-
plays a graphical representation of a cluster. A clus-
ter is a structure that links a head adjective with its
antonym adjective, and both of them with their re-
spective satellite adjectives.

3.2 Reasoning with WordNet

Once implemented the declarative tool WN-
CONNECT, which allows us to easily access the
information contained in WordNet, it can be used to
formulate all kinds of more complex questions. For
example, it can be asked how many names does this
lexical database store:

?- findall (Word, wn_s(_,_,Word,n,_,_),
Word_List),
length(Word_List, Word_Nouns).
Word_List = [entity, ’physical entity’, ...],
Word_Nouns = 146347.

Or better yet, it is possible to discover inconsistencies
in the stored information. The following queries:

?- wn_hyp(X,Y), wn_hyp(Y,X).
X 202422663,
Y = 202423762 .

?- wn_synset_ID_of (X_Word, 202422663).
X_Word = restrain:v:1 .

?- wn_synset_ID_of (Y_Word, 202423762).
Y_Word = inhibit:v:4 .

reveal that restrain is a hyperonym of inhibit and
vice versa, which constitutes an inconsistency.

But, above all, our main interest is to use the deductive
potential of a language like Prolog in combination with
WordNet for text mining (information retrieval, text
classification, and even sentiment analysis).

3.3 Implementing relatedness measures

Although a large variety of measures of semantic re-
latedness and similarity have been proposed [2], only
a limited number of tools have been implemented to
perform this task. Perhaps, WordNet::Similarity [13]

830

£

ATLANTIS
PRESS

is the most prominent. This tool has three similar-
ity measures based on path lengths between concepts
(PATH, WUP [17] and LCH [9]), and three based on
information content? (RES [14], JCN [7] and LIN [10]).
Additionally, WordNet::Similarity provides three re-
latedness measures (HSO [6], LESK [1] and VECTOR
[12]).

We have concentrated on the implementation of these
standard similarity measures. Semantic similarity is a
special case of relatedness which quantifies how much

two words are alike (or more precisely: how similar are
the concepts they denote).

In this section, we use the following definitions and
notations usually used when working in the framework

of WordNet:

e Given a HyperTree, the length of the shortest
path from synset c; to synset co is denoted by
len(cy,c2). The depth of a node ¢ is the length of
the shortest path from the global root to ¢, i.e.,
depth(c) = len(root, c).

e Some similarity measures use the notion of least
common subsumer (LCS) of two concepts, which
is the most specific concept they share as an an-
cestor. We write lcs(cq, ¢2) for the least common
subsumer of ¢; and cs.

Module wn_sim_measures : This module implements
predicates to compute standard similarity measures
between concepts based on counting edges. It uses
modules wn_hypernyms and wn_synsets, implement-
ing the following public predicates:

wn_path(+Wordl, +Word2, -Degree)
wn_wup (+Wordl, +Word2, -Degree)
wn_lch(+Wordl, +Word2, -Degree)

The predicate wn_path/3 implements the PATH sim-
ilarity measure. It takes two concepts (word terms
— Word:SS_type:Sense num) and returns the degree
of similarity between them. Note that we do not ex-
plicitly require information about the synset type and
sense number of a word term (that can be variables).

We check that both Word1 and Word2 are either nouns
or verbs but not combinations of them.

A concept may have different HyperTrees. Therefore,
depending on the different HyperTrees of ¢l and ¢2
involved in the computation, different similarity values
can be obtained according to the formula:

simparm(cl,c2) =1/len(cl, c2)

2The information content of concepts is derived from
tagged as well as un-tagged corpora of plain text.

where len(cl,c2) = (depth(cl) — LCS_depth) +
(depth(c2) — LCS_depth) + 1

This predicate combines all HyperTrees of ¢l and ¢2,
computes the respective similarity values and returns
the maximum.

The predicate wn_wup/3 implements the WUP similar-
ity measure. The computation scheme is like the one
explained in the wn_path/3 measure.

, 2 x depth(lcs(cl, c2))
1,¢2) =
simwup(cl,c2) depth(cl) + depth(c2)

The predicate wn_1ch/3 implements the LCH similar-
ity measure. The computation scheme is like the one
explained in the wn_path/3 measure.

y — l (17 2)
SUMLCH (C]" 62) - _ln<2Xmaz{de;?h(cc)fCEWordNet})
where
len(cl,c2) = (depth(cl) — LCS_depth)+

(depth(c2) — LCS_depth) + 1

and maz{depth(c)|c € WordNet} is the maximum
depth of a concept in the WordNet database. In
practice, is a fixed constant for each part of speech:
maxDepth(n) = 20 (nouns); maxDepth(v) = 14
(verbs).

