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Abstract

The paper aims at studying the solvabil-
ity of fuzzy relational equations where the
input fuzzy sets may have undefined val-
ues. The appropriate operations dealing un-
defined values are taken from the algebras
built in partial fuzzy set theory, in particular,
the Bochvar operations, the Sobociński oper-
ations, the Kleene operations and the lower
estimation operations are used for the inves-
tigation. We first elaborate new models using
distinct operations handling undefined values
and mirroring the shapes of the implicative
model and Mamdani-Assilian model. Then
the solvability criterions for such new sys-
tems of fuzzy relational equations are set up,
and consequently, we show a way of checking
whether the systems are solvable or not.

Keywords: Fuzzy relational equations, Un-
defined values, Partial fuzzy set theory.

1 Introduction and Preliminaries

1.1 Introduction and motivation

Systems of fuzzy relational equations were firstly stud-
ied by Sanchez [22]. During the years later, the topic
has attracted the interest of several authors and has
become an important topic in fuzzy mathematics, es-
pecially in fuzzy control and approximate reasoning.
The most focused problem relating the topic is find-
ing the solvability criterions for the systems of fuzzy
relational equations. A number of extensive results
have been achieved, regarding the unique positions
of the implicative model and the Mamdani-Assilian
model [19] among the solutions of the systems (cf.
[17, 18, 20]), the Ruspini condition of the antecedent
fuzzy sets (cf. [24]), and the continuous model of
fuzzy rules [21]. Apart from the fuzzy control, the

systems of fuzzy relational equations have been widely
applied in many other areas covering the duality of op-
timization problems with generalized fuzzy relational
equations [16], the linear optimization problems [15],
or the posynomial geometric programming [25]. Up
to the present time, the topic has been continuously
updated both on theoretical and applied aspects, see
[12, 8, 13, 5] for the most relevant results.

Standardly, there are two systems of fuzzy relational
equations: the sup-T system represented by the form
Ai ◦ R = Bi and the inf-R system represented by the
form Ai � R = Bi. In this work, we follow these set-
tings, however, the antecedents Ai will be partial fuzzy
sets whose membership degrees can be undefined val-
ues. For the initial investigation, the consequents Bi

will be kept in the form of fully defined fuzzy sets. The
idea of considering the occurrence of undefined values
in the systems naturally stems from the formation of
partial fuzzy logic and the so-called partial fuzzy set
theory [2, 10, 1, 9], and the application of such topics
into fuzzy relational compositions to model the compo-
sitions dealing with undefined values [6, 7]. It is worth
recalling that fuzzy partial logics are a generalization
of three-valued logics into many-valued logics, usually
[0, 1]-valued logics and they model the vagueness phe-
nomenon extended by the dummy value ? represent-
ing undefined truth values. Several well-known three-
valued logics handling undefined values have been gen-
eralized such as Bochvar logic, Sobociński logic, Mc-
Carthy logic, and Kleene logic (cf. [14, 4, 3]). In terms
of computation, let us reduce the terms of logics to al-
gebras of operations.

In the standard systems, the sup-T system is solvable
if and only if the implicative model is its solution and
the inf-R system is solvable if and only if the Mamdani-
Assilian model is its solution. We follow these results
and thinking of whether similar results can be obtained
for the new systems of equations dealing with unde-
fined values appearing in the antecedents. In partic-
ular, we approach to answer the following questions:
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whether we can find appropriate models to build the
solvability criterions for such the proposed systems,
and in the positive case, which algebras of operations
are used and do the models have similar shapes to
the implicative model and Mamdani-Assilian model?
Due to the variety of the algebras of operations dealing
with undefined values, let us not choose all of them
for the consideration but few best-known ones such
as the Bochvar operations, the Sobociński operations,
and the Kleene operations. Also, the new set of lower
estimation operations designed for modeling one of the
essential types of undefined values, i.e., missing values
[7], is taken into account as well. Although this strat-
egy of operations has been modified to form the Drag-
onfly algebra [23], it is the original idea, and we may
apply it firstly, to observe its effect on the solvability
of the new systems and to compare its use with the
use of the three other ones.

