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Abstract

This paper is towards the study of theory of
fuzzy automata with fuzzy partitions. Specif-
ically, we study the concept of the L-fuzzy
partitioned automaton corresponding to a
given L-fuzzy automaton. Further, we in-
troduce the concept of a crisp-deterministic
L-fuzzy automaton corresponding to the L-
fuzzy partitioned automaton such that both
accept the same L-fuzzy language. Finally,
the notion of the fuzzified L-fuzzy partitioned
automaton corresponding to a given L-fuzzy
partitioned automaton is introduced and a
characterization of its L-fuzzy language is
given.

Keywords: L-fuzzy automata; L-fuzzy lan-
guages; L-fuzzy partitions; L-fuzzy parti-
tioned automata.

1 Introduction

Since the theory of fuzzy sets was introduced by Zadeh
[43], fuzzy automata and languages have been stud-
ied as methods for bridging the gap between the pre-
cision of computer languages and vagueness. These
studies were initiated by Santos [32], Wee [41], and
Wee and Fu [42], and further developed by a number
of researchers (cf., [18, 22, 25]). Fuzzy automata and
languages with membership values in different lattice
structures have attracted considerable attention from
researchers in this area (cf., [1–3,6,10–18,20,21,26–31,
33–35,37,38,40]). Among these works, the work of Jin
and his coworkers [14] is towards the algebraic study
of fuzzy automata based on po-monoids; the work of
Peeva is towards the study of minimizing the states of
fuzzy automata and its application to study pattern
recognition (cf., [26, 27]); the work of Kim, Kim and
Cho [18] is towards the algebraic study of fuzzy au-
tomata theory; the work of Abolpour and Zahedi is

towards the use of categorical concepts in the study
of automata with membership values in different lat-
tice structures (cf., [1–3]); the work of Horry and Za-
hedi [10] is towards the use fuzzy topologies for the
study of a max-min general fuzzy automaton; the work
of Das [6] is towards the fuzzy topological characteriza-
tion of a fuzzy automaton; the work of Qiu is towards
the algebraic and topological study of fuzzy automata
theory based on residuated lattices (cf., [28–31]); the
work of Li and Pedrycz [20] is towards the fuzzy au-
tomata based on lattice-ordered monoids; the work of
Ćirić and his coworkers is towards the study of de-
terminism in fuzzy automata theory (cf., [11–13]), and
the work of Tiwari and his coworkers is towards the al-
gebraic and topological study of fuzzy automata (cf.,
[33–35, 37, 38, 40]). In application point of view, fuzzy
automata provide a useful surrounding for ambigu-
ous computation and have shown their importance for
solving meaningful problems in learning systems, pat-
tern recognition and data base theory (cf., [4, 25,27]).

In this paper specifically, we introduce and study

• the concept of the L-fuzzy partitioned automaton
corresponding to a given L-fuzzy automaton;

• the crisp-deterministic L-fuzzy automaton corre-
sponding to the L-fuzzy partitioned automaton
such that both accept same L-fuzzy language; and

• the notion of the fuzzified L-fuzzy partitioned au-
tomaton corresponding to a given L-fuzzy parti-
tioned automaton.

The content of this paper is arranged as follows. Sec-
tion 2 contains preliminary information about the con-
tent of the paper. In Section 3, we introduce the con-
cept of the L-fuzzy partitioned automaton correspond-
ing to a given L-fuzzy automaton. Further, we study
the relationship among the L-fuzzy languages of the
L-fuzzy partitioned automaton and L-fuzzy automa-
ton. In Section 4, we introduce the crisp-deterministic
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L-fuzzy automaton corresponding to the L-fuzzy parti-
tioned automaton such that both accept same L-fuzzy
language. Finally, in section 5, the notion of the fuzzi-
fied L-fuzzy partitioned automaton corresponding to
a given L-fuzzy partitioned automaton is introduced.
Interestingly, we show that the L-fuzzy language of
fuzzified L-fuzzy partitioned automaton can be ob-
tained from the L-fuzzy language of the L-fuzzy par-
titioned automaton.

