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Abstract

It is well-known that the semantics of a given
fuzzy logic can be formally axiomatized by
means of a residuated poset. Based on a
notion of dualizing (cyclic) element we in-
troduce the notion of a Frobenius (Girard)
poset. With this paper we hope to contribute
to the theory of Frobenius posets and Girard
posets.

By means of a dualizing element we estab-
lish a one-to-one correspondence between a
Frobenius poset and its opposite which is
again a Frobenius poset. We also investigate
some properties of nuclei and conuclei on Gi-
rard posets.

Finally, we discuss the relation between
quantic nuclei and ideal conuclei on a Girard
poset and its opposite. We show that they
are in one-to-one correspondence.

Keywords: Residuated poset, Frobenius
poset, Girard poset, Girard quantale, quantic
nucleus, quantic conucleus, ideal conucleus.

1 Introduction

Residuation is one of fundamental concepts in ordered
structures. Many interesting logics, such as Hájek’s
basic logic BL, developed in [5], and Esteva and Godo’s
monoidal t-norm based logic MTL, see [3], are promi-
nent examples of formal systems of mathematical fuzzy
logic. They arise as the logic of continuous and the
logic of left-continuous t-norms respectively. It is also
well-known that the semantics of such fuzzy logics
can be formally axiomatized by means of residuated
posets. Hence, residuated structures have been exten-
sively studied for their importance in fuzzy logic and
related areas.

It is important to remark that, on the object level,
complete residuated posets are exactly quantales. The
term quantale was suggested by Mulvey at the Ober-
wolfach Category Meeting [8] as ”a quantization” of
the term locale. Quantales are applied in linear [10]
and other substructural logics and automaton theory
[1]. Yetter [10] has shown that a non-commutative ver-
sion of Girard’s linear logic can be expressed in terms
of quantales. The connection is given by the concept
of dualizing element in a quantale.

The paper is organized as follows. First we present
in Section 2 several necessary algebraic concepts as
residuated poset, Frobenius poset and Girard poset.
Motivated by the results on Girard quantales [9, 10]
and dual quantales [6] (which are sometimes called
Frobenius quantales [2]) we establish basic properties
of Frobenius posets and Girard posets. The structures
under investigation occur in the context of algebraic
semantics of fuzzy logics.

In Section 3 we focus on the notions of quantic nu-
clei and conuclei on residuated posets and state their
main properties. Some applications to Girard posets
are addressed. In Section 4 we establish our main theo-
rem that there is a one-to-one correspondence between
quantic nuclei on a Girard poset and ideal conuclei on
its opposite.

In this paper, we take for granted the concepts and re-
sults on quantales and residuated lattices. To obtain
more information on these topics, we direct the reader
to [4], [7] and [9]. To follow easily the arguments in the

proofs we use the denotation
(argument)

= , etc. to indi-
cate which argument has been used in the respective
step of the proof.

2 Residuated posets, dualizing and
cyclic elements

In this section, we shall give the concept of a Frobenius
poset and a Girard poset. By means of a dualizing el-
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ement we establish an one-to-correspondence between
a Frobenius poset and its opposite.

Let (P,≤) be a partially ordered set. Its opposite is
a partially ordered set (P,≥). An associative binary
operation ⋅ on (P,≤) is said to be residuated if there
exist binary operations ; and → on P such that, for
all x, y, z ∈ P ,

x ⋅ y ⩽ z⟺ x ⩽ y → z⟺ y ⩽ x ; z. (res)

The operations ; and → are referred to as the right
and left residual of ⋅, respectively. Then ⋅ is residuated
if and only if it is order preserving in each argument
and, for all x, y, z ∈ P , the inequality x ⋅ y ⩽ z has a
largest solution for x (namely y → z) and for y (namely
x ; z). The residuals are uniquely determined by ⋅
and ≤.

The system P = (P, ⋅,;,→,⩽) is called a residuated
partially ordered semigroup or residuated poset.

The following is well known (see [4]).