1.2 Systems of fuzzy relational equations

Let us fix a complete residuated lattice L =
〈[0, 1],∧,∨,⊗,→ 0, 1〉 as the underlying algebraic
structure. Moreover, by F(U) we denote the set of all
fuzzy sets on a given universe U . Let Ai ∈ F(X), Bi ∈
F(Y ), i = 1, . . . ,m be the antecedent and consequent
fuzzy sets, respectively. There are two standard sys-
tems of fuzzy relational equations considered with an
unknown fuzzy relation R ∈ F(X × Y ):

Ai ◦R = Bi, i = 1, 2, . . . ,m (sup-T system) , (1)

Ai �R = Bi, i = 1, 2, . . . ,m (inf-R system) , (2)

where the used compositions (images) ◦ and � can be
expanded as follows:

(Ai ◦R)(y) =
∨
x∈X

(Ai(x)⊗R(x, y)) ,

(Ai �R)(y) =
∧
x∈X

(Ai(x)→ R(x, y)) .

Two models with priority positions among other po-
tential solutions of the systems are the Mamdani-
Assilian model (abbr. Ř) [19] and the implicative
model (abbr. R̂):

Ř(x, y) =
m∨
i=1

(Ai(x)⊗Bi(y)) , (3)

R̂(x, y) =
m∧
i=1

(Ai(x)→ Bi(y)) . (4)

The following theorem of the solvability criterion of
the systems shows the priority of such models (cf. [11,
17, 20]).

Theorem 1.1. System (1)[(2)] is solvable if and only
if fuzzy relation R̂ [Ř] is its solution and then R̂ [Ř] is
its greatest [least] solution.

1.3 Distinct algebras of undefined values

In this subsection, we briefly recall the Bochvar oper-
ations, the Sobociński operations, the Kleene opera-
tions and the lower estimation operations. Such the
operations are defined on the support L? = L ∪ {?}
[2]. Note that the operations in the following defini-
tions that are not attached by a subscript are taken
from the structure L.

Definition 1.1. [2] The Bochvar operation cB ∈
{∧B ,∨B ,⊗B ,→B}, cB : L? × L? → L? is represented
by the following truth table:

cB β ?
α α c β ?
? ? ?

.

Note that the dummy value ? in this algebra works as
the annihilator and whenever combined with another
element, the operations return to ? again.

Definition 1.2. [2] The Sobociński operation cS ∈
{∧S ,∨S ,⊗S}, cS : L? × L? → L? and the Sobociński
implication →S : L? × L? → L? are represented by the
following truth tables:

cS β ?
α α c β α
? β ?

,
→S β ?
α α → β ¬α
? β ?

.

The dummy value ? in this algebra employs as a sort
of neutral element that is ignored by every another
element in the support L. It should be noted that in
the Bochvar algebra and the Sobociński algebra, the
dummy value ? is incomparable with any element from
the support L. Thus, the ordering ≤ in these algebras
only reflects the chain L = [0, 1] and that ? ≤ ?.
Definition 1.3. [2] The Kleene operations cK ∈
{∧K ,⊗K}, ∨K and the Kleene implication →K are
binary operations on L? represented by the following
truth tables:

The dummy value ? in the Kleene algebra works as in
the Bochvar algebra on L?\{0, 1} and it is comparable
with 0 and 1, i.e., 0 ≤ ? ≤ 1.

Definition 1.4. [7] The lower estimation operations
c` ∈ {⊗`,∧`}, ∨`, →`: L

? × L? → L? are represented
by the following truth tables:
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cK β ? 0
α α c β ? 0
? ? ? 0
0 0 0 0

,

∨K ξ ? 1
λ λ ∨ ξ ? 1
? ? ? 1
1 1 1 1

,

→K ξ ? 1
α α → ξ ? 1
? ? ? 1
0 1 1 1

.

c` β ? 0 1
α α c β ? 0 α
? ? ? 0 ?
0 0 0 0 0
1 β ? 0 1

,

∨` β ? 0 1
α α ∨ β α α 1
? β ? ? 1
0 β ? 0 1
1 1 1 1 1

,

→` β ? 0 1
α α → β ? ¬α 1
? β ? 0 1
0 1 1 1 1
1 β ? 0 1

.

On the set L? \ {0, 1}, the lower estimation conjunc-
tion corresponds to the Bochvar conjunction, and the
disjunction corresponds to the Sobociński disjunction.
The implication behaves like the Sobociński implica-
tion when the first argument is ? and like the Bochvar
implication when the second argument is ?. The lower
estimation operations applying for ? and {0, 1} do pre-
serve the ordering 0 ≤ ? ≤ 1 as in the Kleene algebra.

