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Abstract

This paper presents many expert fuzzy exten-
sions of the Black-Litterman portfolio selec-
tion model. Black and Litterman identified two
sources of information regarding the expected re-
turns, and they combined these two sources of
information in one expected return formula. The
first source of information is the expected returns
from the Capital Asset Pricing Model and thus
should hold if the market is in equilibrium. The
second source of information is the views held
by the investors. The presented extension, ow-
ing to the use of a fuzzy random variable and ex-
perton, includes two elements that are important
from a practical perspective: linguistic informa-
tion and the multiple experts’ views. This paper
introduces the model extension sequentially and
then illustrates it by empirical example.

Keywords: Black-Litterman model, Fuzzy ran-
dom variable, Experton

1 Introduction

The Black-Litterman model (further BL model), which was
first published by Fischer Black and Robert Litterman [3],
provides a framework, which enables investors to com-
bine their unique views regarding the performance of vari-
ous assets with the market equilibrium by mixing different
types of estimates. The BL. model was expanded in [4] and
[5]. Bevan and Winkelmann [2] provided details on how
they use the BL model. The model was discussed point-
edly as well in [16] and [25]. Now, there are a variety of
models being labelled as Black-Litterman, although they
may be very different from the original model created by
Black and Litterman. Comprehensive taxonomy and a lit-
erature survey were provided in Walters [32] and Meucci
[27]. Investors are trapped between the expectations and
concerns regarding investing in the markets being persis-
tently volatile. Furthermore, as is well known, the feelings

of investors on returns can be different. What for some-
one is an attractive profit, for others is acceptable; for oth-
ers still, it does not meet the minimum criteria. Another
problem is the precise expression of the investors’ feelings.
Since the investor’s view regarding future asset return is al-
ways subjective and imprecise, the fuzzy approach appears
to be a natural extension of the BL model. Lawrence et al.
[23] proposed fuzzy goal programming and assuming mean
portfolio return and beta, the sensitivity of the expected ex-
cess asset returns to the expected excess market returns as
fuzzy numbers. The researcher used a fuzzy trapezoidal
number to represent investor views and omit the consis-
tency aspect in combining prior probabilistic distribution
and fuzzy views. Gharakhani and Sadjadi [13] assumed
views as fuzzy numbers and mean asset return as well as
covariance as fixed estimated parameters. The researchers
focused on fuzzy compromise programming to find a so-
lution of fuzzy return maximization and fuzzy beta mini-
mization. Bartkowiak and Rutkowska [1] were the first to
propose an approach combining the imprecision of predic-
tions with the Black-Litterman model by using fuzzy ran-
dom variable. The researchers also began a discussion on
the aggregation of opinions of various experts by using the
expected value of a fuzzy random variable. Fang et al. [11]
also use a fuzzy random approach for investor views and
redefine the covariance of the views using variance of a
fuzzy random variable. However, both papers use a scalar
variance; such a crisp evaluation of the dispersion does not
appear to match with an epistemic interpretation of fuzzy
data in these cases. In the literature, we were unable to find
examples of the model that consider more than one opinion
on views.

In this paper, we introduce extensions of the BL model with
linguistic expressed views from different experts/many
sources. In practice, we are often confronted with random
experiments whose outcomes are not numbers but are ex-
pressed in inexact linguistic terms, in particular, predictions
of events in the stock market. As an example, consider an
expert who is questioned about how a planned tax on min-
erals will affect the valuation of energy companies’. Pos-
sible answers would be slight decrease in values, not be
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affected or strongly reduce the value and so on. A natu-
ral question is, how shall we consider these opinions when
choosing a portfolio? As a tool for handling linguistic in-
formation, the fuzzy random variable (further f.r.v.) is used.
Operationally, a f.r.v. is a random variable taking fuzzy val-
ues.

