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Abstract

Four-valued logics were developed from
three-valued logics aiming at creating tools
dealing with missing values and indeter-
minable values at the same time in computer
science. In this paper, we are motivated by
the formation of such four-valued logics and
construct a new set of operations able to work
with both types of such undefined values in
partial fuzzy set theory. The operations are
built based on the well-known Bochvar al-
gebra and the Sobocinski algebra modeling
indeterminable values, and the recent Drag-
onfly algebra purely designed for modeling
missing values. Moreover, the operations are
established to be compatible with the oper-
ations used for elaborating compositions of
partial fuzzy relations. Various valid prop-
erties of the new operations are then pre-
sented, and consequently, the properties of
the compositions of partial fuzzy relations
constructed based on such operations are im-
plied as well. In the end, an illustrative ex-
ample is provided to observe the use of the
proposed compositions.

Keywords: Fuzzy relational compositions,
Compositions of partial fuzzy relations, Par-
tial fuzzy set theory, Undefined values, Miss-
ing values, Indeterminable values.

1 Preliminaries

1.1 Preliminaries of undefined values

Three-valued logics were initially proposed in the
1920s by Lukasiewicz [21]. In the years later, the inter-
est of the logicians on the topic was continually evolv-
ing. This can be substantiated by numerous studies
regarding the development of the theory [5, 6] and

various areas of applications such as electronic circuits
[25], logic programming [17] or logics for artificial intel-
ligence [26]. The general motivation for forming such
logics was to fit better with several practical problems
where the statements can be “indeterminable”, “un-
known”, “meaningless”, or “inconsistent”. Their re-
spective truth values were modelled as undefined val-
ues and represented by a dummy value, usually de-

noted by *.

From the global point of view, x values are classified
into two different types depending on their ability to
be redefined. The first type corresponds to the case
when truth values are inconsistent, meaningless or in-
determinable and there exists no possible way to deter-
mine them. The second type corresponds to the case
when truth values are missing i.e., they have not been
yet established, but can be determined eventually by
some ways such as waiting for a certain time, trying
with a stronger computer. In computer science, these
two types are mentioned as inconsistent information
and incompleteness information (cf. [1]). In [2], the
first type corresponds to critical errors and the second
type corresponds to non-critical errors. In [15], the
authors mentioned these two types using the terms of
ontological undefined values and epistemic undefined
values, respectively. In the sequel, let us denote the
first type by using the term “indeterminable values”
and the second type by “missing values”. Several well-
known three-valued logics were built for modeling each
single type such as Bochvar logic, Sobocinski logic, Mc-
Carthy logic and Kleene logic (cf. [18, 9]).

The development of undefined values did not stop at
three-valued logics but upgraded to four-valued logics
[8, 20]. There, the theoretical models were built to
create suitable tools that can handle both types of un-
defined values at the same time. Distinct four-valued
logics were constructed in many different ways. They
could be formed by a combination of two three-valued
logics, for example, the combination of McCarthy logic
and Kleene logic was studied in [20], a sort of combina-
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tion of Kleene logic and Priest logic which formed the
well-known Belnap four-valued logic was introduced in
[8]. Apart from that, four-valued logics which were in-
dependently elaborated without combining single log-
ics were studied as well, e.g., the Ferreira four-valued
logic [16]. Recently, another so-called four-valued pa-
radefinite logic was addressed [1]. Furthermore, there
exist also logics with higher number of elements such
as five-valued logic and six-valued logic [19].

1.2 Preliminaries of operations

A generalization of three-valued logics to partial fuzzy
logics and the formation of the so-called partial fuzzy
set theory have been recently approached [7, 23].
There, the operations were elaborated based on the
support L* = L U {x} standing for the extension of
the support L of a residuated lattice by the dummy
value x. In the following, let us fix a residuated lat-
tice L = (L,A,V,®,— 0,1) where L = [0,1] as the
underlying algebraic structure. Note that the opera-
tions considered in this paper, which are not attached
by any subscript, are operations from the structure L.
Now, we briefly recall the definitions of the Bochvar
operations, the Sobocinski operations and the Drag-
onfly operations.

Definition 1 [7] The Bochvar operation cp €
{A\B,VB,®B,—pB}, cg : L* x L* — L* is represented
by the following truth table:

cB I} *
alacp | *
* * *

Definition 2 [7] The Sobociriski operation cg €
{Ns,Vs,®5}, cs : L* x L* — L* and the Sobociriski
implication —g: L* X L* — L* are represented by the
following truth tables:

cs I} * =5 I} *
alacf | al, ala— |«
* 5] * * B *

The Dragonfly algebra has been approached in [27]. Tt
was motivated by the lower estimation strategy [12].
We recall that on L* \ {0,1}, the Dragonfly conjunc-
tion operations correspond to the Bochvar conjunction
operations and the disjunction operations correspond
to the Sobocinski disjunction operations. The implica-
tion operation applying for an element a € L and the
dummy value x results the value a when x is applied
for the first argument and results x when x is applied
for the second argument. The operations applying for

* and {0, 1} in the Dragonfly algebra preserve the re-
sults as in case of the Kleene algebra i.e., the ordering
0 < % < 1 is preserved. However, it is adopted by
single minor modification, in particular, * —-p * = 1
although x = x = x in the Kleene case. This modi-
fication ensures the preservation of the well-known or-
dering property in a residuated lattice that « — 8 =1
if and only if a < .