In addition to those operations, we recall two useful
external unary operations.

Definition 1.5. [2] The external operations ↓, ↑:
L? → L? are represented as follows: ↓α = 0 if α = ?
and ↓α = α otherwise; ↑ α = 1 if α = ? and ↑ α = α
otherwise.

2 Systems of fuzzy relational
equations employing undefined
values

2.1 Sup-T system

In the sequel, we use the notation F?(X) for the set
of all partial fuzzy sets defined on X. Now, let us first
consider the use of the lower estimation operations into
the system. In particular, we approach to find the

solvability of system

Ai ◦` R = Bi , i = 1, . . . ,m (5)

where Ai ∈ F?(X), Bi ∈ F(Y ) and R ∈ F?(X ×Y ) is
unknown.

In a similar shape with the implication model R̂, we
define model R̂`:

R̂`(x, y) =
m∧

`
i=1

(↓ Ai(x)→` Bi(y)) . (6)

By this definition, R̂` is a fuzzy relation on X ×Y . In
order to study properties of R̂`, we need the following
lemma:

Lemma 2.1. The following hold for any a, b, c ∈ L?:

↓ (a⊗` b) ≤ c iff ↓ a ≤↓ b→` c , (7)

↓ (a ∨` b) = (↓ a) ∨` (↓ b) , (8)

↑ (a→` b) ≥ c iff ↑ b ≥↑ a⊗` c , (9)

a→` (↑ a⊗` b) ≥ b . (10)

Sketch of the proof: Applying the definition of the
lower estimation operations and the two external op-
erations ↓, ↑, one can check the validity of (7)-(10) by
replacing at least one argument by ?. 2

It should be recalled that when considering an inclu-
sion of two partial fuzzy sets B1 and B2 on Y , we keep
in mind the standard fuzzy subset defined as follows:

B1 ⊆ B2 if B1(y) ≤ B2(y) , ∀y ∈ Y .

Theorem 2.2.

↓ (Ai ◦` R̂`) ⊆ Bi . (11)

Sketch of the proof: For all y ∈ Y ,(
Ai ◦` R̂`

)
(y)

=
∨̀
x∈X

Ai(x)⊗`

m∧
`

j=1

(↓ Aj(x)→` Bj(y))


≤
∨̀
x∈X

(Ai(x)⊗` (↓ Ai(x)→` Bi(y))) .

Let M(x) = Ai(x) ⊗` (↓ Ai(x)→` Bi(y)) and let us
consider two cases of Bi(y) for y ∈ Y . In case of
Bi(y) = 0, M(x) = ? if Ai(x) = ? and M(x) = 0 if

Ai(x) 6= ?. Thus, ↓
∨̀

x∈X
M(x) =↓ ? = 0 which is

equal to Bi(y). Now we consider the case of Bi(y) >
0. We have M(x) = 0 if Ai(x) = 0 and M(x) = ?
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if Ai(x) = ?. If Ai(x) 6= {0, ?} then based on the
property that a⊗ (a→ b) ≤ b we imply that M(x) ≤
Bi(y). Thus, ↓

∨̀
x∈X

M(x) is always smaller than or

equal to Bi(y).

2

Corollary 2.3. For each i = 1, . . . ,m, if there exists
x ∈ X such that Ai(x) 6= {0, ?} and Bi(y) > 0 for all
y ∈ Y then the following inclusion holds

Ai ◦` R̂` ⊆ Bi . (12)

Sketch of the proof: Property (12) is proved based
on the proof of (11). Indeed, based on the as-
sumption of the existence of an x ∈ X such that
Ai(x) 6= {0, ?} and Bi(y) > 0 for all y ∈ Y , we
can find x′ ∈ X such that Ai(x

′) 6= {0, ?} and∨̀
x∈X

(Ai(x)⊗` (↓ Ai(x)→` Bi(y))) = Ai(x
′) ⊗`

(↓ Ai(x
′)→` Bi(y)) which is different from {0, ?} and

smaller than or equal to Bi(y). 2

Theorem 2.4. If system (5) is solvable then

Ai ◦` R̂` ⊇ Bi . (13)

Sketch of the proof: Using (7) and (8) the following se-
quence of the implications holds:

(Ai ◦` R)(y) ≤ Bi(y), y ∈ Y

↓
∨̀
x∈X

(Ai(x)⊗` R(x, y)) ≤ Bi(y), y ∈ Y, ∀i

↓ (Ai(x)⊗` R(x, y)) ≤ Bi(y), x ∈ X, y ∈ Y, ∀i
↓ R(x, y) ≤↓ Ai(x)→` Bi(y), x ∈ X, y ∈ Y, ∀i

↓ R(x, y) ≤
m∧

`
i=1

(↓ Ai(x)→` Bi(y)) , x ∈ X, y ∈ Y .

