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Abstract

An augmented appraisal degree (AAD) has
been conceived as a mathematical repre-
sentation of the connotative meaning in an
experience-based evaluation, which depends
on a particular experience or knowledge.
Aiming to improve the interpretability of
computer predictions, we explore the use of
AADs to represent evaluations that are per-
formed by a machine to predict the class of a
particular object. Hence, we propose a novel
method whereby predictions made using a
support vector machine classification process
are augmented through AADs. An illustra-
tive example, in which the classes of hand-
written digits are predicted, shows how the
augmentation of such predictions can favor
their interpretability.

Keywords: Explainable artificial intelli-
gence, Augmented appraisal degrees, Aug-
mented fuzzy sets, Support vector machines

1 Introduction

As the use of artificial intelligence (Al) for business or
user needs increases, the demand for transparency and
interpretability on its predictions is also growing [8].
Such demand is mainly created because Al involves
complex techniques and algorithms that, in most of
the cases, do not offer explanations for their outcomes
and, thus, the reasons behind computer predictions
might remain unknown [15, 17].

As an example in which the demand for transparency
and interpretability could be strong, consider a sys-
tem that uses support vector machines (SVMs) [18, 19]
to classify animal diseases according to the common
or distinctive characteristics that those diseases may
have. Although the system uses the characteristics of
a disease to predict the class it belongs to, the system

only offers the predicted class as output. In this case, a
decision maker, say a veterinarian, might be reluctant
to make a key decision, say prescription of antibiotics,
based on a computer prediction without knowing what
has been relevant to support that prediction. A chal-
lenge in this regard is, how can the reason of such a
prediction be explained?

To address that challenge, in this paper we explore the
use of augmented appraisal degrees [11] (AADs) for the
characterization of evaluations that are performed by
a computer to predict the class of an object. By means
of an AAD a computer can record not only the level to
which an object belongs (or not) to a particular class,
but also several hints that justify that level. Hence, we
propose a novel method by which predictions offered
by a computer during a SVM classification process are
augmented with AADs to make such predictions (bet-
ter) interpretable.

To illustrate how the proposed method works, we de-
scribe an example in which the class of a handwritten
number is predicted by a classification process that
uses SVMs. The example’s idea is depicted in Fig-
ure 1: while Figure 1(a) shows a handwritten number,
which is used as input, Figure 1(b) shows a representa-
tion of why the proposition “the handwritten number
isa ‘6’” is true up to a specific level. Along with the vi-
sual representation, the proposed method can return
the following output: “The green part suggests that
the drawing is a ‘6’ with a computed grade of 0.23;
yet, the red part, which a ‘6’ should have, and the
gray part, which a ‘6’ should not have, indicate that
it is not a ‘6’ with a computed grade of 0.37.”

(a) (b)

Figure 1: Predicting handwritten numbers.

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 158



£

ATLANTIS
PRESS

As could be noticed in the above illustration, the out-
put not only indicates why a proposition (or predic-
tion) is true, but also why it is not. This important
aspect illustrates why AADs have been integrated into
the intuitionistic fuzzy set (IFS) [3, 4] concept.

In the next section, we present the AAD concept and
briefly explain how it can be integrated into the IFS
concept. Then, we explain our novel method to aug-
ment computer predictions with AADs in Section 3
and illustrate how to use it in Section 4. After that,
other existing techniques for explaining individual pre-
dictions are reviewed in Section 5. Finally, we conclude
the paper in Section 6.

2 Preliminaries

A classification is commonly understood as a process
in which several objects are arranged in (usually well-
known) classes (or categories) according to the com-
mon or distinctive characteristics that those objects
may have. Hence, to predict the class of an object,
a classification algorithm can first look into the fea-
tures of the object. Based on this, it can evaluate
the level to which the object is part of each of the
well-known classes. Finally it can provide the best
evaluated class(es) as an answer.

In the framework of fuzzy set theory [20], an evalua-
tion of the level to which an object, say =, belongs
to a class, say A, can be denoted by a membership
grade, which is a number p(z) in the unit interval
[0,1). For instance, if x represents the handwritten
number shown in Figure 1(a) and A denotes (what has
been learned about) the class of handwritten 6’s, then
pa(z) = 0.23 indicates the level to which x is member
of A. It is worth mentioning that, after represent-
ing two evaluations by membership grades, a numeric
comparison can be used to compare them. Thus, e.g.,
pa(x) < pp(r) means that the level to which z be-
longs to A is less than the level to which z belongs
to B — in this case, B would be the best evaluated
class of x if the collection of well-known classes is only
constituted by A and B.

