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Abstract

This paper is towards the study of theory of
fuzzy automata with fuzzy partitions. Specif-
ically, we study the concept of the L-fuzzy
partitioned automaton corresponding to a
given L-fuzzy automaton. Further, we in-
troduce the concept of a crisp-deterministic
L-fuzzy automaton corresponding to the L-
fuzzy partitioned automaton such that both
accept the same L-fuzzy language. Finally,
the notion of the fuzzified L-fuzzy partitioned
automaton corresponding to a given L-fuzzy
partitioned automaton is introduced and a
characterization of its L-fuzzy language is
given.

Keywords: L-fuzzy automata; L-fuzzy lan-
guages; L-fuzzy partitions; L-fuzzy parti-
tioned automata.

1 Introduction

Since the theory of fuzzy sets was introduced by Zadeh
[43], fuzzy automata and languages have been stud-
ied as methods for bridging the gap between the pre-
cision of computer languages and vagueness. These
studies were initiated by Santos [32], Wee [41], and
Wee and Fu [42], and further developed by a number
of researchers (cf., [18,22,25]). Fuzzy automata and
languages with membership values in different lattice
structures have attracted considerable attention from
researchers in this area (cf., [1-3,6,10-18,20,21,26-31,
33-35,37,38,40]). Among these works, the work of Jin
and his coworkers [14] is towards the algebraic study
of fuzzy automata based on po-monoids; the work of
Peeva is towards the study of minimizing the states of
fuzzy automata and its application to study pattern
recognition (cf., [26,27]); the work of Kim, Kim and
Cho [18] is towards the algebraic study of fuzzy au-
tomata theory; the work of Abolpour and Zahedi is

towards the use of categorical concepts in the study
of automata with membership values in different lat-
tice structures (cf., [1-3]); the work of Horry and Za-
hedi [10] is towards the use fuzzy topologies for the
study of a max-min general fuzzy automaton; the work
of Das [6] is towards the fuzzy topological characteriza-
tion of a fuzzy automaton; the work of Qiu is towards
the algebraic and topological study of fuzzy automata
theory based on residuated lattices (cf., [28-31]); the
work of Li and Pedrycz [20] is towards the fuzzy au-
tomata based on lattice-ordered monoids; the work of
Ciri¢ and his coworkers is towards the study of de-
terminism in fuzzy automata theory (cf., [11-13]), and
the work of Tiwari and his coworkers is towards the al-
gebraic and topological study of fuzzy automata (cf.,
[33-35,37,38,40]). In application point of view, fuzzy
automata provide a useful surrounding for ambigu-
ous computation and have shown their importance for
solving meaningful problems in learning systems, pat-
tern recognition and data base theory (cf., [4,25,27]).

In this paper specifically, we introduce and study

e the concept of the L-fuzzy partitioned automaton
corresponding to a given L-fuzzy automaton;

e the crisp-deterministic L-fuzzy automaton corre-
sponding to the L-fuzzy partitioned automaton
such that both accept same L-fuzzy language; and

e the notion of the fuzzified L-fuzzy partitioned au-
tomaton corresponding to a given L-fuzzy parti-
tioned automaton.

The content of this paper is arranged as follows. Sec-
tion 2 contains preliminary information about the con-
tent of the paper. In Section 3, we introduce the con-
cept of the L-fuzzy partitioned automaton correspond-
ing to a given L-fuzzy automaton. Further, we study
the relationship among the L-fuzzy languages of the
L-fuzzy partitioned automaton and L-fuzzy automa-
ton. In Section 4, we introduce the crisp-deterministic
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L-fuzzy automaton corresponding to the L-fuzzy parti-
tioned automaton such that both accept same L-fuzzy
language. Finally, in section 5, the notion of the fuzzi-
fied L-fuzzy partitioned automaton corresponding to
a given L-fuzzy partitioned automaton is introduced.
Interestingly, we show that the L-fuzzy language of
fuzzified L-fuzzy partitioned automaton can be ob-
tained from the L-fuzzy language of the L-fuzzy par-
titioned automaton.

2 Preliminaries

In this section, we recall the concepts related to resid-
uated lattices [5,39]; L-fuzzy relations [24,39]; L-fuzzy
automata [7,23,36]; L-fuzzy languages [7,39], and L-
fuzzy objects [23,24].

We begin with the following.

