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Abstract

We generalize the concept of moderate devi-
ation functions D : [0, 1]

2 → R̄ into (k + 1)
- dimensional moderate deviation function
D(k) : [0, 1]

k × [0, 1] → R̄ and propose a
D(k)-based method for constructing idempo-
tent aggregation functions. More, to enable
to introduce weights of groups of criteria (co-
ordinates) into our construction method, the
concept of normed (k+ 1)-dimensional mod-
erate deviation functions is proposed and ex-
emplified.

Keywords: Aggregation function, Devia-
tion function, Moderate deviation function,
Penalty function.

1 Introduction

The idea of deviation functions can be traced to the
deep history. So, for example, standard deviation
D(x, y) = y − x of an observation x and its estimate
y applied to a sample (x1, . . . , xn) yields a global de-

viation G(x1, . . . , xn, y) =
n∑
i=1

(y−xi) and its (unique)

root y∗, G(x, y∗) = 0, is just the arithmetic mean y∗ of

our sample x, i.e., y∗ = 1
n

n∑
i=1

xi. Hence the arithmetic

mean can be introduced by means of a deviation func-
tion. This idea was further formalized by Daróczy [7].

Definition 1.1 Let I be a real interval and let D :
I2 → R be a function such that

(i) for all x ∈ I, D(x, ·) : I → R is continuous and
strictly increasing;

(ii) D(x, x) = 0 for all x ∈ I.

Then the function D is called a deviation function.

It is obvious that for each fixed deviation function
D and sample x = (x1, . . . , xn) ∈ In, the function
G(x, ·) : I → R given by

G(x, y) =
n∑
i=1

D(xi, y)

is continuous, strictly increasing and attaining value
0, and thus there is unique solution of the equation

G(x, y) = 0. (1)

Definition 1.2 Let D be a given deviation function.
For each n ∈ N, the mapping MD : In → I given by
MD(x) = y, where y is the solution of (1), is called a
Daróczy mean.

Clearly, MD(x, . . . , x) = x for any x ∈ I, and also

min(x) ≤MD(x) ≤ max(x).

However, Daróczy means are not monotone, in general,
and thus not aggregation functions.

Example 1 Taking the deviation function D :
[−1, 1]2 → R given by D(x, y) = (x + 2)(y − x), we
can consider global deviation function

G(x, y) =
n∑
i=1

(xi + 2)(y − xi)

=y
n∑
i=1

(xi + 2)−
n∑
i=1

xi(xi + 2).

Then the related Daróczy mean MD : [−1, 1]n →
[−1, 1] (as a solution of (1)) is given by

MD(x) =

n∑
i=1

xi(xi + 2)

n∑
i=1

(xi + 2)
.

Then MD(−1, 1) = 0.5 and MD(−0.9, 1) = 201
410 < 0.5,

showing that MD is not an increasing function.
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Several other modification of Daróczy approach where
proposed and discussed in the literature, including

• Losonczi means [11, 12], where n deviation func-
tions D1, . . . , Dn are considered and (1) is turned
into

n∑
i=1

Di(xi, y) = 0. (2)

• Bajraktarevič means [1], where deviation func-
tions D1, . . . , Dn in (2) are considered as

Di(x, y) = wi(x)(s(y)− s(x)),

where wi : I → [0,∞[ is a weighting function and
s : I → R is continuous and strictly increasing
(compare Example 1, where w(x) = x + 2 and
s(x) = x).

• quasi-deviation functions and related quasi-
deviation means proposed by Páles [13].

Observe that several types of mixtures operators
(mixture functions) and their generalizations are
covered by the above deviation-based approaches,
see [14, 15]. All of these means are not monotone, in
general. To avoid this problem and thus to contribute
to the aggregation theory we have recently proposed
the concept of moderate deviation functions [8, 9].