In some situations, an object can also have features
suggesting it does not belong to a given class — see,
e.g., Figure 1(b) in which the gray and the red parts
suggest the handwritten number is not a ‘6’. In such
situations, the evaluation of an object x can be better
described in the intuitionistic fuzzy set (IFS) frame-
work [3, 4]. In this framework, an evaluation is de-
noted by two numbers in the unit interval [0,1]: a
membership grade, say pa(x), and a nonmembership
grade, say va(xz). These numbers, which must sat-
isfy the consistency condition 0 < p4(x) + va(z) <1,
together constitute an IFS element (z, pa(z),va(z)).

For example, the evaluation of the proposition “the
handwritten number depicted in Figure 1(a) is a ‘6’”
can be denoted by (x,0.23,0.37). Regarding the com-
parison of two evaluations characterized by two IFS
elements, say (2, 11a(2), v () and (z, jup(2), vis(2)),
one can first compute the buoyancy of each IFS el-
ement, i.e., pa(x) = pa(x) — va(z) and pp(x) =
wp(x) — vp(x) respectively [13] and then compare the
resulting values. Thus, e.g., pa(z) > pp(z) suggests
that x belongs more to A than to B.

While a membership grade and an IFS element make
it possible to record the level(s) to which an object
belongs (or not) to a given class, none of these repre-
sentations enables the recording of the object’s char-
acteristics that lead to and hence explain this (these)
level(s). To do so, the idea of augmented appraisal de-
grees (AADs) has been introduced in [11]. An AAD
of an object z, say fiaax(x), can be seen as a pair
(aak (%), Fy ek (x)) that denotes the level paax ()
to which x belongs to the class A, as well as the par-
ticular collection of x’s features F), ,, . (x) considered
to evaluate = according to the knowledge K. For in-
stance, the evaluation depicted in Figure 1(b) can be
denoted by (0.23, F, .o (x)), where: (i) z and A rep-
resent, in that order, the handwritten number in Fig-
ure 1(a) and a class of handwritten 6’s; (ii) K symbol-
izes the knowledge about handwritten 6’s used to eval-
uate x; and (iil) F},,,, () represents a collection con-
sisting of the green pixels that indicate why x should
be a ‘6’ according to K.

As previously stated, there are situations where an
object can have features suggesting it does not be-
long to a given class. To handle this kind of situa-
tions, the augmentation of IFS elements with AADs
has been proposed in [11]. An augmented IFS ele-
ment, say (z, isok (), 7aakx (x)), consists of a mem-
bership AAD, fisaxk (z), and a nonmembership AAD,
Vaax(2): while fisax(x) indicates the level to which
x belongs to A and the features of z considered for
quantifying this membership level, Daak (x) indicates
the level to which z does not belong to A and the
features of x considered for quantifying this nonmem-
bership level. For instance, keeping z, A, K and
Fl 0k (x) as given in the previous example, one can
represent the evaluation depicted in Figure 1(b) by
(023, Flupp e (), (0.37, Fy o (2))), whete B, ()
represents a collection consisting of the red and the
gray pixels that indicate why x should not be a ‘6’
according to K. In the next section, we explain how
to use these concepts to make predictions in artificial
intelligence better interpretable.

'In this example, one can also say that AQK represents
what has been learned about a class of handwritten 6’s
after following a learning process that yields K as a result.
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3 Augmenting Predictions with AADs

As was mentioned earlier, our aim is the augmentation
of predictions in artificial intelligence to make them
better interpretable. For that purpose, in this sec-
tion we describe a novel method by which predictions
made by a classification process that uses SVMs are
augmented by AADs.

learning(

) well-known
data “ n dasses

[ Learning Process H SVMLight ]

knowledge
models

prediction

Augmented
Evaluation Process

object
of interest

augmented
n prediction(s)

Figure 2: A contextual view of the proposed method.