Definition 2.1. An algebra (L, A,V,®,—,0,1) is cal-
led complete residuated lattice if it satisfies the
following conditions:

(i) (L,<,A,V,0,1) is a complete lattice with the
greatest element 1 and the least element 0;

(ii) (L,®,1) is a commutative monoid; and

(iii)) x Oy < ziff e <y— z, Vo,y,z € L.

Throughout this paper, we assume L is a complete
residuated lattice (L, A, V,®,—,0,1) and the L-fuzzy
sets considered in this paper are in sense of [9], i.e., an
L-fuzzy set A in a set X is amap A : X — L. For
a nonempty set X, F(X) denotes the collection of all
L-fuzzy sets in X. Also, for z,y € L, z ¢ y = (z —
y) A (y — x) and A denotes an indexed set.
Definition 2.2. For L-fuzzy set A in a nonempty set
X, core of A, denoted by core(A), is given as,

core(A)={x € X : A(z) = 1}.

Further, if core(A)# ¢, then A is called normal L-
fuzzy set.

Proposition 2.1. [19, 39] Let (L,A,V,®,—,0,1)
be a complete residuated lattice. Then for all
z,Y,2,25,Y; € L and j € A, the following properties
hold:

(i) xy=1sx=y;

(i) vy <y—x;
(iii) x < y=1y > x;

(iv) y+ z2< (z0y) < (x©2); and

(v) x®My; 15 €A}) =V{zoy; : j €A} and
(zj:jeA})oy=Vv{z;0y:jeA}

Definition 2.3. An L-fuzzy relation on a nonempty
set Xisamap E: X x X — L. The L-fuzzy relation
E is called

(i) reflexive if E(z,x) = 1,Vz € X;
(i) symmetric if E(z,y) = E(y,z), Vz,y € X; and

(iii) transitive if E(z,y) ©® E(y,z) < FE(z,z),

Ve,y,z € X.

A reflexive, symmetric, and transitive L-fuzzy relation
on X is called an L-fuzzy similarity relation on X.

Now, we recall the following concepts related to the L-
fuzzy automata.

Definition 2.4. An L-fuzzy automaton is a system
M= (Q,(M,x,e), T, I, F), where Q is a nonempty set
of states, (M, *,e) is a monoid inputs, T : Q x M —
L? is the transition function such that ¥p,q € Q and
VYm,n € M,

_J 1 ifp=q
.00 ={ § 220

T(p,mxn)(q) = V{T(p,m)(r) ©T(r,n)(q) : r € Q},
I € F(Q) is the initial L-fuzzy state and F € F(Q) is
the final L-fuzzy state.

A state q¢ € @Q is called initial (resp. final) state of
M if I(q) > 0 (resp. F(q) > 0). An L-fuzzy automa-
ton whose set of states is finite is called finite L-fuzzy
automaton.

Definition 2.5. An L-fuzzy automaton M = (Q, (M
,x,e), T, I, F) is called

(i) complete if for allm € M and p € Q there exists
q such that T'(p,m)(q) > 0,

(i) deterministic if there is a unique initial state qo
with I(qo) > 0 and for allm € M and p,q,r € Q
if T(p,m)(q) >0 and T'(p,m)(r) > 0, then ¢ =r.

If M =(Q,(M,x,e), T,I,F) is a complete determin-
istic L-fuzzy automaton such that for all m € M
and p,q € Q, T(p,m)(q) € {0,1} and for unique
initial state qo, I(qo) = 1, then M is called crisp-
deterministic L-fuzzy automaton. In this case,
there exists a function § : Q X M — Q such that for
allpe @ and m € M, §(p,m) = q iff T(p,m)(q) = 1.
Such crisp-deterministic L-fuzzy automaton is denoted
by (Q? (Ma *, 6), 57 q0, F)

Definition 2.6. An L-fuzzy language fo: M —
L is

(i) accepted by an L-fuzzy automaton M =
(Q, (M, *,e),T,I,F) if faa(m) = V{I(r)©T(r,m
(@) © F(q):r,q e Q}, YVm e M; and
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(ii) accepted by a crisp-deterministic L-fuzzy au-
tomaton M = (Q, (M, x*,e),0,q0, F) if fam(m) =
F(5(qo,m)), Vm € M.