2 Preliminaries

In this section, we recall the concepts related to resid-
uated lattices [5,39]; L-fuzzy relations [24,39]; L-fuzzy
automata [7, 23, 36]; L-fuzzy languages [7, 39], and L-
fuzzy objects [23,24].

We begin with the following.

Definition 2.1. An algebra (L,∧,∨,�,→, 0, 1) is cal-
led complete residuated lattice if it satisfies the
following conditions:

(i) (L,6,∧,∨, 0, 1) is a complete lattice with the
greatest element 1 and the least element 0;

(ii) (L,�, 1) is a commutative monoid; and

(iii) x� y 6 z iff x 6 y → z, ∀x, y, z ∈ L.

Throughout this paper, we assume L is a complete
residuated lattice (L,∧,∨,�,→, 0, 1) and the L-fuzzy
sets considered in this paper are in sense of [9], i.e., an
L-fuzzy set A in a set X is a map A : X −→ L. For
a nonempty set X, F(X) denotes the collection of all
L-fuzzy sets in X. Also, for x, y ∈ L, x ↔ y = (x →
y) ∧ (y → x) and Λ denotes an indexed set.

Definition 2.2. For L-fuzzy set A in a nonempty set
X, core of A, denoted by core(A), is given as,

core(A)={x ∈ X : A(x) = 1}.

Further, if core(A)6= φ, then A is called normal L-
fuzzy set.

Proposition 2.1. [19, 39] Let (L,∧,∨,�,→, 0, 1)
be a complete residuated lattice. Then for all
x, y, z, xj , yj ∈ L and j ∈ Λ, the following properties
hold:

(i) x↔ y = 1⇔ x = y;

(ii) x↔ y 6 y → x;

(iii) x↔ y = y ↔ x;

(iv) y ↔ z 6 (x� y)↔ (x� z); and

(v) x � (∨{yj : j ∈ Λ}) = ∨{x � yj : j ∈ Λ} and
(∨{xj : j ∈ Λ})� y = ∨{xj � y : j ∈ Λ}.

Definition 2.3. An L-fuzzy relation on a nonempty
set X is a map E : X×X −→ L. The L-fuzzy relation
E is called

(i) reflexive if E(x, x) = 1,∀x ∈ X;

(ii) symmetric if E(x, y) = E(y, x), ∀x, y ∈ X; and

(iii) transitive if E(x, y) � E(y, z) 6 E(x, z),
∀x, y, z ∈ X.

A reflexive, symmetric, and transitive L-fuzzy relation
on X is called an L-fuzzy similarity relation on X.

Now, we recall the following concepts related to the L-
fuzzy automata.

Definition 2.4. An L-fuzzy automaton is a system
M = (Q, (M, ∗, e), T, I, F ), where Q is a nonempty set
of states, (M, ∗, e) is a monoid inputs, T : Q×M −→
LQ is the transition function such that ∀p, q ∈ Q and
∀m,n ∈M ,

T (p, e)(q) =

{
1 if p = q
0 if p 6= q, and

T (p,m ∗ n)(q) = ∨{T (p,m)(r)� T (r, n)(q) : r ∈ Q},
I ∈ F(Q) is the initial L-fuzzy state and F ∈ F(Q) is
the final L-fuzzy state.

A state q ∈ Q is called initial (resp. final) state of
M if I(q) > 0 (resp. F (q) > 0). An L-fuzzy automa-
ton whose set of states is finite is called finite L-fuzzy
automaton.

Definition 2.5. An L-fuzzy automaton M = (Q, (M
, ∗, e), T, I, F ) is called

(i) complete if for all m ∈M and p ∈ Q there exists
q such that T (p,m)(q) > 0,

(ii) deterministic if there is a unique initial state q0
with I(q0) > 0 and for all m ∈M and p, q, r ∈ Q
if T (p,m)(q) > 0 and T (p,m)(r) > 0, then q = r.