Proposition 2.1 Let P = (P, ⋅,;,→,⩽) be a residu-
ated poset. Then for all x, y, z ∈ P , we have

(r1) y ⩽ z ⟹ x ; y ⩽ x ; z;

(r2) y ⩽ z ⟹ z ; x ⩽ y ; x;

(r3) y ⩽ z ⟹ x→ y ⩽ x→ z;

(r4) y ⩽ z ⟹ z → x ⩽ y → x;

(r5) x ≤ (x ; y)→ y, x ≤ (x→ y) ; y;

(r6) x ; (y → z) = y → (x ; z);

(r7) x→ (y → z) = (x ⋅ y)→ z;

(r8) x ; (y ; z) = (y ⋅ x) ; z;

(r9) x ; y = ((x ; y)→ y) ; y;

(r10) x→ y = ((x→ y) ; y)→ y;

(r11) y → z ⩽ (x→ y)→ (x→ z);

(r12) y ; z ⩽ (x ; y) ; (x ; z);

(r13) If e is a unit of semigroup (P, ⋅), then

e ≤ x ; y ⟺ x ⩽ y ⟺ e ⩽ x→ y.

An element d of a residuated poset P is called a dual-
izing element provided that

(x ; d)→ d = x = (x→ d) ; d (∂)

for all x ∈ P . An element d ∈ P is called cyclic pro-
vided that

x→ d = x ; d (clc)

for all x ∈ P . We shall denote x → d = x ; d by x
⊥

.

Note that
⊥

depends on the dualising element d. From

now we assume that whenever we make use of
⊥

that
the dualising element d is understood and fixed.

P is called a Frobenius poset (Girard poset) provided
that it has a dualizing (cyclic and dualizing) element,
respectively. Note that if P is a quantale then a Frobe-
nius poset P is exactly a Frobenius quantale (see [2])
and a Girard poset P is exactly a Girard quantale.

Proposition 2.2 Let P be a Frobenius poset with a
dualizing element d. Then for all x, y ∈ P , we have

(d1) x ⋅ (d ; d) ⩽ y ⟺ x ⩽ y;

(d2) (d→ d) ⋅ x ⩽ y ⟺ x ⩽ y;

(d3) x ⋅ (d ; d) = x;

(d4) (d→ d) ⋅ x = x;

(d5) d→ d = (d→ d) ⋅ (d ; d) = d ; d;

(d6) d→ d is the unit of (P, ⋅);

(d7) (x ; d)→ y = (y → d) ; x;

(d8) (x ; d)→ y = ((x ; d) ⋅ (y ; d))→ d;

(d9) x→ y = (y → d) ; (x→ d);

(d10) x ; y = (y ; d)→ (x ; d).

Proof. (d1): We have

x ⋅ (d ; d) ⩽ y
(∂)
⟺ x ⋅ (d ; d) ⩽ (y → d) ; d

(res)
⟺ (y → d) ⋅ x ⋅ (d ; d) ⩽ d

(res), (∂)
⟺

(y → d) ⋅ x ⩽ (d ; d)→ d = d
(res)
⟺

(y → d) ⩽ x→ d
(∂)
⟺ x ⩽ y.

(d3): Since x ≤ x we have from (d1) that x ⋅(d ; d) ⩽
x. Conversely, since x ⋅ (d ; d) ⩽ x ⋅ (d ; d) we have
again from (d1) that x ⩽ x ⋅ (d ; d).
(d2) and (d4): Similarly as (d1) and (d3).

(d5) and (d6): It follows immediately from (d3) and
(d4).

(d7): We have

z ⩽ (x ; d)→ y
(res)
⟺ z ⋅ (x ; d) ⩽ y

(r4)
⟺

y → d ⩽ (z ⋅ (x ; d))→ d
(r7), (∂)
⟺

y → d ⩽ z → ((x ; d)→ d) = z → x
(res)
⟺

(y → d) ⋅ z ⩽ x
(res)
⟺ z ⩽ (y → d) ; x.
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(d8): We compute

((x ; d) ⋅ (y ; d))→ d
(r7)
=

(x ; d)→ ((y ; d)→ d) (∂)
= (x ; d)→ y.

(d9): We obtain

x→ y
(∂)
= [(x→ d) ; d]→ y

(d7)
= (y → d) ; (x→ d).

(d10): Similarly as (d9).