Definition 2.7. Let X be a nonempty set. A system
A ={Ay : XA € A} of normal L-fuzzy sets in X is an
L-fuzzy partition of X, if {core(Ay) : A € A} is a
partition of X. A pair (X, A) is called a space with
an L-fuzzy partition.

Now, we recall the following concept of L-fuzzy objects
in a spaces with L-fuzzy partitions.

Definition 2.8. Let (L, L) be a space with an L-fuzzy
partition and L = {L, : a € L} be an L-fuzzy partition
of L such that Va,b € L, L,(b) = a <> b. Then an
L-fuzzy object in a space with an L-fuzzy partition
(X, A) is a map (A,0): (X, A) — (L, L) such that

(i) A: X — L is a map;
(ii) o : A — L is a map; and

(i) YA € A and Vo € X, Ax(z) < Looy(A(@)) =
o(A) ¢ Az).

R(X,A) denotes the set of all L-fuzzy objects in
(X, A).

Now, we recall the following from [8, 24].

Let (X,.A) be a space with an L-fuzzy partition and
A={A): X € A} be an L-fuzzy partition of X. Then
the L-fuzzy relation 7w on a set A is defined as:

m(A1, A2) = (V{Ay, (2) : @ € core(An,) )V (V{Ax, (z) :
x € core(Ax,)}), VA1, Ay € A

It can easily verified that 7 is reflexive and symmetric
L-fuzzy relation.

Now, consider the smallest L-fuzzy relation px 4 on a
set A with conditions:

px,A(A1, A2) © px,a(A2, A3) < px,a(A1, Az) and
T(A1, A2) < px,a(A1, A2), VAL, Ao, Az € AL

In that case, px, 4 is an L-fuzzy similarity relation on

A.

Next, on the basis of px 4, the L-fuzzy relation dx 4
on a set X is defined as:

dx a(z1,m2) = px,a(A1, A2), VA1, A2 € A, Vay € core
(Ax,), and Vo € core(Ay,).

It can easily verified that 0x 4 is an L-fuzzy similarity
relation on X.

Proposition 2.2. [24] For (X, .A) is a space with an
L-fuzzy partition and A = {Ax : X € A} is an L-fuzzy
partition of X, if A: X — L be a map. Then the
following statements are equivalent.

(i) There exists the unique map o : A — L such that
(A,0) € R(X,A); and

(it) For given A € A, © € core(A)), and ' € X,
Ax(z') < A(z) & A(z') holds.

Let (X,.A) be a space with an L-fuzzy partition and
A ={Ax: X € A} be an L-fuzzy partition of X. Then
R;(X, A) is defined as,

Ri(X,A)={A: X — L: (4,0)is an L-fuzzy object
in (X, A) for some map o : A — L}.

3 The L-fuzzy partitioned automata

In this section, we introduce and study the concept of
an L-fuzzy partitioned automaton corresponding to a
given L-fuzzy automaton. Further, we establish the
relationship among the L-fuzzy languages of the in-
troduced L-fuzzy partitioned automaton and L-fuzzy
automaton.

We begin with the following definition of the L-fuzzy
automaton with L-fuzzy partition from [23].
Definition 3.1. A system ((X,A),(M,*,e),d) is
called an L-fuzzy automaton with L-fuzzy par-
tition, if

(1) X is the set of state with an L-fuzzy partition A,
where A = {Ay : A € A} is an L-fuzzy partition
of X.

(2) (M,x*,¢€) is a monoid inputs; and

(3)d: X x M — Ry(X,A) is a map such that
Vo,y € X, Vo' € core(A,), and Vm,n € M,

(Z) d(.%‘, 6) (y) = 5X,.A(‘T7 y);
(ii) d(z,m *n)(y) = V{d(z,m)(z) © d(z,n)(y) :
z€ X};
(i) dz,m)(y) © Ax(x) < (', m)(y); and
(iv) From the condition (i), for each x,x’
€ core(Ay), d(xz,m) = d(z’',m).

In the remaining part of this section, M =
(Q, (M, *,e),T,I,F) is an L-fuzzy automaton and
(Q, Q) is a space with an L-fuzzy partition, where
Q={Q, : «a € A} is an L-fuzzy partition of Q.

Now, we introduce the concept of the L-fuzzy parti-

tioned automata.