If M = (Q, (M, ∗, e), T, I, F ) is a complete determin-
istic L-fuzzy automaton such that for all m ∈ M
and p, q ∈ Q, T (p,m)(q) ∈ {0, 1} and for unique
initial state q0, I(q0) = 1, then M is called crisp-
deterministic L-fuzzy automaton. In this case,
there exists a function δ : Q×M −→ Q such that for
all p ∈ Q and m ∈M , δ(p,m) = q iff T (p,m)(q) = 1.
Such crisp-deterministic L-fuzzy automaton is denoted
by (Q, (M, ∗, e), δ, q0, F ).

Definition 2.6. An L-fuzzy language fM : M −→
L is

(i) accepted by an L-fuzzy automaton M =
(Q, (M, ∗, e), T, I, F ) if fM(m) = ∨{I(r)�T (r,m
)(q)� F (q) : r, q ∈ Q}, ∀m ∈M ; and
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(ii) accepted by a crisp-deterministic L-fuzzy au-
tomaton M = (Q, (M, ∗, e), δ, q0, F ) if fM(m) =
F (δ(q0,m)), ∀m ∈M .

Definition 2.7. Let X be a nonempty set. A system
A = {Aλ : λ ∈ Λ} of normal L-fuzzy sets in X is an
L-fuzzy partition of X, if {core(Aλ) : λ ∈ Λ} is a
partition of X. A pair (X,A) is called a space with
an L-fuzzy partition.

Now, we recall the following concept of L-fuzzy objects
in a spaces with L-fuzzy partitions.

Definition 2.8. Let (L,L) be a space with an L-fuzzy
partition and L = {La : a ∈ L} be an L-fuzzy partition
of L such that ∀a, b ∈ L, La(b) = a ↔ b. Then an
L-fuzzy object in a space with an L-fuzzy partition
(X,A) is a map (A, σ) : (X,A) −→ (L,L) such that

(i) A : X −→ L is a map;

(ii) σ : Λ −→ L is a map; and

(iii) ∀λ ∈ Λ and ∀x ∈ X, Aλ(x) 6 Lσ(λ)(A(x)) =
σ(λ)↔ A(x).

R(X,A) denotes the set of all L-fuzzy objects in
(X,A).

Now, we recall the following from [8,24].

Let (X,A) be a space with an L-fuzzy partition and
A = {Aλ : λ ∈ Λ} be an L-fuzzy partition of X. Then
the L-fuzzy relation π on a set Λ is defined as:

π(λ1, λ2) = (∨{Aλ1
(x) : x ∈ core(Aλ2

)})∨(∨{Aλ2
(x) :

x ∈ core(Aλ1
)}), ∀λ1, λ2 ∈ Λ.

It can easily verified that π is reflexive and symmetric
L-fuzzy relation.

Now, consider the smallest L-fuzzy relation ρX,A on a
set Λ with conditions:

ρX,A(λ1, λ2)� ρX,A(λ2, λ3) 6 ρX,A(λ1, λ3) and

π(λ1, λ2) 6 ρX,A(λ1, λ2), ∀λ1, λ2, λ3 ∈ Λ.

In that case, ρX,A is an L-fuzzy similarity relation on
Λ.

Next, on the basis of ρX,A, the L-fuzzy relation δX,A
on a set X is defined as:

δX,A(x1, x2) = ρX,A(λ1, λ2), ∀λ1, λ2 ∈ Λ, ∀x1 ∈ core
(Aλ1

), and ∀x2 ∈ core(Aλ2
).

It can easily verified that δX,A is an L-fuzzy similarity
relation on X.

Proposition 2.2. [24] For (X,A) is a space with an
L-fuzzy partition and A = {Aλ : λ ∈ Λ} is an L-fuzzy
partition of X, if A : X −→ L be a map. Then the
following statements are equivalent.

(i) There exists the unique map σ : Λ −→ L such that
(A, σ) ∈ R(X,A); and

(ii) For given λ ∈ Λ, x ∈ core(Aλ), and x′ ∈ X,
Aλ(x′) 6 A(x)↔ A(x

′
) holds.