Module wn_ic_measures : This module implements
predicates to compute standard similarity measures
between concepts based on information content (IC).
It uses the modules wn_hypernyms and wn_synsets.
The public predicates implemented in this module are:

wn_res (+Wordl, +Word2, -Degree)
wn_jcn(+Wordl, +Word2, -Degree)
wn_lin(+Wordl, +Word2, -Degree)
wn_information_content (+Word, -IC)

These predicates take two concepts (word terms —
Word:SS_type:Sense_num) and returns the degree of
similarity between them.

As in the last case, we do not explicitly require infor-
mation about the synset type and sense number of a
word, and we check that both Wordl and Word2 are
nouns or verbs but not combinations of them.

The predicate wn_res/3 implements the RESNIK simi-
larity measure, based on information content. Because
a concept can have different HyperTrees, depending on
the HyperTrees of ¢l and ¢2 involved in the computa-
tion, different LCSs are obtained, leading to different
similarity values:

simpps(cl, c2) = IC(les(cl, ¢2))

This predicate combines all HyperTrees of ¢l and ¢2,
computes the respective similarity values, and returns
the maximum.

831

£

ATLANTIS
PRESS

The predicate wn_jcn/3 implements the Jiang & Con-
rath [7] similarity measure, based on information con-
tent. The computation scheme is like the one ex-
plained in the wn_res/3 measure.

1
IC(c1)+IC(c2)—2xIC(les(cl,c2))

simjon(cl,c2) =

The predicate wn_1in/3 implements the LIN similar-
ity measure, based on information content. It follows
the same computation scheme just explained for the
wn_res/3 measure.

2 x IC(les(cl, ¢2))
IC(cl) +1C(e2)

simpin(cl, c2) =

The predicate wn_information_content/2 computes
the information content IC' of the concepts designed
by the different senses of Word. It relies on the pri-
vate predicate information_content/3, which com-
putes the information content IC' of the concept de-
noted by the Synset_ID. The function IC' is defined as
the natural logarithm of the probability of encounter-
ing an instance of a concept ¢ (measured in terms of a
relative frequency of use of the concept ¢ in a corpus).
That is, it is defined as:
frequency_of _use(c)

10(0) = Il Fse(Rool ID))

The parameter Root_ID is the synset number of the
concept in the root of the hierarchy.

Module wn_rel_measures : This module implements
a new relatedness measures between concepts based
on the Jaccard index. This measure has not a good
performance and it has to be improved in a future
work.

This module uses module etu (the Michael A. Cov-
ington’s Efficient Tokenizer), module wn_synsets and
module library(snowball) (the Snowball multi-
lingual stemmer library).

The public predicates implemented in this module is
wn_yarm(+Wordl, +Word2, -Degree). YARM (Yet
Another Relatedness Measure) compares the glosses
SGL_W1 and SGL_W2 of two words, after removing stop
words and stemming, by computing the Jaccard index
for them as the relatedness Degree:

|SGL.W1NSGL.W2|
[SGL_.WI1USGL_W2|

|SGL.W1NSGL.W2|
([SGL_W1[+|SGL-W2|-|SGL.-WIUSGL_W2]|)

Degree

4 Installing WN-CONNECT

In this section we give a brief guide on how to install
WN-CONNECT. First, keep in mind that WN-CONNECT
requires SWI-Prolog to be pre-installed.

In order to install WN-CONNECT, follow these steps:?

1. Download WordNet 3.0 Prolog version from
http://wordnetcode.princeton.edu/3.0/WNp
rolog-3.0.tar.gz, and unzip it in a direc-
tory of your choice (for example: /usr/local
/WordNet-3.0/wn_prologDB).

2. Open a terminal and set the environment variable
WNDB to this newly created directory. For exam-
ple, In a Bourne-like Shell, write: export WNDB=
/usr/local/WordNet-3.0/wn_prologDB.

3. Download the modules of WN-CONNECT from
https://dectau.uclm.es/bousi-prolog/
applications/ and unzip it in a directory of
your choice (for example: /home/myuser/wn).

4. In the terminal opened, extends the en-
vironment variable PATH with the previ-
ous directory. For example write: export

PATH=/home/myuser/wn: $PATH

5. Execute the shell script wn.sh.

If graph display predicates are used, Graphviz must be
accessible via the PATH environment variable.

5 Integration into Bousi~Prolog

As mentioned in the introduction, we started this work
with the initial intention of integrating WordNet into
the BPL system and thereby providing our language
with linguistic capabilities.