A contextual view of the proposed prediction method
is shown in Figure 2. As can be noticed, one of the
inputs of the method is a collection of knowledge mod-
els that result after following a learning process, which
uses SVMs to learn about a set of well-known classes.
In this section we first explain how such knowledge
models can be obtained through the learning process
proposed in [12]. After that, we explain how the pre-
diction of the class(es) of an object can be made better
interpretable by augmenting the evaluations that are
performed to determine if this object belongs or not
to each of the well-known classes.

3.1 Obtaining knowledge models

The learning process proposed in [12] mimics a learn-
ing behavior where a person learns about a class by
studying the features of the objects in a training col-
lection. The process is based on a feature-influence
representational model, which is summarized below.

Consider a m-dimensional feature space M in which
each dimension corresponds to a feature f; in a collec-
tion F = {f1, -+, fm}. Also consider an object  with
a collection of features F, C F. Let ps be a propo-
sition having the canonical form ‘x IS A’ meaning x
is member of the class A. Under these considerations,
the influence of the features of x on the appraisal of
p4 is modeled as follows:

e The overall influence x of the features of = on the

classification is given by the vector

m

X = Zﬂj?]w (1)
j=1

where (; denotes the overall importance (or
weight) on the classification of f; among the fea-
tures in F, and f'j is the unit vector representing
the dimension related to f; in M.

e A particular knowledge about A, say K4, is rep-
resented by a line in M and it is described by a
pair (fia,t4). In this pair, while @14 represents a
unit vector that points to a place in M where the
fulfillment of p4 is favored, t4 is a point on the
line (defined by t14) that identifies a location in
M where the fulfillment of p4 is neither favored
nor disfavored.

e The specific influence of the features of = on the
appraisal of p4 is represented by the vector

m

XA:(X~ﬁA)ﬁA:ZBjAﬁA7 (2)

Jj=1

where 3;,104 denotes the specific influence of f;
on the appraisal of p4, and ‘-’ denotes a dot prod-
uct. As noticed, this vector corresponds to the
vector projection of the overall influence vector,
i.e., x, on 0y, i.e., the line that represents K 4.

e The level to which x satisfies (or dissatisfies) pa
is determined by the magnitude of the vector

la =x4 —talia, (3)

i.e, it is determined by

[Mall = V14 - 1a. (4)

If the directions of 14 and ti4 are the same, x
satisfies pa to the extent ||14||. By the contrary,
if the direction of 14 is opposite to the direction
of @1, 4, « dissatisfies p4 to the extent [[14]].

To extract a model of the knowledge about a class A,
say? Kao = (fia,ta), from a training collection, say
Xo = {1, -+ ,zn}, a computer can follow the steps
of the aforementioned learning process and study the
features of each object x; € Xy. The main steps are
given below — the interested reader is referred to [12]
for a detailed description of this learning process:

2To be consistent with the notation introduced in Fig-
ure 2 where the “source” of the knowledge about A is ex-
plicitly denoted, we should say Kiax, = (laax,;taax,)-
For the sake of readability we use hereafter this simplified
form of the notation.
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1. For each z; € Xy, identify its features and put
them into F.

2. Assign an overall importance 3; ; to each feature
fj € F based on its overall influence on the ap-
praisal of p4 for each x; € Xj.

3. Compute (i4,t4) in such a way that (i) the cor-
respondence between each x; € X satisfying or
dissatisfying pa and the resulting specific influ-
ence of its features is preserved, and (ii) both the
aggregate of the specific influences that favor the
fulfillment of p4 and the aggregate of the specific
influences that disfavor such fulfillment are max-
imized.

Due to conditions (i) and (ii) in third step of the
learning procedure, the computation of ({is,t4) can
be done based on the separable case of a linear SVM
[18, 19]. Indeed, considering the equations

A%
= 5
W )
and )
ta = —7—m, (6)
[[w||

a hyperplane w + b has to be determined in such a
way that the gap between the vectors corresponding
to positive examples and the vectors corresponding to
negative examples is maximized — herein, a positive
example is an object x; € X that satisfies p 4, whereas
a negative example is an object that dissatisfies p4.

The values of w and b can be computed by the La-
grangian formulation of the separable case [7], in which
the value of A, given by equation

A— % Wl =M x4+ D) = 1), ()

should be minimized subject to y;(w-x;+b)—1 > 0 and
(VA € {1, -, A (N > 0). In (7), while x; denotes
a vector related to an object x; in X, y; € {—1,1} is
a label that indicates whether x; is a positive example
(y; = 1) or a negative example (y; = —1). To find the
values of w, b and all \; € {\y,---,\,}, the software
package SVMLight [10] can be used.