Let (X,A) be a space with an L-fuzzy partition and
A = {Aλ : λ ∈ Λ} be an L-fuzzy partition of X. Then
R1(X,A) is defined as,

R1(X,A) = {A : X −→ L : (A, σ) is an L-fuzzy object
in (X,A) for some map σ : Λ −→ L}.

3 The L-fuzzy partitioned automata

In this section, we introduce and study the concept of
an L-fuzzy partitioned automaton corresponding to a
given L-fuzzy automaton. Further, we establish the
relationship among the L-fuzzy languages of the in-
troduced L-fuzzy partitioned automaton and L-fuzzy
automaton.

We begin with the following definition of the L-fuzzy
automaton with L-fuzzy partition from [23].

Definition 3.1. A system ((X,A), (M, ∗, e), d) is
called an L-fuzzy automaton with L-fuzzy par-
tition, if

(1) X is the set of state with an L-fuzzy partition A,
where A = {Aλ : λ ∈ Λ} is an L-fuzzy partition
of X.

(2) (M, ∗, e) is a monoid inputs; and

(3) d : X × M −→ R1(X,A) is a map such that
∀x, y ∈ X, ∀x′ ∈ core(Aλ), and ∀m,n ∈M ,

(i) d(x, e)(y) = δX,A(x, y);

(ii) d(x,m ∗ n)(y) = ∨{d(x,m)(z) � d(z, n)(y) :
z ∈ X};

(iii) d(x,m)(y)�Aλ(x) 6 d(x′,m)(y); and

(iv) From the condition (iii), for each x, x′

∈ core(Aλ), d(x,m) = d(x′,m).

In the remaining part of this section, M =
(Q, (M, ∗, e), T, I, F ) is an L-fuzzy automaton and
(Q,Q) is a space with an L-fuzzy partition, where
Q = {Qα : α ∈ Λ} is an L-fuzzy partition of Q.

Now, we introduce the concept of the L-fuzzy parti-
tioned automata.

Definition 3.2. Let M = (Q, (M, ∗, e), T, I, F ) be an
L-fuzzy automaton. Then the L-fuzzy partitioned
automaton corresponding toM, denoted by P, is the
system P = ((Q,Q), (M, ∗, e), T1, I, F ), where

(i) Q is the set of state with an L-fuzzy partition Q,
where Q = {Qα : α ∈ Λ} is an L-fuzzy partition
of Q;
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(ii) (M, ∗, e) is a monoid inputs; and

(iii) T1(p,m)(q) = ∨{δQ,Q(p, r1)�T (r1,m)(r2)�δQ,Q
(r2, q) : r1, r2 ∈ Q}, ∀p, q ∈ Q and ∀m ∈ M ,
where δQ,Q(q1, q2) = ρQ,Q(α1, α2), ∀α1, α2 ∈ Λ,
∀q1 ∈ core(Qα1

), and ∀q2 ∈ core(Qα2
).

Proposition 3.1. Let M = (Q, (M, ∗, e), T, I, F )
be an L-fuzzy automaton. Then the L-fuzzy parti-
tioned automaton P = ((Q,Q), (M, ∗, e), T1, I, F ) cor-
responding toM is an L-fuzzy automaton with L-fuzzy
partition.

Proof. (i) Let p, s ∈ Q, s′ ∈ core(Qα), and m ∈ M .
Then

T1(p,m)(s)↔ T1(p,m)(s′)

= (∨{δQ,Q(p, r1)� T (r1,m)(r2)� δQ,Q(r2, s) : r1,

r2 ∈ Q})↔ (∨{δQ,Q(p, r1)� T (r1,m)(r2)�
δQ,Q(r2, s

′) : r1, r2 ∈ Q})
> (δQ,Q(p, p)� T (p,m)(p)� δQ,Q(p, s))↔ (δQ,Q

(p, p)� T (p,m)(p)� δQ,Q(p, s′))

> δQ,Q(p, s))↔ δQ,Q(p, s′))

> Qα(s).

Thus Qα(s) 6 T1(p,m)(s) ↔ T1(p,m)(s′), which im-
plying that T1(p,m) ∈ R1(Q,Q).