Thus, ↓ R ⊆ R̂` which implies (Ai◦` ↓ R) ⊆(
Ai ◦` R̂`

)
.

Since Ai ◦` R = Bi is a fuzzy set on Y whose mem-
bership degrees are fully defined, we can prove that
Ai ◦` R = Ai◦` ↓ R. Hence

Bi ⊆ (Ai ◦` R) ⊆
(
Ai ◦` R̂`

)
.

2

Theorem 2.5. For each i = 1, . . . ,m, if there exists
x ∈ X such that Ai(x) 6= {0, ?} and Bi(y) > 0 for all
y ∈ Y then system (5) is solvable if and only if R̂` is
its solution. Moreover, in case of solvability, ↓ R ⊆ R̂`

for any solution R of the system.

Sketch of the proof: The proof is directly derived from
Corollary 2.3 and Theorem 2.4. 2

Remark 2.1. The properties of model R̂` for system
(5) are given in inclusions (11), (12) and (13). Prop-
erty (11) provides the general relation of the inferred
outputs Ai ◦` R̂` and the consequents Bi, that they can
be incomparable only at the values y ∈ Y such that
(Ai ◦` R̂`)(y) = ?. Property (13) shows that in case
of solvability of system (5), the inferred outputs are
greater than or equal to the consequents and moreover,
model R̂` is always greater than or equal to ↓ R for
any solution R of the system. This property may help
in narrowing the set of solutions, serving to find an
approximate solution of system (5). It is trivial that
both properties (11) and (13) are not sufficient to im-
ply the solvability criterion of the system. However, if
the assumptions presented in Corollary 2.3 are taken
into account, then (12) holds, and the combination of
(12) and (13) directly implies the solvability of the sys-
tem. The assumption on the antecedents that there is
at least x ∈ X so that Ai(x) 6= {0, ?} can be achieved
easily since the fuzzy inputs usually contain member-
ship degrees different from 0 and 1. In contrast, the
assumption on the consequents that Bi(y) has to be
greater than 0 for all y ∈ Y is rather strict, but it can
be satisfied. In case of both assumptions hold, the solv-
ability criterion of system (5) is set up (Theorem 2.5).
There, to check the solvability of (5), it is sufficient to
check whether R̂` is its solution or not. In the case of
negative, the system is not solvable.

Now, let us consider the use of the Sobociński opera-
tions i.e., considering system

Ai ◦S R = Bi , i = 1, . . . ,m . (14)

The model according to this algebra of operations is
given by

R̂S(x, y) =
m∧

S
i=1

(↓ Ai(x)→S Bi(y)) . (15)

The properties presented in the following lemma are
necessary for investigating properties of model R̂S .

Lemma 2.6. The following hold for any a, b, c ∈ L?:

↓ (a⊗S b) ≤ c ⇒ ↓ a ≤↓ b→S c , (16)

↓ (a ∨S b) = (↓ a) ∨S (↓ b) , (17)

↑ (a→S b) ≥ c ⇒ ↑ b ≥↑ a⊗S c , (18)

↑ (a ∧S b) = (↑ a) ∧S (↑ b) , (19)

a→S (↑ a⊗S b) ≥ b . (20)

Sketch of the proof: The proof is based on the defini-
tions of the Sobociński operations and the operations
↓, ↑. 2

If we take into account Lemma 2.1 we may see that
properties (16) and (18) preserve (7) and (9) respec-
tively only in a weak form of the implications.
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Theorem 2.7.

(↓ Ai) ◦S R̂S ⊆ Bi . (21)

Sketch of the proof: For all y ∈ Y ,(
(↓ Ai) ◦S R̂S

)
(y)

=
∨

S
x∈X

(↓ Ai(x))⊗S

m∧
S

j=1

(↓ Aj(x)→S Bj(y))


≤
∨

S
x∈X

((↓ Ai(x))⊗S (↓ Ai(x)→S Bi(y))) .

