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Abstract

The objective of this paper is to establish the
relationship between fuzzy approximation
operators and fuzzy transformation systems.
We show that for each upper/lower fuzzy
transformation system there exits a fuzzy
approximation space induced by a fuzzy
reflexive relation and vice-versa.
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ural transformation, Fuzzy transformation
systems.

1 Introduction

The concept of rough set was originally proposed
by Pawlak [11]. This theory has been developed
significantly due to its importance for the study of
intelligent systems with insufficient and incomplete
information. In rough sets introduced by Pawlak,
the key role is played by equivalence relations. In
literature [7, 16, 25], several generalizations of rough
sets have been made by replacing the equivalence
relation by an arbitrary relation. After Dubois and
Prade [5] introduced the concept of fuzzy rough set,
which is a generalization of rough set. Recently,
the combinations of fuzzy sets and rough sets were
investigated with different fuzzy logic operations and
binary fuzzy relation in [4, 8, 10, 17, 18, 21, 22, 23, 24],
where fuzzy implications play an important role in
the extensions of fuzzy rough sets.

Fuzzy transform (F -transform in short), firstly
proposed by Perfilieva [13], has now been significantly
developed and opened a new page in the theory of
semi-linear spaces. The main idea of the F -transform
is to factorize (or fuzzify) the precise values of depen-
dent variables are averaged to an approximate value.

It is shown in [13] that this transform encompassed
both classical transform as well as approximation
methods based on fuzzy IF-THEN rules studied in
fuzzy modeling. The theory of F -transform was
further elaborated and extended from real valued to
lattice valued functions [13, 14] and from fuzzy sets
to parametrized fuzzy sets [20]. Recently in [15], it is
shown that F -transform is a realization of an abstract
fuzzy rough set theory, more precisely, F -transforms
turn out to be approximation operators studied in
fuzzy rough set theory.

The concepts of upper and lower fuzzy transfor-
mation systems were introduced recently by Močkoř
[9] and a close connection with F -transforms is ob-
tained. Specifically, it is shown that a transformation
function satisfies axioms for fuzzy upper (or lower,
respectively) transformation systems if and only if it
is an upper (or lower, respectively) F -transform.

In view of the fact that (i) an F -transform can
be viewed as a fuzzy approximation operator, and
(ii) there is a bijective correspondence between an
F -transform and a fuzzy transformation system, it
is natural to think about the relationship between a
fuzzy approximation operator and a fuzzy transfor-
mation system. The answer of this problem is theme
of this work.

The paper is organized as follows. In Section 2,
we recall some basic properties of residuated lattice
and fuzzy sets. Fuzzy upper and lower approximation
spaces and their properties are discussed in Section
3. In Section 4, we introduce upper and lower fuzzy
backward natural transformations and discuss the
connection between them. In the next section, we
study a relationship between fuzzy transformation
systems and fuzzy approximation spaces. At last, we
conclude our research in Section 6.
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2 Preliminaries

In this section, we recall some concepts related to
residuated lattices and fuzzy sets. For details on resid-
uated lattices and fuzzy sets, we refer the works of
[1, 2, 3, 6, 12, 19, 26]. We begin with the following.

Definition 2.1 A residuated lattice is an algebra
(L,∧,∨,⊗,→, 0, 1) such that
(i) (L,∧,∨, 0, 1) is a bounded lattice with the least el-
ement 0 and the greatest element 1;
(ii) (L,⊗, 1) is a commutative monoid; and
(iii) ∀a, b, c ∈ L; a ⊗ b ≤ c iff a ≤ b → c, i.e., (→,⊗)
is an adjoint pair on L.
A residuated lattice (L,∧,∨,⊗,→, 0, 1) is complete if
it is complete as a lattice.

Definition 2.2 Let L = (L,∧,∨,⊗,→, 0, 1) be a
residuated lattice. A negation in L is a unary oper-
ation ¬ defined by ¬a = a → 0,∀a ∈ L. L is said to
satisfy the law of double negation if a = ¬(¬a),∀a ∈ L.