(ii) Let p, q ∈ Q. Then

T1(p, e)(q) = ∨{δQ,Q(p, r1)� T (r1, e)(r2)� δQ,Q
(r2, q) : r1, r2 ∈ Q}

= ∨{δQ,Q(p, r)� δQ,Q(r, q) : r ∈ Q}
6 δQ,Q(p, q).

Conversly,

T1(p, e)(q) = ∨{δQ,Q(p, r1)� T (r1, e)(r2)� δQ,Q
(r2, q) : r1, r2 ∈ Q}

= ∨{δQ,Q(p, r)� δQ,Q(r, q) : r ∈ Q}
> δQ,Q(p, p)� δQ,Q(p, q)

= δQ,Q(p, q).

Thus T1(p, e)(q) = δQ,Q(p, q).

(iii) Let p, q ∈ Q and m,n ∈M . Then

T1(p,m ∗ n)(q) = ∨{δQ,Q(p, r1)� T (r1,m ∗ n)(r2)

�δQ,Q(r2, q) : r1, r2 ∈ Q}
= ∨{δQ,Q(p, r1)� ∨{T (r1,m)(r)

�T (r, n)(r2) : r ∈ Q} � δQ,Q(r2,

q) : r1, r2 ∈ Q}
= ∨{δQ,Q(p, r1)� T (r1,m)(r)� T

(r, n)(r2)� δQ,Q(r2, q) : r, r1, r2

∈ Q}

= ∨{δQ,Q(p, r1)� T (r1,m)(r)� δQ,Q(r, r)�
δQ,Q(r, r)� T (r, n)(r2)� δQ,Q(r2, q) : r, r1,

r2 ∈ Q}
= ∨{T1(p,m)(r)� T1(r, n)(q) : r ∈ Q}.

Thus T1(p,m ∗ n)(q) = ∨{T1(p,m)(r) � T1(r, n)(q) :
r ∈ Q}.

(iv) Let p, s ∈ Q, s′ ∈ core(Qα), and m ∈M . Then

T1(p,m)(s)�Qα(p) = ∨{δQ,Q(p, r1)� T (r1,m)

(r2)� δQ,Q(r2, s) : r1, r2

∈ Q} �Qα(p)

= ∨{δQ,Q(p, r1)� T (r1,m)

(r2)� δQ,Q(r2, s)�Qα(p)

: r1, r2 ∈ Q}
6 ∨{δQ,Q(s′, r1)� T (r1,m)

(r2)� δQ,Q(r2, s) : r1, r2

∈ Q}
= T1(s′,m)s.

Thus T1(p,m)(s)�Qα(p) 6 T1(s′,m)(s).

(v) From the condition (iv), T1(s,m) = T1(s′,m),
∀s, s′ ∈ core(Qα) and ∀m ∈M .

Hence P = ((Q,Q), (M, ∗, e), T1, I, F ) is an L-fuzzy
automaton with L-fuzzy partition.

The following is to establish the relationship between
L-fuzzy languages of the introduced L-fuzzy parti-
tioned automaton and L-fuzzy automaton.

Proposition 3.2. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ). Then
fM ⊆ fP .

Proof. Let m ∈M . Then

fP(m) = ∨{I(r)� T1(r,m)(q)� F (q) : r, q ∈ Q}
= ∨{I(r)� δQ,Q(r, r1)� T (r1,m)(r2)�

δQ,Q(r2, q)� F (q) : r, r1, r2, q ∈ Q}
> ∨{I(r)� δQ,Q(r, r)� T (r,m)(q)� δQ,Q

(q, q)� F (q) : r, q ∈ Q}
= ∨{I(r)� T (r,m)(q)� F (r)}
= fM(m).

Thus fM ⊆ fP .