Proposition 2.3 Let P be a Girard poset with a
cyclic and dualizing element d. Then for all x, y ∈ P ,
we have

(g1) x→ y = (x ⋅ y⊥)⊥;

(g2) x ; y = (y⊥ ⋅ x)⊥.

Proof. (g1): We have

z ⩽ x→ y
(d9)
⟺ z ⩽ y

⊥
; x

⊥
(res)
⟺ y

⊥ ⋅ z ⩽ x
⊥

(res)
⟺ y

⊥
⩽ z → x

⊥
(d9)
⟺ y

⊥
⩽ x ; z

⊥

(res)
⟺ x ⋅ y⊥ ⩽ z

⊥
(∂),(d4)
⟺ z ⩽ (x ⋅ y⊥)⊥.

(g2): Similarly as (g1).

Let P be a Frobenius poset with a dualizing element

d. We define a structure P
∂d

= (P,+,↘, ↗,⩾) as
follows:

x + y = ((x ; d) ⋅ (y ; d))→ d

x↘ z = z ⋅ (x ; d) (∂d)

y ↗ z = (y → d) ⋅ z.

Theorem 2.4 Let P be a Frobenius poset with a du-

alizing element d. Then P
∂d is a Frobenius poset with

a dualizing element d→ d.

Proof. Let x, y, z ∈ P . We compute:

x + y ⩾ z
(∂d)
⟺ (x ; d)→ y ⩾ z

(res)
⟺

y ⩾ z ⋅ (x ; d)
(r4), (∂)
⟺ y → d ⩽ (z ⋅ (x ; d))→ d

(r7), (∂)
⟺ y → d ⩽ z → ((x ; d)→ d) = z → x
(res)
⟺ x ⩾ (y → d) ⋅ z

(∂d)
⟺ x ⩾ y ↗ z.

Similarly, we have

x + y ⩾ z
(∂d)
⟺ (y → d) ; x ⩾ z

(res)
⟺

x ⩾ (y → d) ⋅ z
(r2), (∂)
⟺ x ; d ⩽ ((y → d) ⋅ z) ; d

(r8), (∂)
⟺ x ; d ⩽ z ; ((y → d) ; d) = z ; y
(res)
⟺ y ⩾ z ⋅ (x ; d)

(∂d)
⟺ y ⩾ x↘ z.

The operation + is associative because

(x + y) + z
(∂d)
= (((x ; d) ⋅ (y ; d))→ d) + z

(∂d)
=

(((((x ; d) ⋅ (y ; d))→ d) ; d) ⋅ (z ; d))→ d
(∂)
= (((x ; d) ⋅ (y ; d)) ⋅ (z ; d))→ d

(assoc.)
= ((x ; d) ⋅ ((y ; d) ⋅ (z ; d)))→ d

(∂)
=

((((x ; d) ⋅ ((y ; d) ⋅ (z ; d)))→ d) ; d)→ d
(r7), (∂d)

= (((x ; d)→ (y + z)) ; d)→ d
(∂),(r7),(∂)

= ((x ; d) ⋅ ((y + z) ; d))→ d
(∂d)
= x + (y + z).

Let us check that d→ d is a dualizing element of P
∂d .

We have

(x↘ (d→ d))↗ (d→ d) (∂d)
=

((d→ d) ⋅ (x ; d))↗ (d→ d)(d4)=
(x ; d)↗ (d→ d) (∂d)

=

((x ; d)→ d) ⋅ (d→ d) (∂),(d3)= x.

Similarly we obtain (x↗ (d→ d))↘ (d→ d) = x.

Moreover, x + d = (x ; d) → d = x and d + y = (y →
d) ; d = y.

Corollary 2.5 Let P be a Frobenius poset with a du-

alizing element d. Then P = (P∂d)∂d→d
.

Proof. Let us denote the multiplication in (P∂d)∂d→d

by ⊙ and let x, y ∈ P . It is enough to check that
d = (d → d) ↗ (d → d) and x ⋅ y = x ⊙ y since the
residuals are determined by the multiplication and the
order. Let us compute:

x⊙ y
(∂d)
= (x↘ (d→ d))↗ y

(∂d)
= ((d→ d) ⋅ (x ; d))↗ y

(d4)
= (x ; d)↗ y

(∂d)
= ((x ; d)→ d) ⋅ y

(∂)
= x ⋅ y.