Proposition 2.1 Let (L,∧,∨,⊗,→, 0, 1) be a com-
plete residuated lattice. Then for all a, b, c ∈ L,

1. a ≤ b⇒ a⊗ c ≤ b⊗ c,

2. If a ≤ b, then b→ c ≤ a→ c,

3. 1⊗ a = a⊗ 1 = a,

4. a⊗ 0 = 0⊗ a = 0,

5. a⊗ (∨i∈Ibi) = ∨i∈I(a⊗ bi),

6. a→ ∧i∈Ibi = ∧i∈I(a→ bi),

7. 1→ a = a, 0→ a = 1,

8. a→ (b→ c) = b→ (a→ c).

9. If a ≤ b, then ¬b ≤ ¬a.

Throughout this paper, a fuzzy set is identified with
its membership function and takes values from a fixed
complete residuated lattice L = (L,∧,∨,⊗,→, 0, 1).
For a nonempty set X, LX denotes the collection of
all fuzzy subsets of X. Also, for all a ∈ L; a(x) = a
denotes a constant fuzzy set. Furthermore, for all A ∈
LX , the core(A) is a set of all elements x ∈ X such
that A(x) = 1.

Definition 2.3 Let X be a nonempty set. The follow-
ing are induced operations of intersection ∧ , union ∨
, multiplication ⊗, implication → and negation ¬ on
LX :
(A∧B)(x) = A(x)∧B(x), (A∨B)(x) = A(x)∨B(x),
(A ⊗ B)(x) = A(x) ⊗ B(x), (A → B)(x) = A(x) →
B(x), (¬A)(x) = ¬A(x).

Under the assumption about completeness of L, we
may consider an intersection and a union of an ar-
bitrary family of fuzzy sets.

Now, we recall the following concept of a fuzzy rela-
tion.

Definition 2.4 Let X be a nonempty set. A fuzzy
relation R on X is a fuzzy subset of X ×X. A fuzzy
relation R is called
(i) reflexive if R(x, x) = 1, ∀x ∈ X;
(ii) symmetric if R(x, y) = R(y, x), ∀x, y ∈ X; and
(iii) transitive if R(x, y)⊗R(y, z) ≤ R(x, z), ∀x, y, z ∈
X.
A reflexive, symmetric and transitive fuzzy relation on
X is called a fuzzy equivalence relation.

Definition 2.5 Let R be a fuzzy equivalence relation
on X. For each x ∈ X, a fuzzy subset ERx of X such
that ERx (y) = R(x, y), for every y ∈ X, is called a
fuzzy equivalence class of R determined by the element
x.

Definition 2.6 Let φ : X → Y be a map. Then the
Zadeh’s fuzzy backward operator φ← : LY → LX is
defined as,

φ←(B)(x) = B(φ(x)),∀B ∈ LY ,∀x ∈ X.

3 Fuzzy approximation spaces

In this section, we study the concept of fuzzy approx-
imation spaces. Further, it is shown that the lower
fuzzy approximation operator preserves union under
certain condition. We begin with the following.

Definition 3.1 A pair (X,R) is called a fuzzy approx-
imation space, where X is a nonempty set and R is a
fuzzy binary relation on X.

If the fuzzy relation R is reflexive, (X,R) is called a
fuzzy reflexive approximation space.

Definition 3.2 Let (X,R) be a fuzzy approximation
space. The pair (R(A), R(A)) of lower and upper ap-
proximation of a fuzzy set of A ∈ LX is a fuzzy rough
set in (X,R) where

R(A)(x) = ∧y∈X(R(x, y)→ A(y)),

R(A)(x) = ∨y∈X(R(x, y)⊗A(y)).

The two operators R,R : LX → LX are called the
lower fuzzy approximation operator and upper fuzzy
approximation operator, respectively.

Proposition 3.1 Let (X,R) be a fuzzy approximation
space, a ∈ L, A,B ∈ LX and Ai ∈ LX , i ∈ I. Then
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(i) if A ≤ B then R(A) ≤ R(B) and R(A) ≤ R(B),
(ii) R(∨i∈IAi) = ∨i∈IR(Ai), R(∧i∈IAi) =
∧i∈IR(Ai),
(iii) R(a⊗A) = a⊗R(A), R(a→ A) = a→ R(A),
(iv) R(a) = a, R(a) = a,
(v) if L satisfies law of double negation, then ¬R(A) =
R(¬A).