3.2 Augmenting evaluations

After obtaining a model of the knowledge about a par-
ticular class, a classification algorithm can use that
model to evaluate the level to which an object is mem-
ber of that class. For instance, a classification al-
gorithm can use K4 = (lia,t4), which represents a
model of the knowledge about (class) A, to evaluate,

by means of (3) and (4), the level to which an ob-
ject x is member of A. Likewise, the algorithm can
use Kp = (lp,tp), which represents a model of the
knowledge about B, to evaluate the level to which x is
a member of B. Next, the resulting levels can be used
to make a prediction about the class of z: if the level
to which z is member of A, i.e., ||l4||, is greater than
the level to which x is member of B, i.e., ||[15]], A can
be returned as the predicted class of x.

If a user likes to know in the previous example why
the predicted class is A, the conventional classification
algorithm is limited to offer an answer like “x is more
A than B because ||14|] > ||15]|- Notice in this answer
that nothing is mentioned about the relevant features
of x that support that prediction.

To make such a prediction available for interpretation,
the result of an evaluation can be augmented as ex-
plained below.

Consider a class A, an object = and a proposition p4
having the canonical form ‘z IS A’, which means “x
is a member of A.” Assume that K4 = (ia,t4) is a
representation of a particular knowledge about A as
stated by the feature-influence representation model
presented in Section 3.1. Assume also that iy =
wi i+ Fwpf, and x = 51f'1+~ . ~+Bmfm respectively
represent the directional vector and the overall influ-
ence vector. Under these considerations, a procedure
for performing an augmented evaluation of p4 that
yields an augmented IFS element (fia(x),04(x)) =
(1a(@), Fuy (1)), (va(@), Fuy (2))) (sce Section 2) as
a result, consists of the following steps:

1. For each f; € F;, i.e., for each of the features of
x, compute its specific influence on the appraisal
of pa, i.e., compute f;, = 3; ;44 = Bjw;t4. In-
clude f; in F,, (x) if B; , > 0; otherwise include
fj into F,, () if B; , <O.

2. Compute pa(z;) and va(z;) by means of the
equations

pa(z) = fia(z)/n (8)
and
va(z) = va(z)/n (9)

respectively, where

PaltoimaBa . (v, > 0) A (4 < 0);
- _ )z
fra(z) = { Zallia (VB4 > 0)A(ta >0);
0 : otherwise;
(10)
DBl (v, < 0) A (ta > 0)
. _ ) 1Bl
va(@) = § = :(VBjx <0) A(ta <0);
0 : otherwise;

(1)
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and
n=max (1, 1a(x) + va(x)). (12)

An interpretable classification algorithm can use the
above procedure to perform an augmented evaluation
of the membership (or nonmembership) of an object
in a given class. For instance, to evaluate the member-
ship of an object, say x, in a class, say A, the algorithm
can use the procedure with a model of the knowledge
about A, say K4 = ({ia,ta), to obtain {jia(x),Da(x))
as a result. In a similar way, the algorithm can use the
procedure with the knowledge model about another
class, say Kp = (ip,tp), to evaluate the membership
of z in (class) B and, so, obtain (ig(z),?p(x)).

After that, the algorithm can use those evaluations
to predict whether the class of x is A or B: if the
buoyancy of (jia(x), 7a(a)), ic., pa(@) = palz) —
va(x), (see Section 2) is greater than the buoyancy
of {(ip(x),vp(x)), ie., pp(r) = pup(x) — vp(x), the
predicted class will be A. In this case, if a user asks
why the predicted class of x is A, the algorithm might
offer an answer like this: “the features in F),, () sug-
gest that x is A with a grade of p4(x); however, the
features in F),, (x) indicate that x is not A with a grade
of va(z).”

Notice in the previous answer that, by means of AADs,
a prediction can be augmented with contextual infor-
mation that makes the prediction interpretable. Thus,
the user who asked why the predicted class of x is A
can make a more informed decision with that predic-
tion. In addition, this user can have an idea about the
quality of both the prediction and the model behind it.