Similarly,

(d→ d)↗ (d→ d)(d5)= (d ; d)↗ (d→ d)
(∂d)
= ((d ; d)→ d) ⋅ (d→ d)

(∂), (d3, d5)
= d.

Corollary 2.6 Let P be a Girard poset with a dualiz-

ing and cyclic element d. Then P
∂d is a Girard poset

with a dualizing and cyclic element d→ d.
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Proof. It is enough to check that (d→ d) is cyclic in

P
∂d . Since x→ d = x ; d we can compute:

x↗ (d→ d) (∂d)
= (x→ d) ⋅ (d→ d)

(d3, d5)
= x→ d

(clc)
= x ; d

(d4)
= (d→ d) ⋅ (x ; d)

(∂d)
= x↘ (d→ d).

3 Quantic nuclei and conuclei on
residuated posets

Quantic nuclei and quantic conuclei form an important
method for constructing new quantales (see [7, 9]). In
this section, we shall introduce quantic nuclei, quan-
tic conuclei and ideal conuclei on residuated posets
and discuss their basic properties. It will be shown
that the set of fixed points of such operators can be
equipped with a structure of a residuated poset. En
route, we show how to construct Girard posets from
cyclic elements.

A quantic nucleus (conucleus) on a residuated
poset P is a closure (coclosure) operator j (i.e., order-
preserving, inflationary (decreasing) and idempotent),
respectively, such that

j(x) ⋅ j(y) ⩽ j(x ⋅ y) (lax)

for all x, y ∈ P .

Reacall that an operator j on a partially ordered set
(P,≤) is called inflationary (decreasing) if x ≤ j(x)
(x ≥ j(x)) for all x ∈ P , respectively.

An ideal conucleus on P is a coclosure operator j
such that

x ⋅ j(y) ⩽ j(x ⋅ y) and j(x) ⋅ y ⩽ j(x ⋅ y) (ilax)

for all x, y ∈ P . Clearly, any ideal conucleus is a quan-
tic conucleus. Moreover, a closure operator j on P
is a quantic nucleus if and only if x ⋅ j(y) ⩽ j(x ⋅ y)
and j(x) ⋅ y ⩽ j(x ⋅ y) for all x, y ∈ P . We denote
by NP (CoNP, ICNP) the poset of all quantic nu-
clei (conuclei, ideal conuclei) on P with order defined
pointwise.

For any operator j on a residuated poset P we denote
by Pj the set {x ∈ P ∣ j(x) = x}.

Lemma 3.1 Let P be a residuated poset and j a clo-
sure operator on P. The following conditions are
equivalent.

(i) j is a quantic nucleus on P.

(ii) x ; j(y) ∈ Pj and x → j(y) ∈ Pj, for all x, y ∈
P .

(iii) x ; y ∈ Pj and x → y ∈ Pj, for all x ∈ P, y ∈
Pj.

Proof. (i) ⟹ (ii). Let x, y ∈ P . We compute:

j(x ; j(y)) ⋅ x
(lax)
⩽ j((x ; j(y)) ⋅ x)

(res)
⩽ j(y).

It follows

x ; j(y)
(clos)
⩽ j(x ; j(y))

(res)
⩽ x ; j(y).

Hence x ; j(y) = j(x ; j(y)) ∈ Pj and similarly
x→ j(y) ∈ Pj .

(ii) ⟹ (iii). It is transparent.

(iii) ⟹ (i). Let x, y ∈ P . We have x ⋅ y
(clos)
⩽ j(x ⋅ y).

We get

x
(res)
⩽ y → j(x ⋅ y)(iii)= j(y → j(x ⋅ y)) ∈ Pj .

Hence j(x)
(clos)
⩽ j(y → j(x ⋅ y)) = y → j(x ⋅ y), i.e.,

j(x) ⋅ y
(res)
⩽ j(x ⋅ y) and similarly x ⋅ j(y) ⩽ j(x ⋅ y).