In a fuzzy approximation space (X,R), for A,B ∈ LX ,
R(A ∨ B) 6= R(A) ∨ R(B). For example, let L =
{0, n, a, b, c, d, e, f,m, 1} with 0 < n < a < c < e <
m < 1, 0 < n < b < d < f < m < 1 and the elements
{a, b}, {c, d}, {e, f} are pairwise incomparable. Then
L becomes a residuated lattice to the operations shown
in Table 1 and Table 2.

1

m

e f

dc

ba

n

0

Fig: Hasse diagram of lattice L

→ 0 n a b c d e f m 1

0 1 1 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
m n n a b c d e f 1 1
1 0 n a b c d e f m 1

Table 1: → operation for lattice L.

Let X = {x, y, z} and A, B be two fuzzy sets such that
A = {(x, b), (y, c), (z, d)}, B = {(x, b), (y, d), (z, d)}.
Then A ∨ B = {(x, b), (y, e), (z, d)}, since c ∨ d = e.
Now, let R be fuzzy relation on X, as given in Table
3. Then

⊗ 0 n a b c d e f m 1

0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
m 0 0 a b c d e f m m
1 0 n a b c d e f m 1

Table 2: ⊗ operation for lattice L.

R x y z

x b e d
y 0 b m
z e f 1

Table 3: Fuzzy binary relation on X.

R(A ∨B)(x) = ∧y∈X{R(x, y)→ (A ∨B)(y)}

= ∧

 b→ b
e→ e
d→ d

= 1.

Also,

R(A)(x) = ∧y∈X{R(x, y)→ (A)(y)}

= ∧

 b→ b
e→ c
d→ d

= ∧

 1
e
1

= e,

and

R(B)(x) = ∧y∈X{R(x, y)→ (B)(y)}

= ∧

 b→ b
e→ d
d→ d

= ∧

 1
f
1

= f.

But, e ∨ f = m 6= 1.
Hence R(A ∨B) 6= R(A) ∨ R(B).
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Proposition 3.2 Let (X,R) be a fuzzy approximation
space and A, B ∈ LX . Then R(A∨B) = R(A)∨R(B),
if | ERx |= 1, for every x ∈ X.

Proof: If | ERx |= 1 for every x ∈ X. Then

| ERx |= R(x, y) =

{
1, if x = y,
0, if x 6= y.

For every x ∈ X,

R(A ∨B)(x) = ∧y∈X{R(x, y)→ (A ∨B)(y)}

= ∧y∈X
{

(1→ (A ∨B)(y)) if x = y
(0→ (A ∨B)(y)) if x 6= y

= ∧y∈X
{

(A ∨B)(y) if x = y
1 if x 6= y

= (A ∨B)(x)

= A(x) ∨B(x).

Again, for every x ∈ X,

R(A)(x) = ∧y∈X{R(x, y)→ (A)(y)}

= ∧y∈X
{

(1→ (A)(y)) if x = y
(0→ (A)(y)) if x 6= y

= ∧y∈X
{

(A)(y) if x = y
1 if x 6= y

= A(x).

Similarly, we can show that R(B)(x) = B(x). Thus
from above R(A ∨ B)(x) = A(x) ∨ B(x) = R(A)(x) ∨
R(B)(x). Hence R(A ∨B) = R(A) ∨ R(B).

4 Fuzzy natural transformations

In this section, we introduce the concept of lower and
upper fuzzy backward natural transformations. Fur-
ther, we show that there is a close connection between
such transformations and maps between two fuzzy ap-
proximation spaces. We begin with the following con-
cept of an upper fuzzy backward natural transforma-
tion.

Definition 4.1 Let (X,R) and (Y, S) be two fuzzy ap-
proximation spaces. A one-to-one map φ : X → Y is
called an upper fuzzy backward natural transformation
from (X,R) into (Y, S), if R(φ←(B)) ≤ φ←(S(B))
∀B ∈ LY .

Before stating next, we recall the following from [27].

Let (X,R) and (Y, S) be two fuzzy approxima-
tion spaces. A map φ : X → Y is relation preserving
if R(x, y) ≤ S(φ(x), φ(y)),∀x, y ∈ X.

Now, we have the following.

Proposition 4.1 Let (X,R) and (Y, S) be two fuzzy
approximation spaces and φ : X → Y be a one-to-
one map. Then φ is an upper fuzzy backward natural
transformation if and only if φ is relation preserving
map.