Proposition 3.3. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ), where
Q = {Qα : α ∈ Λ} such that for all α ∈ Λ, there exists
unique q ∈ Q with Qα(q) = 1 and 0, otherwise. Then
fP = fM.
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Proof. Let m ∈M . Then

fP(m) = ∨{I(r)� T1(r,m)(q)� F (q) : r, q ∈ Q}
= ∨{I(r)� (∨{δQ,Q(r, r1)� T (r1,m)(r2)

�δQ,Q(r2, q) : r1, r2 ∈ Q})� F (q) : r, q

∈ Q}
= ∨{I(r)� δQ,Q(r, r1)� T (r1,m)(r2)�

δQ,Q(r2, q)� F (q) : r, r1, r2, q ∈ Q}
= ∨{I(r)� δQ,Q(r, r)� T (r,m)(q)� δQ,Q

(q, q)� F (q) : r ∈ Q}
= ∨{I(r)� T (r,m)(q)� F (q)}
= fM(m).

Thus fP = fM.

Proposition 3.4. If the L-fuzzy partitioned automa-
ton P = ((Q,Q), (M, ∗, e), T1, I, F ) corresponding to
given L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F )
is crisp-deterministic L-fuzzy automaton, then Q =
{Qα : α ∈ Λ} such that for all α ∈ Λ, there exists
unique q ∈ Q with Qα(q) = 1 and 0, otherwise.

Proof. Follows from Proposition 3.1.

4 Determinization of L-fuzzy
partitioned automata

In this section, we introduce the crisp-deterministic L-
fuzzy automaton corresponding to the L-fuzzy parti-
tioned automaton such that both accept same L-fuzzy
language.

Definition 4.1. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ). Then
the crisp-deterministic L-fuzzy automaton cor-
responding to P, denoted by F , is the system F =
(F(Q), (M, ∗, e), TF , IF , FF ), where

(i) F(Q) = {µ : µ : Q −→ L} is the set of states;

(ii) (M, ∗, e) is a monoid inputs;

(iii) TF : F(Q)×M −→ F(Q) is a transition function
such that ∀A ∈ F(Q), ∀q ∈ Q, and ∀m ∈ M ,
TF (A,m)(q) = ∨{A(r)� T (r,m)(q) : r ∈ Q};

(iv) IF ∈ F(Q) is an initial state such that ∀q ∈ Q,
IF (q) = ∨{I(r)� δQ,Q(r, q) : r ∈ Q}; and

(v) FF : F(Q) −→ L is a final L-fuzzy state such that
∀A ∈ F(Q), FF (A) = ∨{A(r)�δQ,Q(r, q)�F (q) :
r, q ∈ Q}.

Proposition 4.1. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding

to L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F )
and F = (F(Q), (M, ∗, e), TF , IF , FF ) be a crisp-
deterministic L-fuzzy automaton corresponding to P.
Then fF=fP .

Proof. Let m ∈M . Then

fF (m) = FF (TF (IF ,m))

= ∨{TF (IF ,m)(r2)� δQ,Q(r2, q)� F (q)

: r2, q ∈ Q}
= ∨{(∨{IF (r1)� T (r1,m)(r2) : r1 ∈ Q})
�δQ,Q(r2, q)� F (q) : r2, q ∈ Q}

= ∨{(∨{I(r)� δQ,Q(r, r1) : r ∈ Q})� T
(r1,m)(r2)� δQ,Q(r2, q)� F (q) : r1, r2,

q ∈ Q}
= ∨{I(r)� δQ,Q(r, r1)� T (r1,m)(r2)�

δQ,Q(r2, q)� F (q) : r, r1, r2, q ∈ Q}
= ∨{I(r)� T1(r,m)(q)� F (q) : r, q ∈ Q}
= fP(m).

Thus fF = fP .

5 The fuzzified L-fuzzy partitioned
automata

In this section, we introduce and study the notion
of the fuzzified L-fuzzy partitioned automaton corre-
sponding to a given L-fuzzy partitioned automaton.
Further, we study the L-fuzzy language of such fuzzi-
fied L-fuzzy partitioned automaton in terms of L-fuzzy
language of the L-fuzzy partitioned automaton.