Let P be a residuated poset and j a quantic nucleus
on P. We put, for all x, y ∈ Pj ,

x ⋅j y = j(x ⋅ y). (qn)

Proposition 3.2 Let P be a residuated poset and j
a quantic nucleus on P. Then the structure Pj =

(Pj , ⋅j ,;,→,⩽) is a residuated poset. Moreover, if P
is a (complete) lattice then Pj is a (complete) lattice.

Proof. It is enough to check that, for all x, y, z ∈ Pj ,

x ⋅j y ⩽ z⟺ x ⩽ y → z⟺ y ⩽ x ; z.

Assume that x ⋅j y ⩽ z. Then x ⋅ y
(clos)
⩽ j(x ⋅ y) ⩽ z,

i.e., x ⩽ y → z. Conversely, assume that x ⩽ y → z.

We have x ⋅ y
(res)
⩽ z, i.e., x ⋅j y

(qn)
= j(x ⋅ y)

(clos)
⩽ j(z)(clos)= z.

Similarly we obtain that x ⋅j y ⩽ z⟺ y ⩽ x ; z.

Assume that P is a lattice. Then, for all x, y ∈ Pj ,
clearly x ∧Pj

y = x ∧ y and x ∨Pj
y = j(x ∨ y) define

lattice operations in Pj . Similarly, if P is a complete
lattice and S ⊆ Pj then ⋀Pj

S = ⋀S and ⋁Pj
S =

j(⋁S) define complete lattice operations in Pj .

Lemma 3.3 Let P be a residuated poset and j a co-
closure operator on P. The following conditions are
equivalent.
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(i) j is a quantic conucleus on P.

(ii) j(x) ⋅ j(y) ∈ Pj, for all x, y ∈ P .

(iii) x ⋅ y ∈ Pj, for all x, y ∈ Pj.

Proof. (i) ⟹ (ii). Let x, y ∈ P . We compute:

j(x) ⋅ j(y)(cocl. op.)= j(j(x)) ⋅ j(j(y))
(lax)
⩽ j(j(x) ⋅ j(y))

(cocl. op.)
⩽ j(x) ⋅ j(y).

It follows that j(x) ⋅ j(y) ∈ Pj .

(ii) ⟹ (iii). It is transparent.

(iii) ⟹ (i). Let x, y ∈ P . We have

j(x ⋅ y)
(cocl. op.)

⩾ j(j(x) ⋅ j(y)) (iii)= j(x) ⋅ j(y).

Let P be a residuated poset and j a quantic conucleus
on P. We put, for all x, y ∈ Pj ,

x ;j y = j(x ; y) and x→j y = j(x→ y). (qc)

Proposition 3.4 Let P be a residuated poset and j
a quantic conucleus on P. Then the structure Pj =

(Pj , ⋅,;j ,→j ,⩽) is a residuated poset. Moreover, if P

is a (complete) lattice then Pj is a (complete) lattice.

Proof. It is enough to check that, for all x, y, z ∈ Pj ,

x ⋅ y ⩽ z⟺ x ⩽ y →j z⟺ y ⩽ x ;j z.

Assume that x ⋅ y ⩽ z. Then x
(res)
⩽ y → z, i.e.,

x
(cocl. op.)

⩽ j(x)
(cocl. op.)

⩽ j(y → z) (qc)= y →j z.

Conversely, assume that x ⩽ y →j z. We have

x
(cocl. op.)

= j(x)
(qc)
⩽ j(x→ y)

(cocl. op.)
⩽ y → z,

i.e., x ⋅ y
(res)
⩽ z. Similarly we obtain that x ⋅ y ⩽ z⟺

y ⩽ x ;j z.

Assume that P is a lattice. Then, for all x, y ∈ Pj ,
clearly x ∧Pj

y = j(x ∧ y) and x ∨Pj
y = x ∨ y define

lattice operations in Pj . Similarly, if P is a complete
lattice and S ⊆ Pj then ⋀Pj

S = j(⋀S) and ⋁Pj
S =

⋁S define complete lattice operations in Pj .

Lemma 3.5 Let P be a residuated poset with a left
(right) unit e and g∶P → P a map. Then g is an ideal
conucleus if and only if

g(x)→ g(y) = g(x)→ y and
g(x) ; g(y) = g(x) ; y

(icon)

for all x, y ∈ P .