The concept of f.r.v. was introduced by Feron [12]. Later,
different approaches to this concept have been developed:
[22], [28], [21] and a unified approach [19]. The overview
of different variants can be found in [8] and [15]. Contrary
to data-based computations on the market, representing ex-
pert knowledge is incomplete; that is, one cannot establish
the truth or falsity of proposition. Therefore, in our study,
we focus on an epistemic approach to modelling. In this
approach, a set represents incomplete information about a
specific point value and contains all possible values under
a given state of knowledge; therefore, a set can potentially
be reduced into a more precise piece of information by col-
lecting more knowledge. Thus, an epistemic model is a
mathematical representation both of reality and the knowl-
edge of reality that explicitly explains the limited precision
of our measurement capabilities [9]. In the situation here,
the probability space (Q, P) is available; however, each re-
alization of the random variable (an imprecise view) can be
represented as a set. Therefore, for modelling, we use ill-
known random variables (cf. [9]).

In a market reality, the quantity of information and recom-
mendations is constantly increasing. Many services, such
as Bloomberg or Reuters Thompson, allow access to the
predictions of various experts, and investment firms pay
their own experts. However, no one is based on a sin-
gle piece of information, and predictions of individuals
and their confidence can greatly vary. Thus, the problem
arises considering different (disjointed or partially coher-
ent) opinions of various experts or information from mul-
tiple sources. The aggregation method for linguistic expert
opinion is one of the current challenges addressed in port-
folio optimizing literature.

We use expertons to address and aggregate opinion. Exper-
tons, introduced by Kaufmann [18], are a generalization
of a probabilistic set when cumulative probabilities are re-
placed by intervals, which decrease monotonically. Exper-
tons are used to obtain a better understanding of collected
information from clients or decision makers and are par-
ticularly popular in economic and social applications. In
[7] the mathematical formalization of the concept and its
relationship with ®-fuzzy sets and probabilistic fuzzy sets
is analysed. Expertons were used among others in finan-
cial diagnosis ([10],[24]) to classify business sectors in the
stock market [6], in the sensory analysis of products [33]
or during the construction of the semantic scale of ques-
tionnaires [29], in group decision making [26] to establish
the credit risk level of an investment project [30] and others
[31].

In this paper, we propose also a new measure for mean
value of experton and discrepancy of opinion. The arith-

metic average value of the upper and lower end of exper-
ton intervals is usually used as expected/mean value (cf.
mathematical expectation of an experton in [7]). Thus, out-
liers (opinions that stand out from the rest) significantly
affect the mean value, which, in our application, is very
unwanted. Thus, we use the average value of a function
over the whole interval. In addition, it is important to know
what degree of uncertainty the aggregated/average opin-
ion has. We propose the intuitive measure define as the
difference in area between upper and lower bound of ex-
perton. This approach allows one easily to determine the
confidence level of aggregated views, which is needed in
the Black-Litterman model. The main advantage of the
BL model is intuitiveness and ease of application. The
extended model presented in this article, despite extensive
mathematical tools, retains these two features.

The remainder of this paper is organized as follows. In
Section 2, we briefly present BL. model. In Section 3, we
introduce the fundamental theory of f.r.v. and experton.
Section 4 presents the new BL model with linguistic views.
Section Spresents an illustrative example based on an opin-
ion/views survey . The last section concludes and summa-
rizes the study.

2 The Black-Litterman model

The BL model enables investors to combine their unique
views regarding the performance of various assets with the
market equilibrium in a manner that results in intuitive, di-
versified portfolios. Here, we act in accordance with [16],
[32] and [27]. We consider a market of n asset classes
whose returns are normally distributed:

r~N(mX). (1)

The covariance X is estimated by past return realizations.
To specify m, BL acknowledge and address the issue esti-
mation risk: since m cannot be known with certainty, it is
modelled as a random variable whose dispersion represents
the possible estimation error. In particular, BL state that m
is normally distributed:

m~N(mXy), 2)

where 7 is our estimate of the mean and X is the vari-
ance of the unknown mean m about our estimation. The
BL model begins with a neutral equilibrium portfolio for
the prior estimate of returns. The model relies on General
Equilibrium theory to state that, if the aggregate portfolio
is at equilibrium, each sub-portfolio must also be at equi-
librium. The model can be used with any utility function,
which makes it very flexible. In practice, most practitioners
use the Quadratic Utility function and assume a risk-free
asset; thus, the equilibrium model simplifies to the Capital
Asset Pricing Model (CAPM). The neutral portfolio in this
situation is the CAPM market portfolio. CAPM is based on
the concept that there is a linear relationship between risk
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and return. Further, CAPM requires returns to be normally
distributed. This model is of the form:

E(r) =rf+Brm, ©)

where 7/ is the risk-free rate, r,, is the excess return of mar-
ket portfolio, and f is a regression coefficient. With an
equilibrium excess return, we can optimize the utility func-
tion. If the utility function is quadratic, we have:

o
U=wn— EWTZW, (€))

where U is the investor utility function, w is vector of
weights, 7 is the vector of equilibrium excess returns, &
is the risk aversion coefficient, and ¥ is the covariance ma-
trix of the excess returns. U is a convex function, therefore,
it will have a single global maximum. If we maximize the
utility with no constraints, there is a closed form solution.
If we follow any constraints, we must find the maximum
numerically. However, we need to have a value for 8, the
risk aversion coefficient. This coefficient characterizes the
expected risk-return tradeoff. It is not essential to have an
estimate of the investor’s risk aversion. The scaling factor
can be calculated from the expected return and the variance
of the market. One means to find J is:

5= )

(om)?

where r is the total return on the market portfolio and o,
is the variance of market portfolio. Is it possible to link &
with Sharpe Ratio (SR). Because SR is given by:

_r-r

SR = 6
o (6)

thus SR
6=— 7

Om

We continue to need the variance of our estimate of the
mean i.e., Xy 2. Black and Litterman made the simplifying
assumption that the structure of the covariance matrix of
the estimate is proportional to the covariance of the returns
Y (cf. eq. 1). The researchers created a parameter 7, as
the constant of proportionality: Yz = TX. As noted, the
BL model enables the specification of the investors’ views
on the estimated mean excess returns. It is required that
each view is unique and uncorrelated with the other views.
Additionally, it is required that views are fully invested,
either the sum of weights in a view is O (relative view) or
is 1 (an absolute view). It is not required a view on any or
all assets. We will represent the investors’ views on assets
using the following matrices:

e P, ak xnmatrix of the asset weights within each view.
For a relative view the sum of the weights equals 0, for
an absolute view the sum of the weights is 1.

e O, ak x 1 vector of the returns for each view.

e Q. ak x k matrix of the covariance of the views. Q is
diagonal as the views are required to be independent
and uncorrelated. Q™! is known as the confidence in
the investor’s views. The i-th diagonal element of Q
is represented as @;.

Q, the variance of the views is inversely related to the in-
vestors’ confidence in the views, however the basic BL
model does not provide an intuitive way to quantify this
relationship. It is up to the investor to compute the vari-
ance of the views Q. There are several ways to calculate €,
among others:

e proportional to the variance of the prior,
e use a confidence interval,

e use the variance of residuals in a factor model.

First, in the most common method, it is assumed that the
variance of the views is proportional to the variance of the
asset returns, as the variance of the prior distribution is. He
and Litterman [16] set the variance of the views as follows:

Q = diag(PEP). (8)

In the BL model, the prior distribution is based on the equi-
librium implied excess returns. One of the major assump-
tions of the model is that the covariance of the prior esti-
mate is proportional to the covariance of the actual returns,
but the two quantities are independent. The parameter 7
will serve as the constant of proportionality. The condi-
tional distribution is based on the investor’s views. The
investors’ views are specified as returns to portfolios of as-
sets, and each view has an uncertainty which will impact
the overall mixing process. The posterior distribution from
Bayes Theorem is the precision weighted average of the
prior estimate and the conditional estimate. We can now
apply Bayes theory to the problem of blending the prior
and conditional distributions to create a new posterior dis-
tribution of the asset returns:

r~N(E(r),M), ©)
with mean:
/ -1 ,
E(r)= {(’CE)A—I—PQ*]P} [(Tz)flﬂ—&—PQ*]Q}’

(10)
and covariance:

M= [(rz)—l +PIQ‘1P]71‘ (11)

With the posterior distribution it is possible to set and solve
a mean-variance optimization, possibly under a set of con-
strains, such as boundaries on asset classes or a budget con-
straint. Solving optimization, we use the same utility func-
tion as for equilibrium returns 4.
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3 Preliminaries