Definition 5.1. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding to
L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ). The
fuzzified L-fuzzy partitioned automaton corre-
sponding to P, denoted by W, is the system W =
((Q,Q), (F(M),⊗, 1e), T2, I, F ), where

(i) (F(M),⊗, 1e) is a monoid inputs, where F(M) =
{A : A : M −→ L} and 1e ∈ F(M) such that
∀x ∈M ,

1e(x) =

{
1 if x = e
0 if x 6= e, and

(ii) T2(p,A)(q) = ∨{A(m) � T1(p,m)(q) : m ∈ M},
∀p, q ∈ Q and ∀A ∈ F(m).

Definition 5.2. An L-fuzzy language fW : F(M)
−→ L is accepted by a fuzzified L-fuzzy partitioned
automaton W = ((Q,Q), (F(M),⊗, 1e), T2, I, F ) if
fW(A) = ∨{I(r) � T2(r,A)(q) � F (q) : r, q ∈ Q},
∀A ∈ F(M).
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Proposition 5.1. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ).
Then the fuzzified L-fuzzy partitioned automaton W =
((Q,Q), (F(M),⊗, 1e), T2, I, F ) corresponding to P is
an L-fuzzy automaton with L-fuzzy partition.

Proof. (i) Let p, s ∈ Q, s′ ∈ core(Qα), and A ∈ F(M).
Then

T2(p,A)(s)↔ T2(p,A)(s′)

= ∨{A(m1)� T1(p,m1)(s) : m1 ∈M} ↔ ∨{A
(m2)� T1(p,m2)(s′) : m2 ∈M}

> (A(m)� T1(p,m)(s))↔ (A(m)� T1(p,m)(s′))

> T1(p,m)(s)↔ T1(p,m)(s′)

> Qα(s).

Thus Qα(s) 6 T2(p,m)(s) ↔ T2(p,m)(s′), which im-
plying that T2(p,m) ∈ R1(Q,Q).

(ii) Let p, q ∈ Q. Then

T2(p, 1e)(q) = ∨{1e(m)� T1(p,m)(q) : m ∈M}
= T1(p, e)(q)

= δQ,Q(p, q).

Thus T2(p, 1e)(q) = δQ,Q(p, q).

(iii) Let p, q ∈ Q and A1, A2 ∈ F(M). Then

T2(p,A1 ⊗A2)(q) = ∨{(A1 ⊗A2)m� T1(p,m)(q)

: m ∈M}
= ∨{A1(m1)�A2(m2)� T1(p,

m)(q) : m = m1 ∗m2}
= ∨{A1(m1)�A2(m2)� T1(p,

m1 ∗m2)(q) : m1,m2 ∈M}
= ∨{A1(m1)�A2(m2)� T1(p,

m1)(r)� T1(r,m1)(q) : r ∈ Q
,m1,m2 ∈M}

= ∨{T2(p,A1)(r)� T2(r,A2)(q)

: r ∈ Q}.

Thus T2(p,A1 ⊗A2)(q) = ∨{T2(p,A1)(r)� T2(r,A2

)(q) : r ∈ Q}.

(iv) Let p, s ∈ Q, s′ ∈ core(Qα), and A ∈ F(M). Then

T2(p,A)(s)�Qα(p) = ∨{A(m)� T1(p,m)(s) : m

∈M} �Qα(p)

= ∨{A(m)� T1(p,m)(s)�Qα
(p) : m ∈M}

6 ∨{A(m)� T1(s′,m)(s) : m

∈M}
= T2(s′, A)(s).

Thus T2(p,A)(s)�Qα(p) 6 T2(s′, A)(s).

(v) From the condition (iv), T2(s,A) = T2(s′, A),
∀s, s′ ∈ core(Qα) and A ∈ F(M).

Hence W = ((Q,Q), (F(M),⊗, 1e), T2, I, F ) is an L-
fuzzy automaton with L-fuzzy partition.

Proposition 5.2. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ),
W = ((Q,Q), (F(M),⊗, 1e), T2, I, F ) be the fuzzi-
fied L-fuzzy partitioned automaton corresponding to P,
and W = A1 ⊗ ... ⊗ An, ∀A1, ..., An ∈ F(M). Then
T2(p,W )(q) = ∨{T1(p,m1 � ... �mn)(q) � A1(m1) �
...�An(mn) : m1, ...,mn ∈M}, ∀p, q ∈ Q.