Proof. Assume that g is an ideal conucleus and x, y ∈

P . Since g(y)
(cocl. op.)

⩽ y we have from (r3) and (r1) that
g(x) → g(y) ⩽ g(x) → y and g(x) ; g(y) ⩽ g(x) ;

y. Let u ⩽ g(x) → y. Then u ⋅ g(x)
(res)
⩽ y. It follows

that

u ⋅ g(x)(cocl. op.)= u ⋅ g(g(x))
(ilax)
⩽ g(u ⋅ g(x)) ⩽ g(y),

i.e., u
(res)
⩽ g(x)→ g(y). Hence g(x)→ g(y) = g(x)→ y.

Similarly, g(x) ; g(y) = g(x) ; y.

Conversely, assume that g(x) → g(y) = g(x) → y
and g(x) ; g(y) = g(x) ; y for all x, y ∈ P . Then
e ⋅ g(x) ⩽ g(x), i.e.,

e
(res)
⩽ g(x)→ g(x)(icon)= g(x)→ x.

Hence g(x) ≤ x and g is decreasing. Since g is decreas-
ing we have also g(g(x)) ⩽ g(x). From

e ≤ g(x)→ g(x)(icon)= g(x)→ g(g(x))

we obtain that g(x)
(res)
⩽ g(g(x)), i.e., g is idempotent.

Let x ⩽ y. Then e ⋅ x = x ⩽ y, i.e., since g(x) ≤ x we
have

e
(res)
⩽ x→ y

(r4)
⩽ g(x)→ y

(icon)
= g(x)→ g(y),

i.e. g(x) = e ⋅ g(x)
(res)
⩽ g(y) and g is order-preserving.

It remains to check the condition (ilax). Assume that
x, y ∈ P . Since g(y) ⩽ y we obtain that x ⋅g(y) ⩽ x ⋅y.

Hence x
(res)
⩽ g(y) → (x ⋅ y) (icon)= g(y) → g(x ⋅ y), i.e.,

x ⋅ g(y)
(res)
⩽ g(x ⋅ y). Similarly, g(x) ⋅ y ⩽ g(x ⋅ y) and

g is an ideal conucleus.

The case when e is a right unit follows by same con-
siderations.

In what follows we show that, similarly to [10, Propo-
sition 1.7], a Girard poset can be constructed from any
residuated poset P containing a cyclic element d ∈ P
such that (d→ d)→ d ⩽ d.

Proposition 3.6 Let P be a residuated poset and d a
cyclic element of P.

Then the map jd∶P → P given by jd(x) = (x → d) →
d is a quantic nucleus on P. If (d → d) → d ⩽ d then
d ∈ Pjd and Pjd is a Girard poset.

Proof. Since d is cyclic we always have x → d = x ;

d.
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First, the map jd is order preserving since it is a com-
position of two antitone maps.

Second, x → d ≤ x → d implies (x → d) ⋅ x
(res)
⩽ d. We

obtain

x
(res)
⩽ (x→ d) ; d

(clc)
= (x→ d)→ d = jd(x).

From Proposition 2.1 (r10) we have that x → d =

((x → d) → d) → d = jd(x) → d. It follows that
jd(x) = jd(jd(x)), i.e. jd is a closure operator on P.

Let us compute:

(y ⋅ [y ; (x→ d)]) ⋅ [(x→ d)→ d]
(res)
⩽

(x→ d) ⋅ [(x→ d)→ d]
(res)
⩽ d.

Since ⋅ is associative we have

[y ; (x→ d)] ⋅ [(x→ d)→ d]
(res)
⩽ y → d.

From y ; (x→ d)(r8),(clc)= (x ⋅ y)→ d and the fact that

y → d
(clos)
⩽ jd(y → d) = ((y → d)→ d)→ d
= jd(y)→ d

we obtain

[(x ⋅ y)→ d] ⋅ jd(x) ⩽ y → d ⩽ jd(y)→ d.

Hence

[(x ⋅ y)→ d] ⋅ jd(x) ⋅ jd(y)
(res)
⩽ d,

i.e.,

jd(x) ⋅ jd(y)
(res)
⩽ [(x ⋅ y)→ d]→ d = jd(x ⋅ y).