Proof: Let φ be a relation preserving map. Then for
x, y ∈ X, R(x, y) ≤ S(φ(x), φ(y)). Taking φ(y) = y

′
,

we have R(x, y) ≤ S(φ(x), y
′
). Now, for B ∈ LY ,

R(x, y)⊗B(φ(y)) ≤ S(φ(x), y
′
)⊗

B(φ(y))

⇒ R(x, y)⊗B(φ(y)) ≤ S(φ(x), y
′
)⊗

B(y
′
)

⇒ ∨y∈X{R(x, y)⊗B(φ(y))} ≤ ∨y∈X{S(φ(x),

y
′
)⊗B(y

′
)}

⇒ ∨y∈X{R(x, y)⊗ φ←(B)(y)} ≤ ∨φ(y)∈Y {S(φ(x),

y
′
)⊗B(y

′
)}

⇒ R(φ←(B))(x) ≤ ∨y′∈Y {S(φ(x),

y
′
)⊗B(y

′
)}

⇒ R(φ←(B))(x) ≤ S(B)(φ(x))

⇒ R(φ←(B))(x) ≤ φ←(S(B))(x)

Thus R(φ←(B)) ≤ φ←(S(B)). Hence φ is an upper
fuzzy backward natural transformation.

Conversely, let φ be an upper fuzzy backward
natural transformation. Now, for y ∈ X and y

′ ∈ Y ,

1y′ (φ(y)) =

{
1, if y

′
= φ(y),

0, if y
′ 6= φ(y).

Also, for x ∈ X,

R(φ←(1y′ ))(x) = ∨y∈X{R(x, y)⊗ (1y′ )(φ(y)}

= R(x, y), when φ(y) = y
′
.

Thus R(φ←(1y′ ))(x) = R(x, φ−1(y
′
)).

Again, for x ∈ X,

φ←(S(1y′ ))(x) = S(1y′ )(φ(x))

= ∨z′∈Y {S(φ(x), z
′
)⊗ (1y′ )(z

′
)}

= S(φ(x), y
′
) when y

′
= z

′
.

Since φ is a one-to-one map, φ(y) = y
′

= z
′

and φ−1(y
′
) = y. Also φ being an upper fuzzy
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backward natural transformation, R(φ←(1y′ ))(x) ≤
φ←(S(1y′ ))(x), or R(x, φ−1(y

′
)) ≤ S(φ(x), y

′
), or that

R(x, y) ≤ S(φ(x), φ(y)). Hence φ is relation preserv-
ing map.

Now, we introduce the following concept of lower fuzzy
backward natural transformation.

Definition 4.2 Let (X,R) and (Y, S) be two fuzzy ap-
proximation spaces. A one-to-one map φ : X → Y is
called a lower fuzzy backward natural transformation
from (X,R) into (Y, S), if φ←(S(B)) ≤ R(φ←(B))
∀B ∈ LY .

Following is required to establish the relationship simi-
lar to Proposition 4.1 for lower fuzzy backward natural
transformation.

Lemma 4.1 Let (X,R) and (Y, S) be two fuzzy ap-
proximation spaces and φ : X → Y be an upper fuzzy
backward natural transformation if and only if φ is a
lower fuzzy backward natural transformation, provided
L satisfies the double negation law.

Proof: For all x ∈ X and B ∈ LY ,

R(¬(φ←(¬B)))(x) = ∧y∈X{R(x, y)→
¬(φ←(¬(B))(y)}

= ∧y∈X{R(x, y)→
¬(¬(B))(φ(y))}

= ∧y∈X{R(x, y)→ B(φ(y))}
= ∧y∈X{R(x, y)→ (φ←(B)(y)}
= R(φ←(B))(x).

Since φ is an upper natural backward fuzzy transfor-
mation,

φ←(S(B))(x) ≥ R(φ←(B))(x)

⇐⇒ S(B))(φ(x)) ≥ R(φ←(B))(x)

⇐⇒ ¬S(B)(φ(x)) ≤ ¬R(φ←(B))(x)

⇐⇒ (¬S(B))(φ(x)) ≤ ¬R(φ←(B))(x)

⇐⇒ φ←(¬S(B))(x) ≤ ¬R(φ←(B))(x)

⇐⇒ φ←(S(¬B))(x) ≤ R(¬(φ←(B)))(x)

Replacing B by ¬B and using ¬¬B = B,
we have φ←(S(B))(x) ≤ R(¬(φ←(¬B)))(x),
or that φ←(S(B))(x) ≤ R(φ←(B))(x). Thus
φ←(S(B)) ≤ R(φ←(B)). Hence φ is a lower natural
backward fuzzy transformation.