In the next section, we describe an example where
predictions about the classes of handwritten numbers
are augmented to make those predictions better inter-
pretable.

4 Illustrative Example

Aiming to show how the characterization of an evalua-
tion by means of an AAD can favor the interpretability
of computer predictions, in this section we present an
example where the classes of handwritten digits are
predicted.

"
"y B0
T
|
ny_ o

(a) (b) (c)

Figure 3: Characterization of a handwritten ‘3’.

As was mentioned in the previous section, a prediction
of the class of an object can be made after evaluating
the membership (and nonmembership) of this object
in each of the well-known classes. Thus, to predict the
class of a handwritten digit, first an algorithm needs
to learn about handwritten numbers such as handwrit-
ten 1’s or handwritten 2’s. To do so, the algorithm can
use a training collection consisting of digitized hand-
written numbers like the one depicted in Figure 3(b),
which corresponds to the handwritten number repre-
sented in Figure 3(a).

In this example, a digitized handwritten number con-
sists of 784 pixels, each of them representing a feature
of the handwritten number. Each of those 784 pixels
has associated a value between 0 and 1, where 0 and 1
denote, in that order, no strength and the maximum
strength of a pen while handwriting on that pixel.

Under that setting and according to the feature-
influence representational model (see Section 3.1), the
influence of the pixels of a digitized handwritten num-
ber, say x, is represented in a 784-dimensional feature
space M by a vector x = ﬁlf'l + e+ ﬁ7g4f7g4, such
that 3; corresponds to the strength of the pen in pixel
fj. For instance, while in Figure 3(c) the value of 839
is 0 since no strength has been put on pixel fs3g, the
value of [B553 is 0.99 since the strength of the pen in
this pixel is almost the maximum.

(a) (b)

Figure 4: Complement of a handwritten ‘6’.

A training collection consisting of 50 digitized (and
feature-influence vectorized) handwritten numbers (5
per each decimal digit) accompanied by their corre-
sponding complements was built with the purpose of
obtaining a knowledge model for each handwritten
decimal digit. For instance, the handwritten ‘6’ de-
picted in Figure 4(a) and its complement, which is
depicted in Figure 4(b), are included in the training
collection. In this case, while the group of handwrit-
ten 6’s constitute the positive examples, the comple-
ment of this group along with the other handwritten
numbers constitute the negative examples.

During the learning process, the training collection
was used as input for the process described in Sec-
tion 3.1 to obtain the knowledge models. Then, during
the evaluation process, the resulting models were used
as input for the process described in Section 3.2 to
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evaluate both the membership and nonmembership of
the above-mentioned handwritten ‘3’ (see Figure 3(a))
in each of the classes of handwritten decimal digits.

To predict the class of the handwritten ‘3’, a feature-
influence vector of its complement was used for the
evaluation of the influence of the features that a hand-
written number should have, but the handwritten ‘3’
does not have. More specifically, if  denotes the com-
plement of x, in this example the evaluation of the
membership and nonmembership of x in a particular
class, say A, is given by and augmented IFS element
(fia(z),04(x)) such that

fra(z) = (pa(z), Fy, (@) (13)

va(r) + pa(z)
max(1,va(x) + pa(T))

va(z) = (
As a consequence, the buoyancy of (fia(z), P4(x)) (see
Section 2) is given by

~ val@) + pa(@)
max(1,va(x) + pa(z))

pa(@) = pa(x) (15)

The results of our experimental evaluations are shown
in Table 1 and Figure 5.

A | pale) | macdtstiey | pale)
DY 0.39 0.28 0.11
‘3° | 0.59 0.14 0.45
5 | 0.43 0.27 0.16
o 0.26 0.32 -0.06
‘9 | 0.25 0.35 -0.10

Table 1: Results of the evaluations of the membership
and nonmembership of a handwritten ‘3’ in each of the
classes of handwritten decimal digits.

An interpretable classification algorithm can use those
results to offer an explanation like the following: “The
green part (which is obtained from F),,(x)) suggests
that your drawing is a ‘3’ (which is obtained from A)
with a grade of 0.59 (which is obtained from p4(x));
however, the red part (which is obtained from F, , (z)),
which a ‘3’ should have, and the gray part (which is
obtained from F),,(Z)), which a ‘3’ should not have,

indicate that it is not a ‘3’ with a grade of 0.14 (which
va(@)+pa(Z) ).

is obtained from max(LvA (@) THA®)

(a) (b) () (d)
(e) () (8) (h)
(i) @

Figure 5: Visual results of the evaluations of the mem-
bership and nonmembership of a handwritten ‘3’ in
each of the classes of handwritten decimal digits.