Let (d→ d)→ d ⩽ d. Clearly,

d
(clos)
⩽ jd(d) = (d→ d)→ d ⩽ d,

i.e., d ∈ Pjd . We have to check that d is cyclic and
dualizing in Pjd . Since → and ; in P coincide with
the respective residuals in Pjd d is cyclic in Pjd . Hence
it is enough to check that d is dualizing in Pjd . Assume
that x ∈ Pjd . We compute:

(x ; d)→ d
(clc)
= (x→ d)→ d = jd(x) = x.

and similarly we obtain that (x→ d) ; d = x.

Corollary 3.7 Let P be a residuated poset with a left
(right) unit e and d a cyclic element of P. Then Pjd

is a Girard poset.

Proof. Assume that e is a left unit of P. For any
x ∈ P we have that e ⋅ x = x. Let us check that
(d→ d)→ d ⩽ d. We know that e ≤ d→ d. Thus

jd(d)= (d→ d)→ d
(cycl)
= (d→ d) ; d

=⋁{x ∈ P ∣ (d→ d) ⋅ x ≤ d}
≤⋁{x ∈ P ∣ e ⋅ x ≤ d} = d.

Hence Pjd is a Girard poset.

The case when e is a right unit follows by same con-
siderations.

4 Quantic nuclei and conuclei on
Girard posets

In this section, we shall discuss the relations between
quantic nuclei on a Girard poset P and ideal conu-

clei on its opposite P
∂d . The primary objective is to

establish one-to-one correspondence between NP and

ICNP
∂d .

Let g be map on a Girard poset P. We define a map
g
∗

on P by

g
∗(x) = g(x⊥)⊥. (∗)

Notice that g
∗∗
= g.

Let g, h be maps on P, i.e., g, h ∈ P
P

. Since P
∂d and

P have the same base sets we have also that g, h are

maps on P
∂d , i.e., g, h ∈ (P∂d)P . Then

g
∗
⩾(P∂d )P h

∗
⟺ g

∗(x) ⩾P∂d h
∗(x) for all x ∈ P

⟺ g(x⊥)⊥ ⩽P h(x⊥)⊥ for all x ∈ P

⟺ g(x⊥) ⩾P h(x⊥) for all x ∈ P
⟺ g ⩾PP h.

We obtain the following.

Theorem 4.1 Let P be a Girard poset with a dualiz-
ing and cyclic element d, g be a map on P . Then g is
a quantic nucleus on P if and only if g

∗
is a quantic

nucleus on P
∂d .

Proof. Since (idP )∗ = idP we have that g is inflation-

ary on P if and only if g
∗

is inflationary on P
∂d .

Assume that g is order-preserving. Let x ⩽ y. Then

y
⊥

⩽ x
⊥

. Hence g(y⊥) ⩽ g(x⊥), i.e., g
∗(x) =

g(x⊥)⊥ ⩽ g(y⊥)⊥ = g
∗(y).

Let g be idempotent. We have g
∗(g∗(x)) =

g(g(x⊥)⊥⊥)⊥ = g(g(x⊥))⊥ = g(x⊥)⊥ = g
∗(x).

Suppose that g(x) ⋅ g(y) ⩽ g(x ⋅ y) for all x, y ∈ P .
Let us verify that g

∗(x) + g
∗(y) ⩾ g

∗(x + y) for all
x, y ∈ P . We have

g
∗(x) + g

∗(y) (∗),(∂d)
= ((g(x⊥)⊥)⊥ ⋅ (g(y⊥)⊥)⊥)⊥
(∂)
= (g(x⊥) ⋅ g(y⊥))⊥
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and

g
∗(x + y) (∂d),(∗)

= g(((x⊥ ⋅ y⊥)⊥)⊥)⊥
(∂)
= g(x⊥ ⋅ y⊥)⊥.

Since g(x⊥) ⋅ g(y⊥) ⩽ g(x⊥ ⋅ y⊥) we obtain from (∂)

and (r4) that (g(x⊥) ⋅ g(y⊥))⊥ ⩾ g(x⊥ ⋅ y⊥)⊥. This is
equivalent with

g
∗(x) + g

∗(y) ⩾ g
∗(x + y).