Let M(x) = (↓ Ai(x))⊗S (↓ Ai(x)→S Bi(y)). In case
of Ai(x) ∈ {0, ?}, we get M(x) = 0 which is always
smaller than or equal to Bi(y). In case of Ai(x) 6=
{0, ?}, M(x) is a truth value in L and it is trivial
smaller than or equal to Bi(y).

2

Theorem 2.8. If system (14) is solvable then

Ai ◦S R̂S ⊇ Bi . (22)

Sketch of the proof: Using (16)-(17) we can prove (22)
in a similar way to the proof of (13). In particular, we
first prove ↓ R ⊆ R̂S . Then, since Ai ◦S R = Bi is
a fuzzy set on Y whose membership degrees are fully
defined, we may prove that for i = 1, . . . ,m and y ∈ Y ,
(Ai ◦SR)(y) is greater than or equal to (Ai◦S ↓ R)(y).
In case of the equality, it can be easily implied that
Bi(y) ≤ (Ai ◦S R̂S)(y). In case of the inequality, we
may directly prove that (Ai ◦S R)(y) ≤ (Ai ◦S R̂S)(y)
and thus, Bi(y) ≤ (Ai ◦S R̂S)(y) .

2

Remark 2.2. When using the Sobociński operations,
we do not obtain the solvability criterion for system
(14). This fact is understandable due to the appear-
ing of undefined values in the antecedents which may
cause a strict inequality of the inferred outputs and the
consequents. Indeed, one may refer from the proof of
(21) that in case of without applying the operation ↓ to
the antecedents, it may happen that the inferred out-
put is equal to 1 at a certain y ∈ Y, i ∈ {1, . . . ,m}
which is possibly greater than Bi(y). However, inclu-
sion (22) remains as a good result for the application
of the Sobociński operations. Moreover, the proof of
such inclusion shows that in case of solvability of sys-
tem (14), ↓ R ⊆ R̂S for any solution R of the system.

In the application of the Bochvar operations, one may
observe that system

Ai ◦B R = Bi , i = 1, . . . ,m (23)

is not solvable. Indeed, whenever there is an x ∈ X
such that Ai(x) = ?, (Ai ◦B R)(y) will be equal to ?
for any y ∈ Y which is incomparable to Bi(y) ∈ L.

When employing the Kleene operations, system

Ai ◦K R = Bi , i = 1, . . . ,m (24)

is possibly solvable. This happens only in two cases:
when (Ai ◦K R)(y) 6= ? and when (Ai ◦K R)(y) = 1
for all y ∈ Y . The first case corresponds to consider-
ing R so that R(x, y) = 0 at the values x ∈ X such
that Ai(x) = ?, and R(x, y) 6= ? at the values x ∈ X
such that Ai(x) 6= 0. The second case corresponds to
the existence of an x ∈ X such that Ai(x) = 1 and
R(x, y) = 1. If model

R̂K(x, y) =
m∧

K
i=1

(↓ Ai(x)→K Bi(y)) (25)

is taken into account then the second case causes
Bi(y) = 1 for i = 1, . . . ,m and for all y ∈ Y . Such out-
put fuzzy sets Bi are usually not considered for fuzzy
inference problems.

2.2 Inf-R system

In this subsection, we study the solvability of the inf-
R system dealing with undefined values in the an-
tecedents. Let us again apply the lower estimation
operations first. We have the following system

Ai �` R = Bi , i = 1, . . . ,m (26)

where Ai ∈ F?(X), Bi ∈ F(Y ) and R ∈ F?(X ×Y ) is
unknown.

In a similar shape to the Mamdani-Assilian model Ř,
we define the following model Ř` using the external
operation ↑:

Ř`(x, y) =
m∨̀
i=1

(↑ Ai(x)⊗` Bi(y)) . (27)

Theorem 2.9.

Ai �` Ř` ⊇ Bi . (28)

Sketch of the proof: Based on property (10) and the
fact that a ≤ b for a, b ∈ L implies c →` a ≤ c →` b
for c ∈ L?, we obtain(

Ai �` Ř`

)
(y)

≥
∧

`
x∈X

(Ai(x)→` (↑ Ai(x)⊗` Bi(y))) ≥ Bi(y) .