Note first that, for a fixed positive integer n ∈ N,
an aggregation function A : In → I acting on a real
interval I is an increasing function satisfying the
boundary conditions

inf{A(x)|x ∈ In} = inf I (3)

and

sup{A(x)|x ∈ In} = sup I. (4)

For more details we recommend [10]. In this contribu-
tion we will deal with a fixed real interval I = [0, 1],
and then boundary conditions (3), (4) for an n-ary ag-
gregation function A : [0, 1]

n → [0, 1] can be rewritten
into

A(0, . . . , 0) = 0 (5)

and

A(1, . . . , 1) = 1. (6)

Several important information concerning aggregation
functions acting on I = [0, 1] can be found in [2, 3, 10,
17].

Definition 1.3 Consider a mapping D : [0, 1]
2 → R̄,

(where where R̄ = R ∪ {−∞,+∞}) fulfilling

(i) for all x ∈ [0, 1], D(x, ·) : [0, 1] → R̄ is increasing
(not necessarily strictly);

(ii) for all y ∈ [0, 1], D(·, y) : [0, 1] → R̄ is decreasing
(not necessarily strictly);

(iii) D(x, y) = 0 if and only if x = y ∈ [0, 1].

Then D is called a moderate deviation function, shortly
MDF. The set of all moderate deviation functions we
denoted as D.

Definition 1.4 Consider moderate deviation function
D ∈ D and n ∈ N then the function GD : [0, 1]

n ×
[0, 1]→ R̄ given by

GD(x, y) =
n∑
i=1

D(xi, y)

is called global moderate deviation function.

We can introduce modification of equation (1) for
moderate deviation functions D,

GD(x, y) = 0, (7)

but then, depending on D ∈ D and x ∈ [0, 1]
n
, the

equation (7) need not have a solution, or it may have
more solutions (in the later case, the set of all solu-
tions is an interval). These facts are reflected in the
following modification of Definition 1.2.

Definition 1.5 Consider D ∈ D, and n ∈ N, then the
mapping UD : [0, 1]

n → [0, 1] given by

UD(x) =
1

2

(
sup

{
y ∈ [0, 1]

∣∣∣∣ n∑
i=1

D(xi, y) < 0

}
+

+ inf

{
y ∈ [0, 1]

∣∣∣∣ n∑
i=1

D(xi, y) > 0

})
(8)

is called a D-mean.

We recall the standard conventions sup{y ∈ [0, 1] | y ∈
∅} = 0 and inf{y ∈ [0, 1] | y ∈ ∅} = 1.

Moreover, if x = (x, . . . , x), then

n∑
i=1

D(x, y) < 0 if and only if x < y,

n∑
i=1

D(x, y) > 0 if and only if x > y,

and hence UD(x, . . . , x) = x for any x ∈ [0, 1].

Theorem 1.1 Let D ∈ D. Then the D-mean UD :
[0, 1]

n → [0, 1] is an idempotent symmetric aggregation
function.
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Note that there is another closely related concept
to deviation functions, namely the penalty functions.
Also here they were introduced a studied first based
on binary functions P : I2 → [0,∞[ and then the

minimizers of a global penalty GP (x, y) =
n∑
i=1

P (xi, y)

were considered to represent the sample x. For more
details on penalty-based constructions of aggregation
functions we recommend [6, 18], and, in particular [5]
and [4]. In these later works, local penalty functions
with higher dimensions were proposed and discussed.
In particular, this approach has enabled to obtain an
arbitrary (idempotent) aggregation function by means
of penalty functions. The above idea has inspired us
to develop in this contribution more dimensional mod-
erate deviation functions and to apply them for con-
structing (idempotent) aggregation functions.
Our proposal is introduced, studied and exemplified in
the next Section 2. In Section 3, we introduce normed
(k+ 1)-dimensional moderate deviation functions and
apply them for introduction of weights of groups of
criteria (coordinates) into our construction of aggre-
gation functions. Finally, some concluding remarks
are added.

2 (k+1)-dimensional deviation
functions and construction of
aggregation functions

Definition 2.1 Let k ∈ N be fixed. A (k + 1)-
dimensional moderate deviation function is a mapping
D(k) : [0, 1]

k × [0, 1]→ R̄ such that

(i) for all x ∈ [0, 1]
k
, D(k)(x, · ) : [0, 1] → R̄ is in-

creasing (not necessarily strictly);

(ii) for all y ∈ [0, 1], D(k)( · , y) : [0, 1]
k → R̄ is de-

creasing (not necessarily strictly);

(iii) D(k)(x, . . . , x, y) = 0 if and only if x = y ∈ [0, 1].