Since g
∗∗
= g we have that g is a quantic nucleus on

P if and only if g
∗

is a quantic nucleus on P
∂d .

In view of Theorem 4.1 we have the following corollary.

Corollary 4.2 Let P be a Girard poset with a dual-
izing and cyclic element d. Then the posets NP and

NP
∂d are order-isomorphic via the map

∗
.

The following theorem generalizes [6, Theorem 3.6]
and provides an important description of the relations
between quantic nuclei and ideal conuclei on Girard
posets.

Theorem 4.3 Let P be a Girard poset with a dualiz-
ing and cyclic element d, g be a map on P . Then g
is a quantic nucleus on P if and only if g

∗
is an ideal

conucleus on P.

Proof. By the same arguments as in Theorem 4.1 we
obtain that g is a closure operator on P if and only if g

∗

is a coclosure operator on P. Assume first that g is a
quantic nucleus. Let us check that x ⋅g∗(y) ⩽ g

∗(x ⋅y)
(the case g

∗(x) ⋅ y ≤ g
∗(x ⋅ y) can be shown similarly).

Since g is a quantic nucleus we have

x ⋅ g(x→ y
⊥)

(clos. op.)
⩽ g(x) ⋅ g(x→ y

⊥)
(lax)
⩽ g(x ⋅ (x→ y

⊥))
(res)
⩽ g(y⊥).

From (g1) we obtain that (x ⋅ y)⊥ = x→ y
⊥

. Hence

g((x ⋅ y)⊥) ⩽ x ; g(y⊥) (d10)
= g(y⊥)⊥ → x

⊥
.

It follows that x ⋅ g(y⊥)⊥ ⋅ g((x ⋅ y)⊥) ⩽ d. This yields

x ⋅ g(y⊥)⊥ ⩽ g((x ⋅ y)⊥)⊥.

Therefore x ⋅ g∗(y) ⩽ g
∗(x ⋅ y).

Assume now that g
∗

is an ideal conucleus. Since P has

a unit d→ d we compute (using twice Lemma 3.5):

g(x)⋅g(y) ⩽ g(x ⋅ y)
(res)
⟺

g(x) ⩽ g(y)→ g(x ⋅ y)(d9)= g(x ⋅ y)⊥ ; g(y)⊥
(∗)
⟺ g(x) ⩽ g

∗((x ⋅ y)⊥) ; g
∗(y⊥) L. 3.5

⟺

g(x) ⩽ g
∗((x ⋅ y)⊥) ; y

⊥
(res),(d9)
⟺

g
∗((x ⋅ y)⊥) ⩽ g(x)→ y

⊥
= y ; g(x)⊥

(res),(∗)
⟺ y ⩽ g

∗((x ⋅ y)⊥)→ g
∗(x⊥)

L. 3.5,(d9)
⟺

y ⩽ g
∗((x ⋅ y)⊥)→ x

⊥
= x ; g(x ⋅ y)

(res)
⟺ x ⋅ y ⩽ g(x ⋅ y).

Since g is inflationary, i.e., x ⋅ y ⩽ g(x ⋅ y) we obtain
that g(x) ⋅ g(y) ⩽ g(x ⋅ y), i.e., g is a quantic nucleus.

Consequently, we have the following result.

Corollary 4.4 Let P be a Girard poset with a dual-
izing and cyclic element d. Then the posets NP and
(ICNP)op are order-isomorphic via the map

∗
.

In the following, we establish a one-to-one correspon-
dence between quantic nuclei and ideal conuclei on Gi-
rard posets.

Theorem 4.5 Let P be a Girard poset with a dual-
izing and cyclic element d. Then we have a series of
order-isomorphisms

(NP
∂d)op (NP)op

ICNP

idP

∗

∗

Proof. It follows immediately from Corollaries 4.2
and 4.4, and the fact that

∗ ◦ ∗ = idP .

Corollary 4.6 Let P be a Girard poset with a dualiz-

ing and cyclic element d. Then quantic nuclei on P
∂d

coincide with ideal conuclei on P and quantic nuclei

on P coincide with ideal conuclei on P
∂d .
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