2
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Theorem 2.10. If system (26) is solvable then

Ai �` Ř` ⊆ Bi . (29)

Sketch of the proof: Applying property (9), the as-
sumption that system (26) is solvable, and the fact
that ↑ (a ∧` b) = (↑ a) ∧` (↑ b) when a ∧` b 6= ?, the
following sequence of the implications holds:

(Ai �` R)(y) ≥ Bi(y), y ∈ Y

↑
∧

`
x∈X

(Ai(x)→` R(x, y)) ≥ Bi(y), y ∈ Y, ∀i

↑ (Ai(x)→` R(x, y)) ≥ Bi(y), x ∈ X, y ∈ Y, ∀i
↑ R(x, y) ≥↑ Ai(x)⊗` Bi(y), x ∈ X, y ∈ Y, ∀i

↑ R(x, y) ≥
m∨̀
i=1

(↑ Ai(x)⊗` Bi(y)) , x ∈ X, y ∈ Y

↑ R(x, y) ≥ Ř`(x, y), x ∈ X, y ∈ Y .

Thus, ↑ R ⊇ Ř` which implies (Ai�` ↑ R) ⊇(
Ai �` Ř`

)
.

Based on the assumption that (Ai �` R) (y) = Bi(y) is
a value in L, we may prove that Ai�` ↑ R = Ai �` R.
Hence,

Bi ⊇ (Ai �` R) ⊇
(
Ai �` Ř`

)
.

2

Theorem 2.11. System (26) is solvable if and only
if Ř` is its solution, and moreover, ↑ R ⊇ Ř` for any
solution R of the system.

Sketch of the proof: The proof is directly derived from
Theorem 2.9 and Theorem 2.10. 2

Remark 2.3. Unlike to system (5), the solvability
criterion of system (26) can be easily achieved with-
out any constraint on the antecedents and consequents.
Such criterion is similar to the one presented in The-
orem 1.1, which shows that model Ř` posses a unique
position among other potential solutions of system
(26). Thus, to check the solvability of the system, it is
sufficient to check whether Ř` is its solution or not,
and in case of negative, the system is not solvable.
Such model Ř` ensures the solvability of the system.

Now, we investigate the solvability of the inf-R system
with the application of the Sobociński operations, the
Bochvar operations and the Kleene operations. The
systems are given as follows

Ai �S R = Bi , i = 1, . . . ,m , (30)

Ai �B R = Bi , i = 1, . . . ,m , (31)

Ai �K R = Bi , i = 1, . . . ,m . (32)

The models according to those algebras of operations
are given as follows

ŘS(x, y) =
m∨
S

i=1

(↑ Ai(x)⊗S Bi(y)) , (33)

ŘB(x, y) =
m∨
B

i=1

(↑ Ai(x)⊗B Bi(y)) , (34)

ŘK(x, y) =
m∨
K

i=1

(↑ Ai(x)⊗K Bi(y)) . (35)

The question is, in the case of solvability, whether such
models are solutions of systems (30)-(32), respectively,
or not. As we may see, the answer is rather positive
for the use of the Sobociński operations.

Theorem 2.12.

Ai �S ŘS ⊇ Bi . (36)

Sketch of the proof: The proof is analogous to the
proof of Theorem 2.9 i.e., it is derived from prop-
erty (20) and the fact that a ≤ b for a, b ∈ L implies
c→S a ≤ c→S b for c ∈ L?. 2

Theorem 2.13. If system (30) is solvable then

Ai �S ŘS ⊆ Bi . (37)

Sketch of the proof: Due to properties (18)-(19) we
can prove (37) in a similar way to the proof of (29).
In particular, we first prove ŘS ⊆↑ R. Then, based
on the assumption that (Ai �S R) (y) = Bi(y) is a
value in L, we may prove that for i = 1, . . . ,m and
y ∈ Y , (Ai�SR)(y) is smaller than or equal to (Ai�S ↑
R)(y). When the equality holds, it can be implied that
(Ai �S ŘS)(y) ≤ Bi. When the inequality holds, we
may directly prove that (Ai ◦S ŘS)(y) ≤ (Ai �S R)(y)
and thus, (Ai �S ŘS)(y) ≤ Bi.

2

Theorem 2.14. System (30) is solvable if and only if
ŘS given in (33) is its solution, and moreover, ↑ R ⊇
ŘS for any solution R of the system.