Proof. We prove the result by induction on length W ,
denoted by |W |. Let |W | = n, n > 0. Then for n = 0,
the result is obvious from the definition of T2. Suppose
that the result is true for W of length n, then we have
to show that the result holds for length n+1. Now, let
W = A1⊗ ...⊗An⊗An+1,∀A1, ..., An, An+1 ∈ F(M).
Then

T2(p,W )(q) = ∨{T2(p,A1 ⊗ ...⊗An)(r)� T2(r,

An+1)(q) : r ∈ Q}
= ∨{(∨{T1(p,m1 � ...�mn)(r)�A1

(m1)� ...�An(mn) : m1, ...,mn

∈M})� (∨{T1(r,mn+1)(q)�A
(mn+1) : mn+1 ∈M})q : r ∈ Q}

= ∨{T1(p,m1 � ...�mn)(r)�A1(m1

)� ...�An(mn)� T1(r,mn+1)(q)

�An+1(mn+1) : r ∈ Q,m1, ...mn,

mn+1 ∈M}
= ∨{T1(p,m1 � ...�mn �mn+1)(q)

�A1(m1)� ...�An(mn)�An+1

(mn+1) : m1, ...mn,mn+1 ∈M}.

The following is towards the L-fuzzy language of the
introduced fuzzified L-fuzzy partitioned automaton in
terms of the L-fuzzy language of the L-fuzzy parti-
tioned automaton.

Proposition 5.3. Let P = ((Q,Q), (M, ∗, e), T1, I, F )
be the L-fuzzy partitioned automaton corresponding
to L-fuzzy automaton M = (Q, (M, ∗, e), T, I, F ),
W = ((Q,Q), (F(M),⊗, 1e), T2, I, F ) be the fuzzi-
fied L-fuzzy partitioned automaton corresponding to P,
and W = A1 ⊗ ... ⊗ An, ∀A1, ..., An ∈ F(M). Then
fW(W ) =∨{fP(m1�...�mn)�A1(m1)�...�An(mn) :
m1, ...,mn ∈M}.
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Proof. Let W = A1 ⊗ ... ⊗ An, ∀A1, ..., An ∈ F(M).
Then

fW(W ) = ∨{I(r)� T2(r,W )(q)� F (q) : r, q ∈ Q}
= ∨{I(r)� (∨{T1(r,m1 � ...�mn)(q)�

A1(m1)� ...�An(mn) : m1, ...,mn

∈M})� F (q) : r, q ∈ Q}
= ∨{I(r)� T1(r,m1 � ...�mn)(q)�A1

(m1)� ...�An(mn)� F (q) : r, q ∈ Q,
m1, ...,mn ∈M}

= ∨{fP(m1 � ...�mn)�A1(m1)� ...�
An(mn) : m1, ...,mn ∈M}.

Thus fW(W ) = ∨{fP(m1�...�mn)�A1(m1)�...�An
(mn) : m1, ...,mn ∈M}.

6 Conclusion

In this paper, we have introduced and studied the
concept of the L-fuzzy partitioned automaton corre-
sponding to a given L-fuzzy automaton, whose set of
states is a space with an L-fuzzy partition of the set
of states of such given automaton. Also, we have ob-
tained the relationship among the L-fuzzy languages
of the L-fuzzy partitioned automaton and L-fuzzy au-
tomaton. Further, the crisp-deterministic L-fuzzy au-
tomaton is introduced corresponding to the L-fuzzy
partitioned automaton such that both accept same L-
fuzzy language. Finally, the concept of the L-fuzzy sets
have been used to introduce the fuzzified L-fuzzy par-
titioned automaton corresponding to a given L-fuzzy
partitioned automaton. Interestingly, it is shown here
that the L-fuzzy language of fuzzified L-fuzzy parti-
tioned automaton can be obtained from the L-fuzzy
language of the L-fuzzy partitioned automaton.
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