Bousi~Prolog (BPL) [15, 8] is a fuzzy logic programming
language that replaces syntactic unification of classi-
cal SLD-resolution by a fuzzy unification algorithm.
This algorithm provides a weak most general unifier
and a corresponding unification degree (which takes a
numeric value between 0 and 1). Intuitively, the uni-
fication degree represents the truth degree associated
with the computed instance to a goal. A proximity
relation is a reflexive and symmetric, but not neces-
sarily transitive, binary fuzzy relation on a set. Each
entry in this relation sets the approximation degree
D between two elements X and Y in the universe of
discourse, and it takes the form X ~ Y = D. The
operational semantics of BPL includes a fuzzy unifi-
cation algorithm which takes the proximity relation to
deliver the approximation degree for both fuzzy (weak)
unification and goal solving. Also, proximity relations
are used to implement fuzzy sets (linguistic variables),

3These steps are intended for installing WW-CONNECT in
a unix-like system. Similar steps would be needed for a
Windows system.

832

£

ATLANTIS
PRESS

which leads to an elegant, simple, natural and effi-
cient fuzzy Prolog system based on weak unification.
In addition, a user-defined lambda-cut sets the mini-
mum truth degree for goal solving, therefore pruning
non-relevant solving paths. Filtering, a recent tech-
nique included in this system, also aids in this pruning
at compile-time, therefore notably improving its space
consumption and solving time.

At least, a couple of system implementations have
been developed for this language, and its high-level
version has recently received different improvements
along the last years.* Since version 3.1, the proposed
work in this paper has been integrated in BPL for
making available WordNet in a fuzzy logic program-
ming setting. It has been tailored to extract linguis-
tic properties from WordNet and represent them as
an ontology. It is capable of automatically extract-
ing semantic similarity information from either the
IS-A relation (a generalization-specialization relation
taken from Wordnet’s hypernymy-hyponymy relation)
or based on the frequency of use concepts as explained
before (Section 3.3). Therefore, relatedness measures
are a key understanding for a system user to interpret
the results of this automatic process.

Provided that the user is interested in the semantic
similarity between specific concepts, a suitable ontol-
ogy can be built. The system provides a language di-
rective which can be used to automatically build such
an ontology:

:- wn_gen_prox_equations(+Measure,
+List0fListsOfPatterns).

Where Measure is the similarity measure which can
have any of the following constant values in M =
{ path, wup, lch, res, jcn, lin }. These con-
stants correspond to the relatedness measures intro-
duced previously (Section 3.3). The second argument
ListOfListsOfPatterns is a list for which each ele-
ment is another list containing the patterns that must
be related by proximity equations. The pattern can
be either a word or a word term (i.e., a structure
Word: Type:Sense as explained in Section 3). If the
pattern is simply a word, then a sense number of 1
is assumed, and its type is made to match all other
words in the same list.

A very simple example program containing only the
definition of an ontology is:

:— wn_connect.
:— wn_gen_prox_equations (wup,

“See its web page at https://dectau.uclm.es/
bousi-prolog. The system can be downloaded from
https://dectau.uclm.es/bousi-prolog/downloads/,
and there is also a web interface at: https:
//dectau.uclm.es/bplweb.

[[man,human,person],
[grain:n:8,wheat:n:2]1).

Note that the first line includes the directive :-
wn_connect, which establishes the connection between
Bousi~Prolog and WordNet. It can has an optional
parameter indicating the specific directory in which
WordNet is installed. When executed, it loads the
modules introduced in previous sections to make them
available for the generation of ontologies. On the first
run, it compiles those modules on-the-fly so that a
first program loading can take more time than proba-
bly expected. Further runs use the already compiled
files and loading times are greatly improved.

This example requires the system to automatically
build proximity equations between each pair of pat-
terns found for each list. For the first list, the sense
number is 1 and the common type is n. For the second
one, specific patterns are provided and only a proxim-
ity equation is generated. All such equations are:

R ={man ~ human= 0.56,
man ~ person= (.88888838888888888,
person ~ man = (0.8888888888888888,
human ~ person= 0.6086956521739131,
grain ~ wheat = 0.2608695652173913}

The proximity relation is defined by the reflexive and
symmetric closure R, containing a total of 13 entries.
The system computes each element X ~Y = D in R
by calling the predicate wn_measure (X, Y, D) for
each pair of atoms (X,Y) in the corresponding lists,
where measure is one of the symbols in the measures
M, so that goals to predicates such as wn_wup/3 are
called for computing D. These predicates are those
defined in Section 3.3

With this program loaded in the system, the user can
submit a goal like the following;:

BPL> man~human=D

D = 0.56
With approximation degree: 1 .
Yes

which returns in the logic variable D the approximation
degree corresponding to the weak unification of the
atoms man and human (that fits with their WordNet
semantic similarity as computed by the WUP mea-
sure).

6 Conclusions

In this paper, we have described a set of Prolog mod-
ules with predicates to access the information stored
in the lexical database WordNet. The predicates de-
fined in these modules can be either consulted from a

833

£

ATLANTIS
PRESS

Prolog interpreter or integrated in a (fuzzy) logic pro-
gramming system as built-in predicates, providing an
enhanced functionality to those systems. For instance:

1. Common but useful information about words and
synsets stored in WordNet can be obtained.

2. HyperTrees, which are represented as lists of hy-
pernyms synset IDs of an hyponym, can be com-
puted. These HyperTrees can be textually or
graphically displayed.