3.1 Fuzzy random variable

In the case of predictions about the future rate of return we
model real-valued random attributes from which the avail-
able information is imprecise. Thus, it is natural to use
fuzzy random variable. There are two main approaches to
random mechanisms producing fuzzy values. According
to Puri and Ralescu [28] the observations of certain ran-
dom experiments do not consist of numerical outputs but
only of vague linguistic terms. According to Kwakernaak’s
concept [22] the random mechanism behind fuzzy random
variables produce real-valued data that cannot be exactly
perceived. An explanation of formal differences and their
interpretations in different types of fuzzy random variables
can be found in [14]. We act in accordance with Kwaker-
naak’s idea, which was later extended by Kruse [20] and
Kruse and Meyer [21].

Let (Q,A,P) be a probability space modelling a random
experiment and F(R) be the space of all fuzzy numbers.
A mapping x : Q — F.(R) is said to be a fuzzy random
variable associated with (Q,A,P) if it satisfies for each
a € (0;1] that both:

infe:Q—Rand supyy: Q—R (12)

are real-valued random variables, where:

® X is the interval-valued o-level mapping,
* Xa(®) ={xeR:x(0)(x)>a},
o infxq(®),sup xa(®) € xo(), forallo € Q.

3.2 Fuzzy views

As Black and Litterman did, we will not specify the method
for utilizing an expert or experts’ views. Consider a group
of experts who evaluate one view. Each expert expresses
his/her evaluation by interval. The goal is to combine all
experts’ evaluations into a single one. Moreover, we also
need information on how reliable/consistent this aggregate
opinion is.

3.3 Experton theory

Let D be a set of opinion (views). The group of b experts
is requested to express their subjective opinions on each
element from D in the form of a confidence interval

Vd €D: [al(d),a}(d)] C [0,1], (13)
where C denotes an interval inclusion and j is the number
of an expert.

For example, we ask 15 experts their opinion regarding
how they understand the small increasing return rate. We
received 15 interval values, as shown in Figure 1.Using
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Figure 1: Interval valuation of term “small increase”.
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Figure 2: Experton for term “small increase”.

the standard arithmetic average, we can say that, on aver-
age, experts have considered a small return rate of approx-
imately 9%, with the values from 5% to 13%. Suppose
we have a set of monotone compatibility levels: 0 < o <
oy < ...< oy <1 We consider the statistics for which each
possible alternative (opinion) d € D involves the values of
both the lower and the upper bound of confidence intervals.
The cumulative distribution F; (a,d) (the lower cumulanta)
is then given by a(d), and F*(¢t,d) (the upper cumulanta)
is then given by a}(d) as follows:

F.(a,d) = f“i("”zo‘fl,]=1727 =121,
' (14)
Z]:a*f(d)Z(x, 1 .
F'(a,d) = jr J=1,2,...,ni=1,2,...,1,
(15)

where Zj:a-,{ ( d)zail (Zj:aj.(d)za,- 1) counts the number of
lower (upper) bounds of confidence intervals for which
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al > o (j:a; (d) > a;); Thus, we obtain
V4 €D,Yy €[0,1]: A(d) = [Fu(at,d), F*(a,d)]  (16)

Experton for a small increase, based on the valuation pre-
sented in Figure 1, is shown in Figure 2. We define the
mean value of experton as an interval 4 = [g,,€*], where

max(a’(d))
F.(&.) = 1 : I Rd
( ) max(a}f(d))ﬂnin(ai(d)) min(al(d)) . 17
- 1 max(a;‘- (d) .,
F*(e*) = ) F*dx

max(a;‘-(d))fmin(ai(d)) min(ai-(d)
The area between upper and lower bounds can be inter-
preted as the dispersion of opinions. Thus, the @; is calcu-
lated as:

D) g D g
W = min(al(d)) min(ax(d)) (18)

max(a’(d)) — min(al(d))
The example valuation has mean value [0.1038,0.1515]
with dispersion 0.2767 (see Figure 3) The most important
feature of the above approach, next to the intuitive calcula-
tion, is robustness for extreme values and no loss of infor-
mation in case of dispersed (volatile) data sets. Let us once