Definition 3.2. Let M = (Q, (M, *,e),T,1,F) be an
L-fuzzy automaton. Then the L-fuzzy partitioned
automaton corresponding to M, denoted by P, is the
system P = ((Q, Q), (M, *,e),T1, I, F), where

(i) Q is the set of state with an L-fuzzy partition Q,

where Q@ = {Qq : a € A} is an L-fuzzy partition
of Q;
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(i1) (M,x*,e) is a monoid inputs; and
(i4i) Ti(p,m)(q) = V{dq,o(p,r1) ©T(r1,m)(r2) ©4q,0
(ro,q) : ri,m2 € Q}, Vp,q € Q and Vm € M,

where 0q,0(q1,92) = pg,o(a1,a2), Yai,az € A,
Vg1 € core(Qa, ), and Yga € core(Qa,).

Proposition 3.1. Let M = (Q,(M,x,e),T,1,F)
be an L-fuzzy automaton. Then the L-fuzzy parti-
tioned automaton P = ((Q, Q), (M, *,e),T1,I,F) cor-
responding to M is an L-fuzzy automaton with L-fuzzy
partition.

Proof. (i) Let p,s € Q, s € core(Q,), and m € M.
Then
Ti(p,m)(s) > T1(p,m)(s)

= (V{dg,a(p,m1) ©T(r1,m)(r2) ©6q,0(r2,s) : 11,
r2 € Q}) < (V{dg,o(p,m1) ©T(r1,m)(r2) ©
8g,0(re,s') 1,2 € Q})
(0g,0(p,p) © T(p,m)(p) ® dg,0(p 5)) < (dg,0
(»,p) © T(p,m)(p) © dq,0(p; s"))
d9.0(p: 5)) > 0g.0(p,s'))
Qa(s).
Thus Q4 (s) < Ti(p,m)(s) « Ti(p,m)(s’), which im-
plying that T7(p,m) € R1(Q, Q).
(ii) Let p,q € Q. Then

WV

VoV

Ti(p,e)(q) = V{dgo(p,r1) ©T(r1,€)(r2) ®dg,0
(r2,q) :r1,m2 € Q}
= V{dg,alp,7) ©®dqg,a(r,q): v € Q}
< dg.e(p,q)-
Conversly,
Ti(p,e)(q) = V{dgo(p,m1) ©@T(r1,€)(r2) ®dg,0

(r2,q) : 71,72 € Q}
= V{dg.op,7) ®dg,o(r,q) : T € Q}
5q,0(p,p) ®dq,0(p,q)
= dg,0(p,9)

Thus T (p, €)(q) = dq.o(p: 9)-
(iii) Let p,q € @ and m,n € M. Then

V{dq,0(p;r1) ® T(r1,m *n)(rs)

©dg,0(r2,q) 1 r1,m2 € Q}

= V{dq,o(p,m1) © V{T(r1,m)(r)
OT(r,n)(r2) : v € Q} © dg,0(r2,
q):r1,7m2 € Q}

= V{dg,o(p,m1) ©T(r1,m)(r)©T

(r,n)(r2) © 0g,0(r2,q) s 771,72

€Q}

WV

Ti(p,m=n)(q) =

= V{dq,o(p,m1) @ T(ri,m)(r) ®dq,o(r,1) ©
0g,0(r,m) © T(r,n)(r2) ®dg,0(re,q) : 7,71,
Ty € Q}
= V{Ti(p,m)(r) @Ti(r,n)(q) : 7 € Q}.
Thus T1(p,m xn)(q) = V{T1(p,m)(r) © T1(r,n)(q) :
reQ}.
(iv) Let p,s € Q, s’ € core(Qs), and m € M. Then

Ti(p,m)(s) © Qa(p) = V{dg,o(p,r1)®T(r1,m)
(r2) ©0Q,0(r2,8) : 11,72
€ Q} O Qalp)

= V{dg,o(p,m1) ®T(r1,m)
(r2) ©éq,a(r2, ) © Qa(p)
r1,T2 € QF
V{dg.o(s' 1) © T(r1,m)
(re) ©®dg,0(re,s) : 11,72
€Q}

= Ti(s',m)s.

Thus T1(p,m)(s) © Qal(p) < T1(s',m)(s).

(v) From the condition (iv), Ti(s,m) =
Vs, s € core(Q,) and Vm € M.