The set of all (k + 1)-dimensional moderate deviation
functions is denoted as D(k).

Example 2 (i) Let D ∈ D = D(1) be a moderate

deviation function, then D(k) : [0, 1]
k × [0, 1]→ R̄

given by

D(k)(x1, . . . , xk, y) =
k∑
i=1

D(xi, y)

belongs to D(k).

(ii) For any idempotent aggregation function A :

[0, 1]
k → [0, 1] let D(k) : [0, 1]

k × [0, 1] → R̄ be
given by

D(k)(x, y) = y −A(x).

Then D(k) ∈ D(k).

(iii) Let D(2) : [0, 1]
2 × [0, 1]→ R̄ be given by

D(2)(x1, x2, y) = 9y2 − (x2 + 2x1)2.

Then D(2) ∈ D(2).

Remark 2.1 Observe that, for any k ∈ N, the class
D(k) is closed under positive linear combinations and
thus also convex. More, for any D(k) ∈ D(k) and any
permutation σ : {1, . . . , k} → {1, . . . , k}, also D(k),σ :

[0, 1]
k × [0, 1]→ R̄ given by

D(k),σ(x1, . . . , xk, y) = D(k)(xσ(1), . . . , xσ(k), y)

belongs to D(k). Also, if D(k1) ∈ D(k1) and D(k2) ∈
D(k2), then D(k1+k2) : [0, 1]

k1+k2 × [0, 1]→ R̄ given by

D(k1+k2)(x1, . . . , xk1+k2 , y) = D(k1)(x1, . . . , xk1 , y)

+D(k2)(xk1+1, . . . , xk1+k2 , y)

belongs to Dk1+k2 .

For an injective mapping ϕ : {1, . . . , k} → {1, . . . , n},
it is obvious that k ≤ n. We denote /ϕ/ = k.

Definition 2.2 Fix n ∈ N, and consider a system
Φ = (ϕ1, . . . , ϕr) of injective functions with co-domain
{1, . . . , n}, and a related system D = (D1, . . . ,Dr) such
that Di ∈ D(/ϕi/), i = 1, . . . , r. The generalized global
moderate deviation function GΦ,D : [0, 1]

n × [0, 1]→ R̄
is given by

GΦ,D(x, y) =
r∑
i=1

Di(xϕi(1), . . . , xϕi(/ϕi/), y).

Then a mapping AΦ,D : [0, 1]
n → [0, 1] given by

AΦ,D(x) =
1

2

(
sup{y ∈ [0, 1]| GΦ,D(x, y) < 0}

+ inf{y ∈ [0, 1]| GΦ,D(x, y) > 0}
)

(9)

is called a (Φ,D)-mean.

The next result validates the fact that the generalized
global deviation functions can be applied via (9) as a
valid construction method for idempotent aggregation
functions.

Theorem 2.1 Under constraints of Definition 2.2,
the (Φ,D)-mean AΦ,D : [0, 1]

n → [0, 1] is an idem-
potent aggregation function.

Example 3 Let n = 2. Consider Φ = (ϕ1, ϕ2), where
ϕ1 : {1, 2} → {1, 2} is given by ϕ1(1) = 2, ϕ1(2) = 1,
and ϕ2 : {1} → {1, 2} is given by ϕ2(1) = 1. Let
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D1 = D(2) given in Example 2(iii) and let D2 ∈ D(1)

is given by D2(x, y) = y− x. Then the related general
global moderate deviation function GΦ,D is given by

GΦ,D(x1, x2, y) = 9y2 − (x2 + 2x1)2 + y − x1,

and the related idempotent aggregation function AΦ,D
is given by

AΦ,D(x1, x2) =
1

18

(√
1 + 36(x1 + (x2 + 2x1)2)− 1

)
.