0.8

levels
0.4

0.0

I
I
I
I
I
[
0.00 0.05 0.10 0.15 0.20 0.25 0.30

bounds

Figure 3: Mean value (interval between dashed lines) and
dispersion (grey area) of experton “small increase”.

more examine an example small increase from our survey.
In A let the respondents be no. 12, 13, 14; in group B, re-
spondents are no. 11, 12, 15. As we observe (Figure 1) in
group A, respondents are unanimous, and everyone noted
the same interval [10%; 20%]. Kaufmann’s mean is 15%;
in the proposed approach, the mean is also 15% with dis-
persion 5% resulting from the interval’s width. In group
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Figure 4: Mean value and dispersion of “small increase”
expertons for group A (upper panel) and B (bottom panel).

B, respondents pointed to respective intervals: [5%; 15%],
[10%; 20%], [10%; 30%]. The Kaufmann’s mean remains
15%; however, our mean this time is the interval, [13.25%;
17.67%], with dispersion of 12.5%. Expertons for group A
and B with their means are shown in Figure 4.

4 Black-Litterman model with linguistic
views

This section introduces the BL model with linguistic views.
The Black-Litterman model begins with a neutral equilib-
rium portfolio for the prior estimate of returns, because the
model relies on General Equilibrium theory. This portion
of the BL. model is in the new approach with no changes.

4.1 Investors’ view

Investors have specific views regarding the expected return
of certain assets in a portfolio, which differ from the im-
plied equilibrium return. The Black-Litterman model al-
lows such views to be expressed in either absolute or rel-
ative terms. The new BL model also allows the views to
be expressed in linguistic form and the occurrence of many
predictions/views in relation to a single asset.

Let us consider the investment planning for 2011; there-
fore, we use the period with the Eurozone crisis. The stan-
dard BL format view will appear as Banks will have an
absolute excess return of -5%. Fuzzy BL format views:
Banks will lose slightly/significant.

After fuzzy modification in BL model we can consider
multiple views in the following forms:

e cxpert 1: Banks will lose slightly,

o expert 2 The situation will not affect the bank’s valua-
tion,
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o expert 3 The Eurozone banking system may lose ap-
proximately 3% of its value.

We assume that there are b experts. Every expert formu-
lates views about each asset. We aggregate the views using
experton; as a fuzzy view, we use the proposed experton’s
mean and confidence: 1 — @;, where @; is dispersion level,
calculated according to eq. 18.

4.2 The new BL formula

Having specified the prior estimate of returns (7,X), the
scalar 7, fuzzy view Q and the covariance matrix of the
error Q, all of the inputs are then entered into the Black-
Litterman formula, and the new combined return vector

E [r] is derived as follows:

/ -1 / ~

El= [ +Pe'p| D) 'z+ P10
19)
The covariance matrix of join distribution is:

_ / -1

=[(x) " +P Q0] (20)
Optimal portfolio weights are computed by solving the
optimization problem. This problem can be a traditional
mean-variance approach beginning with equilibrium ex-
pected returns as well as the maximization of utility func-
tion. Using the same methodology as computing the equi-

librium returns (4), we will use the quadratic utility func-
tion, as follows:

2

where w vector of weights invested in each asset, E - the
new combined return vector, M - new covariance matrix.
As expected returns are fuzzy vector, it is a fuzzy optimiza-
tion problem. A different method for fuzzy optimization
can be found in [17]. Arriving at the optimal portfolio is
somewhat more complex in the presence of constraints. We
consider only budget constraints that force the sum of the
total portfolio weights to be one.

S Empirical example

The goal of this section is to illustrate the new BL model
and compare the results with those of the standard BL
model.

5.1 Data

To create an empirical example, we choose data: gold
(XAUUSD), stocks (S&P500), bonds (S&P U.S. Aggre-
gate Bond Index). The chosen instruments are easily rec-
ognizable. Additionally, these instruments represents dif-
ferent class of assets, which investors treat interchangeable.