Hence P = ((Q,Q), (M, x,e),T1,I,F) is an L-fuzzy
automaton with L-fuzzy partition. O

N

Tl(Slvm)7

The following is to establish the relationship between
L-fuzzy languages of the introduced L-fuzzy parti-
tioned automaton and L-fuzzy automaton.
Proposition 3.2. Let P = ((Q, Q), (M, *,e),T1,1, F)
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q,(M,*,e),T,1,F). Then
fm € fp.

Proof. Let m € M. Then

fp(m) V{I(r) ©Ti(r,m)(q) © F(q) : 7,q € Q}
= V{I(r) ©dq,o(r,r1) © T(r1,m)(r2) ©
0Q,0(r2,q) © F'(q) : 7,711,712, € Q}
> V{I(r) ®dg,o(r,r) ©T(r,m)(q) ®dg,o
(¢.9) © F(q) : r,q € Q}
V{I(r) © T(r,m)(q) ® F(r)}
faa(m).
Thus faq C fp. O

Proposition 3.3. Let P = ((Q, Q), (M, *,e),Ty,1, F)
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, x*,e),T,I, F), where
Q ={Qqu : @ € A} such that for all o € A, there exists
unique q € Q with Q4(q) = 1 and 0, otherwise. Then
fr=fm-
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Proof. Let m € M. Then

fp(m) VA{I(r) © Ti(r,m)(q) © F(q) : 7,q € Q}

= V{I(r) © (V{dg,e(r,r1) ©® T(r1,m)(r2)
©0g,0(r2,q) : 11,72 € Q}) © F(q) : 1, ¢
€Q}

= V{I(r) ©dq,o(r,r1) ©T(ri,m)(r2) ©
6Q,0(r2,q) © F'(q) : r,711,72,9 € Q}

= V{I(r) ©dq,o(r,r) ©T(r,m)(q) ©®dq,0
(2.9) © F(g):r € Q}
V{I(r) © T (r,m)(q) © F(q)}

= fm(m).

Thus fp = fum. O

Proposition 3.4. If the L-fuzzy partitioned automa-
ton P = ((Q,Q), (M, x,e),Ty,I,F) corresponding to
given L-fuzzy automaton M = (Q,(M,x,e),T,I, F)
is crisp-deterministic L-fuzzy automaton, them Q =
{Qo : a € A} such that for all « € A, there exists
unique q € Q with Qn(q) = 1 and 0, otherwise.

Proof. Follows from Proposition 3.1. O

4 Determinization of L-fuzzy
partitioned automata

In this section, we introduce the crisp-deterministic L-
fuzzy automaton corresponding to the L-fuzzy parti-
tioned automaton such that both accept same L-fuzzy
language.

Definition 4.1. Let P = ((Q, Q), (M, *,¢e),T1,I,F)
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, *,e),T,I,F). Then
the crisp-deterministic L-fuzzy automaton cor-
responding to P, denoted by F, is the system F =
(‘F(Q)’ (M,*,e),T]:,I];F]:), where

(i) F(Q)={p:p:Q — L} is the set of states;

(ii) (M,x*,e) is a monoid inputs;

(i) Tr : F(Q) x M — F(Q) is a transition function
such that VA € F(Q), Yq € Q, and Ym € M,
Tr(A,m)(q) = V{A(r) ©T(r,m)(q) : 7 € Q};

(iv) Ir € F(Q) is an initial state such that Vq € Q,
Ir(q) =V{I(r) ®0g,0(r,q) : € Q}; and

(v) Fr: F(Q) — L is a final L-fuzzy state such that
VA € F(Q), Fr(A) = V{A(r)©dq.o(r g OF(q) :
rq€Q}.

Proposition 4.1. Let P = ((Q, Q), (M, *,e),T1,I,F)
be the L-fuzzy partitioned automaton corresponding

to L-fuzzy automaton M = (Q,(M,x,e),T,I,F)
and F = (F(Q),(M,x*,¢e),Tr,Ix,Fr) be a crisp-
deterministic L-fuzzy automaton corresponding to P.
Then f]::f'p.