3 Normed (k+1)-dimensional
moderate deviation functions

In our recent contribution [16], we have observed that
the introduction of weights for single criteria (coordi-
nates) in D(1)-based construction of idempotent ag-
gregation functions needs some comparability of ex-
tended moderate deviation functions D1,D2 ∈ D(1).
This comparability was proposed to be measured by
the values D1

(
1
4 ,

3
4

)
and D2

(
1
4 ,

3
4

)
, both of them be-

ing necessarily positive. If, for D ∈ D(1) we have the
equality D

(
1
4 ,

3
4

)
= 1

2 , then D is called a normed mod-

erate deviation function. Obviously, D1

2D1( 1
4 ,

3
4 )

as well

as D2

2D2( 1
4 ,

3
4 )

are normed moderate deviation function.

We propose to extend this concept also for the classes
D(k), k ∈ N.

Definition 3.1 Let D(k) ∈ D(k) satisfy

D(k)

(
1

4
, . . . ,

1

4
,

3

4

)
=
k

2
.

Then D(k) is called a normed (k+1)-dimensional mod-
erate deviation function.

The above concept allows to introduce consistently
weights into construction method given by (9).

Definition 3.2 Under the constrains and notation of
Definition 2.2, let all considered Di ∈ D(/ϕi)/ be
normed and let w = (w1, . . . , wn) ∈ ]0,∞[r. Then the
related weighted generalized global moderate deviation
function GΦ,D

w : [0, 1]
n × [0, 1]→ R̄ is given by

GΦ,D
w (x, y) =

r∑
i=1

wiDi(xϕi(1), . . . , xϕi(/ϕi/), y)

and the related function Aw
Φ,D : [0, 1]

n → [0, 1] is given
by

Aw
Φ,D(x) =

1

2

(
sup{y ∈ [0, 1]| GΦ,D

w (x, y) < 0}

+ inf{y ∈ [0, 1]| GΦ,D
w (x, y) > 0}

)
. (10)

Theorem 3.1 Under constraints of Definition 3.2,
the function Aw

Φ,D : [0, 1]
n → [0, 1] is an idempotent

aggregation function.

Note that, for any positive constant λ > 0, Aw
Φ,D =

AλwΦ,D, and thus one can deal with normed weights sa-

tisfying
r∑
i=1

wi = 1 only. Observe also that we do not

consider null weights wi = 0, as this fact simply means
that neither ϕi nor Di are considered in construction
(10).

Example 4 Continuing in Example 3, let w1 = λ ∈
]0, 1[ and w2 = 1− λ. Then D2

(
1
4 ,

3
4

)
= 3

4 −
1
4 = 0.5,

i.e., D2 is normed. On the other side,

D1

(
1

4
,

1

4
,

3

4

)
=

81

16
− 9

16
=

9

2
6= 2

2
= 1,

i.e., D1 is not normed. However,

D̄1 =
D1

D1

(
1
4 ,

1
4 ,

3
4

) =
2

9
D1

is normed. Denote D̄ = (D̄1,D2). Then the idem-

potent aggregation function Aw
Φ,D̄ : [0, 1]

2 → [0, 1] is

given by

Aw
Φ,D̄(x1, x2) =

1

4λ

(√
gλ(x1, x2)− 1 + λ

)
, where

gλ(x1, x2) = (1− λ)2+ 16
9 λ

2(x2 + 2x1)2+ 8λ(1− λ)x1.

Observe that if λ → 1− then Aw
Φ,D̄(x1, x2) →

x2 + 2x1

3
(i.e., we are close to the weighted arith-

metic mean which is the unique root of the equation
D1(x2, x1, y) = 0, when x1, x2 are fixed).

Similarly, if λ → 0+ then Aw
Φ,D̄(x1, x2) → x1 (i.e., we

are close to the first projection which is the unique
root of the equation D2(x1, y) = 0, when x1 is fixed).

4 Concluding remarks

We have extended the concept of (normed) moderate
deviation functions for higher dimensions. Based on
these deviation functions, a new type of construction
for idempotent aggregation functions was proposed
and exemplified. Note that our approach allows to pre-
determine attitudes of some groups of arguments, as
well as to consider weights of such groups. We expect
several interesting applications in the decision making
domains, which will be the topic of our further study.
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