Notice that not only the predicted class but also the
reasons behind that prediction are given — such an ex-
planation can be used, e.g., by someone who is trying
to improve the predictions of models that are trained
with limited handwritten numbers. Because of this,
it is argued in this paper that the augmentation of
such predictions can favor the interpretability of them.
Even so, qualitative attributes like coherence, clear-
ness, credibility, relevance or naturalness that might
be perceived on such augmented predictions are still
subject to validation. In this regard, studies aiming
to perform such validations are considered (and sug-
gested) as future work.

5 Related Work

In the literature, one can find methods that, like ours,
are oriented to explain individual predictions by de-
composing the classification decision in terms of the
features of the object that are relevant to that decision.
For instance, in [5] a method for decomposing a non-
linear image classification decision has been proposed.
Through that method, a computer can produce a heat
map that highlights the relevant pixels, i.e., the pixels
that have a significant influence on the classification
decision. Another example related to computer vision
is the visualization method proposed in [21], which of-
fers an interpretation of the influence of the features
(pixels) and the behavior of the model. A peculiarity
about those methods is that the influence of the fea-
tures of an object is determined after the prediction
of its class. In contrast, our method computes the
influence of the features before the prediction. This
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aspect constitutes an advantage as the influence of the
features can be taken into account to guide the classi-
fication decision.

Other methods are oriented to explain individual pre-
dictions by building interpretable local models that
mimic the behavior of unknown classifiers. In one of
such methods a prediction is explained after extracting
an interpretable local model from the prediction [16].
To build such a model, the method evaluates samples
that are closer to or far away of the object whose class
is being predicted. A similar strategy is applied by the
method proposed in [6], but in that case, the method
tries to extract a local model consisting of “explana-
tion vectors,” which contain features that are relevant
to a prediction. As noticed, in both methods not only
the object whose class is being predicted but other ob-
jects are needed to explain a prediction. An advantage
of our method in this regard is that only an augmented
evaluation of the object of interest is needed.

An explanation model that combines classification and
sentence generation has been proposed in [9]. Images
with annotated features are used as input to train such
a model, which is then used to make predictions ac-
companied with sentences (explanations) in natural
language. Although discriminative features that jus-
tify why an object belongs to the predicted class are
include in such a sentence, features justifying why the
object does not belong the class, as our method does,
are omitted.

A study analyzing the contributions made by the fuzzy
logic community to the development of the explainable
AT research field has been presented in [2]. The results
of that study suggest that, although those efforts seem
to be distant with the efforts made by the non-fuzzy
community, both efforts can be linked to address the
challenges arising in that field. In this regard, while
potential options in the fuzzy logic community can be
found in [14], non-fuzzy options oriented to explain
individual predictions can be found in [1].

6 Conclusions

In this paper, we considered the use of augmented ap-
praisal degrees (AADs) to improve the interpretabil-
ity of predictions in artificial intelligence methods and
proposed a novel method whereby predictions made
by a conventional support vector machine (SVM) clas-
sification process are augmented with AADs.

In the proposed method, an evaluation of the member-
ship (and nonmembership) of an object in a particular
class is augmented in such a way that the object’s fea-
tures that support the evaluation are recorded. Such
an augmented evaluation is then used to augment and
explain the reasons behind a prediction.

By means of an example where the class of a handwrit-
ten number is predicted, we have shown how the char-
acterization of evaluations through AADs can favor
the interpretability of computer predictions made dur-
ing a SVM classification process. Nevertheless, quali-
tative attributes like coherence or relevance that might
be perceived by a person on explanations based on
AADs are still subject to validation. In this regard,
as future work we plan (and suggest) to perform such
validations.

Other planned (and suggested) studies concern (i) the
applicability of AADs to augment the predictions
made by other classifiers like the ones based on con-
volutional neural networks or Bayesian networks, and
(ii) the use of AADs to improve the reliability of pre-
dictions that result from models that are trained with
limited data.
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