We consider only 3 assets because the BL model is gener-
ally used to choice from different types of assets. In April
2017, we asked 15 members of Financial Engineering Stu-
dents Interest Group to provide a linguistic assessment of
future rates of return in the May to September 2017 period
for stocks, gold and bonds. The same group was surveyed
on the meaning of linguistic terms; therefore, we can cal-
culate expertons and what it means. The determined values
are presented in Table 1.

assets type | crisp mean experton mean
shares -0.0053 | [-0.0120, -0.0077]
bonds 0.0080 [0.0005, 0.0045]
gold 0.0021 [0.0089, 0.0169]

Table 1: Mean value of views

5.2 Algorithm

The algorithm can be determined by the following steps.

1. Vector of equilibrium calculation. At the beginning of
each half-year, we calculate the vector of equilibrium
excess return and the covariance matrix of the excess
returns. For these calculations, we use data from the
previous year. We calculate the risk aversion param-
eter for benchmark portfolio to be 4.46, and we use
0 = 4 for our model. However, our results are not ma-
terially affected by this choice of parameter. Then, we
find the maximum of function (4) in three cases for
each model:

e with no constraints,
e subject to the sum of weights is equal 1,

e subject to the sum of weights is equal 1 and no
short selling.

Thus, we find equilibrium portfolios (marked with
CAPM) that are used as a benchmark. In addition, the
benchmark (futher: berk) will also be a portfolio built
in equal measure from all of the considered assets.

2. Views aggregation and following matrices creation:

e P—3x3,
e O—3x1,
e 0—-3x1,
e O—3x3.

3. Combined return vector calculation. With matrices P,
0O and Q, we calculate the new combined return vec-
tor E(r) (10) and covariance matrix of the join dis-
tribution M (11). Similarly, in the fuzzy case, with
matrices P, O and corresponding Q we calculate the
new combined return vector £ (r) (19) and the covari-
ance matrix of the join distribution M (20). We use

parameter T = 1.
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Figure 5: Results of portfolios with an initial value of 100

4. Utility function optimization. Thereafter, we again
optimize utility function (4) and fuzzy utility function
(21) with constraints.

5.3 Results

We check performance of all portfolios every month during
the next six months, start value for each portfolio equals
100; the results are presented in Table 2 and Figure 5.
As we can observe, the views in study period were not
achieved. However, the use of expertons and fuzzy views
helps maintain the value of portfolios at the benchmark
level, and, in the case without constraints, attains higher
profits from investment.

30.06 | 31.07 | 31.08 | 30.09 | 31.10

Berk 99.34 | 100.92 | 102.59 | 103.63 | 102.54
CAPMI1 | 9855 | 101.41 | 104.67 | 103.33 | 104.00
CAPM2 | 9855 | 101.11 | 103.98 | 102.66 | 103.18
CAPM3 | 98.65 | 100.78 | 103.53 | 102.01 | 102.19

BL1 84.86 | 87.55 | 12825 | 8597 | 62.89
BL2 86.87 | 82.47 | 105.11 71.82 | 50.11
BL3 97.86 | 100.06 | 104.10 | 100.95 | 100.22
fBL1 143.84 | 146.80 | 150.53 | 148.68 | 149.10
fBL2 98.28 | 100.92 | 104.22 | 102.40 | 102.66
fBL3 98.39 | 100.54 | 103.71 | 101.66 | 101.55

Table 2: Results of portfolios

6 Conclusion

The mean-variance optimization is an essential tool for
portfolio managers. It does have certain weaknesses, such
as the model’s sensitivity to small changes in initial val-
ues and the estimation errors. The BL model, in particu-
lar, offers a useful framework that can increase the perfor-
mance and robustness of the portfolio. Additionally, the BL
model has proven very successful in reducing the estima-
tion errors. The fuzzy extension of BL model, presented
in the paper, allows to include linguistic views for many
view sources. To model the linguistic view, f.r.v is used.
This approach lets one formulate intuitive views, as well

as set the opinions of a group of experts. The use of lin-
guistic views of investors requires their acquisition. There
is a natural question about the subjectivity and imprecision
of information. To examine differences in the opinions of
investors, the survey has been conducted. In our study, re-
spondents’ opinions were significantly overstated in com-
parison to historical rates of return. This finding suggests
inclusion of views of expectations and desires. In our ex-
tension, investors are independent. In future works, this
assumption will be repealed.
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