Finally, we have the following.

Proposition 4.2 Let (X,R) and (Y, S) be two fuzzy
approximation spaces and φ : X → Y be a one-to-
one map. Then φ is a lower fuzzy backward natural
transformation if and only if φ is relation preserving,
provided L satisfies the double negation law.

Proof: Follows from the Proposition 4.1 and Lemma
4.1.

5 Fuzzy transformation systems vs.
fuzzy approximation spaces

In this section, we introduce the concepts of up-
per/lower fuzzy transformation system which are
slight modification of similar concepts introduced in
[9]. Interestingly, we show that there is a bijective cor-
respondence between upper/lower fuzzy transforma-
tion systems and fuzzy reflexive approximation spaces.
We begin with the following.

Definition 5.1 Let X be a nonempty set and G :
LX → LX be a map. Then the system (X,G) is called
upper fuzzy transformation system if
(i) for each A ∈ LX , x ∈ X,A(x) ≤ G(A)(x),
(ii) for each {Ai : i ∈ I} ∈ LX , G(∨i∈IAi) =
∨i∈IG(Ai),
(iii) for each a ∈ L, A ∈ LX , G(a⊗A) = a⊗G(A),
(iv) core(G(1x)) 6= ∅, where 1x is the characteristic
function of {x} in X and ∅ is an empty set.

Now we recall following from [9]

Lemma 5.1 Let A ∈ LX . Then A = ∨x∈XA(x)⊗1x,
where A(x) is a constant function with constant value
A(x).

Theorem 5.1 Given an upper fuzzy transformation
system (X,G), there exists a fuzzy reflexive approxi-
mation space (X,R) such that G = R. Conversely,
given a fuzzy reflexive approximation space (X,R),
(X,R) is an upper fuzzy transformation system.

Proof: (1)⇒ (2). Let (X,G) be upper fuzzy transfor-
mation system. For x, y ∈ X, let R(y, x) = G(1x)(y).
Then

R(1x)(y) = ∨z∈XR(y, z)⊗ 1x(z)

= ∨z∈X
{
R(y, z)⊗ 1 if z = x
R(y, z)⊗ 0 if z 6= x

= R(y, x) = G(1x)(y).

Thus R(1x) = G(1x).
Now, for x ∈ X, R(x, x) = G(1x)(x) ≥ 1x(x) = 1,
or R(x, x) = 1. Thus R is a fuzzy reflexive relation.
Again, for y ∈ X and A ∈ LX ,

R(A)(y) = R{∨x∈XA(x)⊗ 1x}(y)

= ∨z∈X{R(y, z)⊗ {∨x∈XA(x)⊗ 1x}(z)}
= ∨z∈X ∨x∈X {R(y, z)⊗ (A(x)⊗ 1x(z))}
= ∨x∈X{A(x)⊗ ∨z∈X{R(y, z)⊗ 1x(z)}}
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= ∨x∈X{A(x)⊗G(1x)(y)}
= G(∨x∈XA(x)⊗ 1x)(y)

= G(A)(y).

Hence R(A) = G(A) for all A ∈ LX .
(2) ⇒ (1). Let (X,R) be a fuzzy reflexive approxi-
mation space, and R : LX → LX be an upper fuzzy
approximation operator. Then
(i) for each, A ∈ LX , x ∈ X,, A(x) ≤ R(A)(x),
(ii) for each {Ai : i ∈ I} ∈ LX , R(∨i∈IAi) =
∨i∈IR(Ai),
(iii) for each a ∈ L and A ∈ LX , R(a⊗A) = a⊗R(A),
(iv) for all y ∈ X,

R{1x}(y) = ∨z∈X{R(y, z)⊗ 1x(z)}
= R(y, x)⊗ 1x(x)

= R(y, x)⊗ 1

= R(y, x).