Sketch of the proof: The proof directly applies Theo-
rem 2.12 and Theorem 2.13. 2

Remark 2.4. Theorem 2.14 provides a positive result
of the solvability criterion of system (30). Such a re-
sult does not happen in case of applying the Sobociński
operations to the sup-T system, i.e., to system (14).
To check if system (30) is solvable, it is sufficient to
check whether model ŘS is its solution or not. In the
case of negative, the system is not solvable.
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Similar to the sup-T system employing the Bochvar
operations, system (31) is not solvable due to the
appearance of the undefined value ? in Ai for i =
1, . . . ,m.

By expression

(Ai �K R)(y) =
∧

K
x∈X

(Ai(x)→K R(x, y)) ,

we can observe two cases which can lead to the solv-
ability of system (32). The first case is when (Ai �K

R)(y) 6= ?, which is equivalent to considering R so that
R(x, y) = 1 at the values x ∈ X such that Ai(x) = ?,
and R(x, y) 6= ? at the values x ∈ X such that
Ai(x) 6= 0. The second case is when (Ai�K R)(y) = 0
for all y ∈ Y , which is equivalent to the existence of
x ∈ X such that Ai(x) = 1 and R(x, y) = 0. The sec-
ond case implies that (Ai �K R)(y) = 0 for all y ∈ Y .
If model (35) is taken into account then in order to
satisfy the first case, Bi(y) = 1 for all y ∈ Y , and
in order to satisfy the second case, Bi(y) = 0 for all
y ∈ Y .

Example 2.1. Let us demonstrate the possibility of
having a solvable system of fuzzy relational equations
when the antecedents contain undefined values by a
simple example as follows. We consider a set X
of four criterions for buying an appartment: x1 =
“near to the workplace”, x2 = “good quality”, x3 =
“good price” and x3 = “located in a safe area”, and
a set Y of y = “decision degree” to buy it. Assume
that there are three inputs A1 = (0.5, 0.7, ?, 1) and
A2 = (0.3, 1, 0.4, ?), A3 = (1, ?, 0.7, 0.2) and three out-
puts B1(y) = 0.9, B2(y) = 0.6 and B3(y) = 0.4 .
There, ? stands for the information we do not know
in advance. It is posible to consider a system of three
rules:

If X is Ai then Y is Bi, i = 1, 2, 3 .

Let us make the illustration on the use of the lower
estimation operations. We can compute the models R̂`

and Ř`:

R̂` = (0.4, 0.6, 0.7, 0.9) ,

Ř` = (0.4, 0.6, 0.9, 0.9) .

These models are then solutions of system (5) and sys-
tem (26) respecitively. Indeed, it can be checked that
Ai ◦` R̂` = Bi and Ai �` Ř` = Bi, i = 1, 2, 3 .

3 Conclusions and future work

The solvability criterions of the systems of fuzzy re-
lational equations employing undefined values appear-
ing in the input fuzzy sets have been approached. To

get such criterions, the models having similar shapes
to the implicative model and Mamdani-Assilian model
have been built. In details, the undefined values in the
models regarding the sup-T system are lowered to 0 by
applying the external operation ↓ and such values in
the models regarding the inf-R system are increased
to 1 by using operation ↑. Four sets of operations,
namely, the Bochvar operations, the Sobociński op-
erations, the Kleene operations, and the lower estima-
tion operations have been approached for studying the
solvability of the systems. The results show that, un-
der some additional assumptions, the use of the lower
estimation operations and the Sobociński operations
may lead to solvable systems. As the lower estimation
operations are designed for modeling missing values
and the Sobociński ones are usually used for modeling
indeterminable values, we may have an appropriate
choice when resolving the systems regarding each type
of undefined values. In the case of the input fuzzy sets
contain both types of missing and indeterminable val-
ues, we have not had any conclusion for the solvability
yet. Let us leave this issue for future work. This arti-
cle serves as a first step toward studying the systems
of fuzzy relational equations allowing the occurrence of
undefined values. Such systems are important in fuzzy
control and approximate reasoning due to their com-
patibility with the real-world application where the
absence of some input information is very frequent.

In the upcoming steps, we plan to study the solvability
of such systems of fuzzy relational equations, however,
the consequents are taken into account as partial fuzzy
sets as well. Moreover, other algebras, e.g., Dragonfly
algebra [23] will also be considered for the investiga-
tion.
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