Proof. Let m € M. Then

fr(m) Fr(Tr(Ir,m))
= V{Tr(Ir,m)(r2) ©® dg,o(r2,q) ® F(q)
:1T9,q € Q}
= V{(V{Ix(r1) ©T(ri,m)(r2) : 71 € Q})
©0Q,0(r2,q) © F(q) : 12,9 € Q}
= V{(V{I(r) ®dg,o(r,m):r€Q})OT
(r1,m)(r2) © 6q,0(r2,q) © F(q) : 71,72,
q€Q}
= V{I(r) ®dq,o(r,r1) ©T(ri,m)(rz2) ©
6Q,0(r2,9) © F(q) 1 7,711,712, € Q}
= V{I(r)©Ti(r,m)(q) ©® F(q) : 7,q € Q}
= fp(m).
Thus fr = fp. O

5 The fuzzified L-fuzzy partitioned
automata

In this section, we introduce and study the notion
of the fuzzified L-fuzzy partitioned automaton corre-
sponding to a given L-fuzzy partitioned automaton.
Further, we study the L-fuzzy language of such fuzzi-
fied L-fuzzy partitioned automaton in terms of L-fuzzy
language of the L-fuzzy partitioned automaton.
Definition 5.1. Let P = ((Q, Q), (M, x,¢e),T1,1I, F)
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q,(M,x*,e),T,I,F). The
fuzzified L-fuzzy partitioned automaton corre-
sponding to P, denoted by W, is the system W =
((Q,Q), (F(M),®,1.),T», I, F), where

(i) (F(M),®,1) is a monoid inputs, where F(M) =
{A:A: M — L} and 1. € F(M) such that

Ve M,
L@={ g

(it) Ta(p, A)(q) = V{A(m) © Ti(p,m)(q)
Vp,q € Q and VA € F(m).

ifr=e

if xt #e, and

:m € M},

Definition 5.2. An L-fuzzy language fy, : F(M)
— L is accepted by a fuzzified L-fuzzy partitioned
automaton W = ((Q,Q),(F(M),®,1.), T2, I, F) if
fwl4) = V{I(r) © Ta(r, A)g) © F(a) : 7,0 € QF,
VA e F(M).
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Proposition 5.1. Let P = ((Q, Q), (M, *,e),Ty,I,F)
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q,(M,x,¢e),T,I,F).
Then the fuzzified L-fuzzy partitioned automaton W =
(Q,Q),(F(M),®,1,),Ts, I, F) corresponding to P is
an L-fuzzy automaton with L-fuzzy partition.

Proof. (i) Let p,s € Q, s' € core(Q,), and A € F(M).
Then
Ta(p, A)(s) > Tz(p, A)(s)
V{A(m1) ® T1(p,m1)(s) : m1 € M} <> V{A
(m2) ® Ty (p,ma)(s') : mg € M}
(A(m) © Ti(p,m)(s)) <> (A(m) © T1(p,m)(s))
Tl (pa m)(s) A Tl (pa m)(sl)
Qu(s).
Thus Q4(s) < Ta(p,m)(s) > Ta(p,m)(s’), which im-
plying that Tx(p,m) € R1(Q, Q).
(ii) Let p,q € Q. Then

Ta(p,1e)(q) = V{le(m)©Ti(p,m)(q) : m € M}

= Ti(p,e)(q)
= 0g,e(p:9)-

Thus T3(p, 1e)(9) = 00,0(P; )-
(iii) Let p,q € Q and Ay, Ay € F(M). Then

To(p, A1 ® Az)(q) =

AR\,

V{(A1 ® A2)m © T1(p, m)(q)
:m e M}
= V{Ai(m1) © Az(m2) © T1(p,
m)(q) : m =mq xma}
= V{Ai(m1) ® A2(m2) ® T1 (p,
my xmso)(q) : m1,ma € M}
= V{4i(m1) ® A2(m2) © T1(p,
ma)(r) © Ti(r,mi)(q) : r € Q
,mi,mg € M}
= V{Tz(p, A1)(r) © Ta(r, A2)(q)
r € Q}.
Thus Ta(p, A1 ® A2)(q) = V{Ta(p, A1)(r) © Ta(r, A2
)a) 7 €Q}
(iv) Let p,s € Q, s’ € core(Qq), and A € F(M). Then

Ta(p, A)(s) © Qa(p) = V{A(m) O Ti(p,m)(s):m

€ M} ©® Qalp)

= V{A(m) © Ti(p,m)(s) © Qa
(0) : m € M)

< V{A(m) 0 Ti(s',m)(s) : m
€ M}

= Ty(s', A)(s).

Thus T (p, A)(s) © Qa(p) < Ta(s', A)(s).