3. All the hyponyms of an hypernym can be com-
puted (level by level). The result is a tree of hy-
ponyms that can be graphically displayed.

4. All standard similarity measures found in Word-
Net::Similarity [13] has been implemented. Also
we provide a new relatedness measure based on
the Jaccard index.

The main motivation of this work was to construct
a library for empowering a fuzzy logic programming
language called Bousi~Prolog. The library WN-CONNECT
gives Bousi~Prolog access to WordNet and the ability to
generate automatically what we call proximity equa-
tions, linking two words with an approximation degree.
Proximity equations are the key syntactic structures
that, in addition to a weak unification algorithm, make
possible a flexible query answering process in this kind
of programming languages.

Acknowledgement

This work has been partially supported by the EU
(FEDER) and the State Research Agency (AEI) of
the Spanish Ministry of Economy and Competition un-
der grants TIN2016-76843-C4-2-R (project MERINET),
TIN2013-44742-C4-3-R (project CAVI-ART) and Madrid
Regional Administration under grants P2018/TCS-
4339 (BLOQUES-CM) and S2013/ICE-2731 (N-GREENS
Software-CM).

References

[1] S. Banerjee, T. Pedersen, Extended gloss overlaps
as a measure of semantic relatedness, in: Proc.
of the IJCAI, Morgan Kaufmann, 2003, pp. 805
810.

[2] A. Budanitsky, G. Hirst, Evaluating wordnet-
based measures of lexical semantic relatedness,
Computational Linguistics 32 (1) (2006) 13-47.

[3] C. Fellbaum, WordNet: An Electronic Lexical
Database, MIT Press, 1998.

[4] C. Fellbaum, WordNet(s), in: K. B. E. in Chief)
(Ed.), Encyclopedia of Language & Linguistics,

[13]

[14]

[15]

[16]

[17]

Second Edition, Vol. 13, Elsevier, Oxford., 2006,
pp. 665—670.

C. Fellbaum et. al., WordNet File Formats: pro-
logdb (5WN), at: https://wordnet.princeton.
edu/documentation/prologdb5wn (2006).

G. Hirst, D. St-Onge, Lexical chains as represen-
tations of context for the detection and correction
of malapropisms, in: WordNet: An electronic lex-
ical database, MIT Press., 1998, pp. 305-332.

J. J. Jiang, D. W. Conrath, Semantic similarity
based on corpus statistics and lexical taxonomy,
in: Proc. of the ROCLING Intl. Conference and
(ACLCLP), 1997, pp. 19-33.

P. Julidn-Tranzo, C. Rubio-Manzano, A Sound
and Complete Semantics for a Similarity-based
Logic Programming Language, Fuzzy Sets and
Systems (2017) 1-26.

C. Leacock, M. Chodorow, Combining local con-
text and wordNet similarity for word sense iden-
tification, in: WordNet: An electronic lexical
database, MIT Press., 1998, pp. 265-283.

D. Lin, An Information-Theoretic Definition of
Similarity, in: Proc. of the Intl. Conf. on Machine
Learning, Morgan Kaufmann, 1998, pp. 296-304.

G. A. Miller, WordNet: A Lexical Database for
English, Commun. ACM 38 (11) (1995) 39-41.

S. Patwardhan, Incorporating Dictionary and
Corpus Information into a Context Vector Mea-
sure of Semantic Relatedness, Tech. rep., Master’s
thesis, Univ. of Minnesota, Duluth (2003).

T. Pedersen, S. Patwardhan, J. Michelizzi, Word-
Net::Similarity - Measuring the Relatedness of
Concepts, in: Proc. of the Nat. Conf. on Al and
Conf. on Innovative Applications of AI, AAAI
Press / The MIT Press, 2004, pp. 1024-1025.

P. Resnik, Using information content to evaluate
semantic similarity in a taxonomy, in: Proc. of the
TJCATI 95, 2 Volumes, Morgan Kaufmann, 1995,
pp. 448-453.

C. Rubio-Manzano, P. Julidn-Iranzo, Fuzzy Lin-
guistic Prolog and its Applications, Journal of In-
telligent and Fuzzy Systems 26 (2014) 1503-1516.

S. Witzig, Accessing wordnet from prolog, avail-
able at Prolog Natural Language Tools: http:
//ail.ai.uga.edu/mc/pronto/ (2003).

Z. Wu, M. S. Palmer, Verb semantics and lexical
selection, in: Proc. of the Annual Meeting of the
ACL, Morgan Kaufmann Publishers / ACL, 1994,
pp. 133-138.

834