Since R is reflexive, coreR{1x} 6= ∅.
Hence (X,R) is an upper fuzzy transformation system.

Similar to the concept of upper fuzzy transfor-
mation system, now we introduce the following
concept of a lower fuzzy transformation system.

Definition 5.2 Let X be a nonempty set and H :
LX → LX be a map. Then the system (X,H) is called
lower fuzzy transformation system if
(i) for each A ∈ LX , x ∈ X, H(A)(x) ≤ A(x),
(ii) for each {Ai : i ∈ I} ∈ LX , H(∧i∈IAi) =
∧i∈IH(Ai),
(iii) for each a ∈ L,A ∈ LX , H(a→ A) = a→ H(A),
(iv) core(¬H(¬1x)) 6= ∅.

Before stating next, we recall the following from [9].

Lemma 5.2 Let A ∈ LX . Then ¬A = ∧x∈XA(x)→
(1x → 0), where A(x) is a constant function with con-
stant value A(x).

Finally, we have the following.

Theorem 5.2 Let L be a complete residuated lattice
which satisfies the double negation law. Then for a
given lower fuzzy transformation system (X,H), there
exists a fuzzy reflexive approximation space (X,R)
such that H = R. Conversely, given a fuzzy reflexive
approximation space (X,R), (X,R) is a lower fuzzy
transformation system.

Proof: (1) ⇒ (2) Let (X,H) be lower fuzzy trans-
formation system. For x, y ∈ X, let R(y, x) =
¬H(¬1x)(y). Then

R(¬1x)(y) = ∧z∈XR(y, z)→ (¬1x)(z)

= ∧z∈X
{
R(y, z)→ 0 if z = x
R(y, z)→ 1 if z 6= x

= ¬R(y, x) = H(¬1x)(y).

Thus R(¬1x) = H(¬1x).
Now, for x ∈ X, R(x, x) = ¬H(¬1x)(x) ≥
¬(¬1x)(x) = 1x(x) = 1, or R(x, x) = 1. Thus R is a
fuzzy reflexive relation. Again, for y ∈ X and A ∈ LX ,

R(A)(y) = R{∧x∈X¬A(x)→ (¬1x)}(y)

= ∧x∈X{R{¬A(x)→ (¬(1x)}}(y)

= ∧x∈X ∧z∈X {R(y, z)→
{¬A(x)→ (¬1x)}(z)}

= ∧x∈X ∧z∈X {¬A(x)→
{R(y, z)→ ¬(1x)(z)}}

= ∧x∈X{¬A(x)→
∧z∈X{R(y, z)→ ¬(1x)(z)}}

= ∧x∈X{¬A(x)→ R(¬1x)(y)}
= ∧x∈X{¬A(x)→ H(¬1x)(y)}
= ∧x∈XH{¬A(x)→ (¬1x)}(y)

= H{∧x∈X¬A(x)→ (¬1x)}(y)

= H(A)(y).

Hence R(A) = H(A) for all A ∈ LX .

(2)⇒ (1). Let (X,R) be a fuzzy reflexive approxima-
tion space, and R : LX → LX be lower fuzzy approxi-
mation operator. Then
(i) for each A ∈ LX , R(A)(x) ≤ A(x),
(ii) for each {Ai : i ∈ I} ∈ LX , R(∧i∈IAi) =
∧i∈IR(Ai),
(iii) for each a ∈ L and A ∈ LX , R(a → A) = a →
R(A),
(iv) for y ∈ X,

¬R(¬1x)(y) = ¬{∧a∈XR(y, a)→ (¬1x)(a))}

= ¬ ∧a∈X
{

(R(y, a)→ 0) if a = x
(R(y, a)→ 1) if a 6= x

= ¬ ∧a∈X
{
¬R(y, a) if a = x

1 if a 6= x

= ¬¬R(y, x)

= R(y, x).

Since R is reflexive, core(¬R(¬1x)) 6= ∅. Hence (X,R)
is a lower fuzzy transformation system.

6 Conclusions

In this paper, we have established an interesting re-
lationship between fuzzy transformation systems and
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fuzzy approximation spaces induced by fuzzy reflexive
relations. In view of the studied done in [15], it can be
seen that the relationship established in [9] between
F -transforms and fuzzy transformation systems is an
special case of the results obtained in this paper.
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