(v) From the condition (iv), Tx(s, 4) =
Vs, s € core(Q,) and A € F(M).

Hence W = ((Q, Q), (F(M),®,1.),T»,1,F) is an L-
fuzzy automaton with L-fuzzy partition. O

TQ(S/a A)7

Proposition 5.2. Let P = ((Q, Q), (M, *,e),T1,1, F)
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q,(M,x,e),T,I,F),
w = (@,9),(FIM),®,1.),Te, I, F) be the fuzzi-
fied L-fuzzy partitioned automaton corresponding to P,
and W = A1 ® ... Q A,, VA, ..., A, € F(M). Then
Ta(p, W)(q) = V{T1(p,m1 © ... ©my)(q) © A1(m1) ©
e @ Ap(my) i ma,...ymy € M}, Vp,q € Q.

Proof. We prove the result by induction on length W,
denoted by |W|. Let [W| =n,n > 0. Then for n =0,
the result is obvious from the definition of T5. Suppose
that the result is true for W of length n, then we have
to show that the result holds for length n+1. Now, let
W=418..0 A, Ap+1,YA1, ..., Ap, Apr1 € F(M).
Then

To(p,W)(qg) = V{Ta(p, 41 ® ... @ A,)(r) © Ta(r,

Ani1)(a) i 7 € Q)

= V{(V{Ti(p,m1 © ... Omy,)(r) ® Ay
(m) ®...0 Ap(my) : mq,...,my,
€ M}) © (V{T1(r,mni1)(q) © A
(Mpg1) :Mpp1 € Mg :r € Q}

= V{Ti(p,m1 ®...0my)(r) ® A (my
) © e © Ap(my) © Ti(r, mn41)(q)
OApnt1(Mpt1) 7 € Q,ma, ..My,
Mpt1 € M}

= V{Ti(p,m1 ®...0my @ mui1)(q)
OA1(m1) ®...0 Ap(my,) © Apta

(Mpg1) M1, oMy, M1 € M}

O

The following is towards the L-fuzzy language of the
introduced fuzzified L-fuzzy partitioned automaton in
terms of the L-fuzzy language of the L-fuzzy parti-
tioned automaton.

Proposition 5.3. Let P = ((Q, Q), (M, *,e),Ty,1, F)
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q,(M,x,e),T,I,F),
W = (@,9),(F(M),®,1.),Ts,I,F) be the fuzzi-
fied L-fuzzy partitioned automaton corresponding to P,
and W = A1 ® ... ® Ay, VA1, .., A, € F(M). Then
W) =V{fp(m1®...0m,)0A1(m1)®...0 A, (my,) :
my,...,my € M}.
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Proof. Let W = A1 ® ... ® Ay, VA1, ..., A, € F(M).

Then

fw(W) V{I(r) © Ta(r, W)(q) © F(q) : 7.9 € Q}

= V{I(r)o (V{Ti(r,m ©..0my)(q) ©
A1(my) © ... © Ap(my) :ma,...,my,
EM})©F(q):r,q€Q}

= V{I(r)oTi(r,mi ®..0my,)(q) ©® A;
(m)®...0 An(my) © F(q) : r,q € Q,
My .y My € M}

= V{fp(m ©...0m,)®A1(m)©® ...
Ap(my) :ma,...,my € M},

Thus fyy(W) = V{fp(m1®...0m,)©0A;(m)®...0A,
(my) :mq,...,m, € M}. O

6 Conclusion

In this paper, we have introduced and studied the
concept of the L-fuzzy partitioned automaton corre-
sponding to a given L-fuzzy automaton, whose set of
states is a space with an L-fuzzy partition of the set
of states of such given automaton. Also, we have ob-
tained the relationship among the L-fuzzy languages
of the L-fuzzy partitioned automaton and L-fuzzy au-
tomaton. Further, the crisp-deterministic L-fuzzy au-
tomaton is introduced corresponding to the L-fuzzy
partitioned automaton such that both accept same L-
fuzzy language. Finally, the concept of the L-fuzzy sets
have been used to introduce the fuzzified L-fuzzy par-
titioned automaton corresponding to a given L-fuzzy
partitioned automaton. Interestingly, it is shown here
that the L-fuzzy language of fuzzified L-fuzzy parti-
tioned automaton can be obtained from the L-fuzzy
language of the L-fuzzy partitioned automaton.
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