Definition 3 [27] The Dragonfly operations cp €
{®p,Ap}, Vp, = p: L* x L* — L* are represented
by the following truth tables:

Cp ﬂ * |0 1
alacf | *x|0|«
* * x| 0| x|,
0 0 0/0|0
1 B8 * 0] 1
Vp B8 * |01
alaV flalal|l
* B * | x| 1],
0 153 * | 0|1
1 1 1111
—D [‘3 * 0 1
ala = Bl x| all
* B8 1] % |1
0 1 1 1 1
1 I} x| 0 |1

Let us recall [7] two external operations of |, T which
are defined as follows: o = 0 if @« = x and o = «
otherwise; T a = 1 if @ = x and T a = a otherwise.

2 Designing a set of new operations

2.1 Fuzzy relational compositions and
motivation

In this paper, we deal with fuzzy relational compo-
sitions. They have been intensively studied by Ban-
dler and Kohout in the early 1980s [4] and since then
they have become an important topic in fuzzy mathe-
matics. Their applications are various, including e.g.,
architectures for information processing [3], relational
databases [24], or fuzzy inference systems [28]. To
shorten the name, let us mention them as standard
compositions. For more details regarding their defini-
tions and properties, we may refer to [14, 10]. It is
worth mentioning that the topic is still updated and
extended in distinct directions including the recent one
on the incorporation of excluding features [13].

As soon as the partial fuzzy set theory was formed,
we modified the standard compositions to the compo-
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sitions of partial fuzzy relations [11] to get compati-
bility with practical situations where the occurrence
of the unknown values is rather frequent. In [11], we
construct such compositions using a suitable combi-
nation of the Bochvar operations and the Sobocinski
operations. In particular, the compositions applied
the Bochvar operations for the conjunction operations
and the Sobocinski operations for the disjunction op-
erations and the implication operations. The choice of
such combination of the operations into the composi-
tions was explained based on an animal classification
example (cf. page 5 in [11]).

In addition to the above compositions dealing with
indeterminable values, we have proposed the compo-
sitions modeling missing values as well [27]. Such
compositions were built based on the setting of the
Dragonfly algebra. Let us recall that this algebra was
designed to reflect the lower estimation strategy [12]
which was an initial idea to set up a set of opera-
tions not only dealing with missing values but also
having compatibility in using operations for modeling
compositions of partial fuzzy relations. It should be
mentioned that the potential of the compositions was
demonstrated in the Dragonflies classification problem
[27].

The question is, whether we can build compositions
of partial fuzzy relations dealing with both types of
undefined values or not. Similar in the case of four-
valued logic, where both types may appear together in
a single set of operations, we found that the answer is
rather positive.

Another reason to approach compositions of partial
fuzzy relations dealing with both types of undefined
values is that only a type of undefined values is hard
to appear in a practical problem. For example, let us
focus on the real example of Dragonflies classification
problem where the missing values are most likely to
occur. Such values are caused by the lack of the skill
or the lack of time to observe of an observer. However,
the indeterminable values may also exist as well, e.g.,
due to the changes in the Dragonflies’ features, de-
pending on their living environment or their growth.
A visible instance for this case is that the Crocothemis
Servilia Dragonfly changes its color from yellow to or-
ange and to red in the process of maturity. Thus, the
statement of “Crocothemis Servilia is yellow” has an
indeterminable truth value. This example is similar to
the typical one that “Bats are warm-blooded” which is
inconsistent as bats are warm-blooded in their active
period and they are cold-blooded during their hiber-
nation. Such cases are common in nature.

2.2 Designing new operations

This section introduces a set of operations dealing
with missing values and indeterminable values. We
approach to build such operations as follows: when re-
stricting on missing values, the operations correspond
to the Dragonfly operations, and when restricting on
indeterminable values, the operations correspond to a
suitable combination of the Bochvar conjunction oper-
ations and the Sobocinski disjunction and implication
operations. This initial intent is not only to design
the operations relating two types of undefined values
but generally is to bring operations matching with the
choice of operations used for modeling compositions
of partial fuzzy relations. Indeed, we have recalled
that the Dragonfly operations are appropriate for con-
structing the compositions dealing missing values [27]
and the mentioned combination of the Bochvar oper-
ations and the Sobocinski operations are appropriate
to form the compositions dealing indeterminable val-
ues [11].

To distinguish the notations, let us use x; modeling
indeterminable values and %j;; modeling missing val-
ues. Let L*! stands for L U {x;} and L*™ stands for
LU {*p}. Then, let L® = LU {xy,%p} = L* U L*™
stands for the extension of L by adding two dummy
values %y, *p7.

Thus, the operations on L® can be approached as fol-
lows: when restricting on L*™ | the operations corre-
spond to the Dragonfly operations and when restrict-
ing on L*!, the conjunction operations correspond to
the Bochvar operations, the disjunction and the im-
plication operations correspond to Sobocinski opera-
tions. The important question is, how the operations
applying for the value x; and x5, can be defined. Note
that x5 represents for the missing values and it can be
found out in some ways and in case of the replacement,
the operations will be identical with operations defined
on L*!. Thus, the operations applying for x; and %,
can be approached in the same way as approaching
the operations applying for x; and any element from
L. In particular, the conjunction of x; and *,; returns
%7 again. The disjunction of the same elements results
*pr- And for the implication, in both arguments, x;
works as a dummy value in the Sobocinski algebra.
This determination of x; and *,; is nothing else but
identical to the assumption that x; prevails over ;.
Let us recall that such the assumption was equivalently
adopted by Avron and Konikowski in their paper [2]
when they studied the combination of the McCarthy
algebra and the Kleene algebra.

For the simplicity, we denote the proposed operations
by the usual operations adding the subscript “C”.
Here, “C” stands for the combination of the Bochvar
operations, the Sobocinski operations, and the Drag-
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onfly operations.

Definition 4 The operations dealing with missing
values and indeterminable values Ne € {®¢, Ac}, Vo,
—c: LO® x L® — L® are represented by the following
truth tables:

Mo 6 *1 | *pm 0 1
alall B | x| *py | O a
*I *1 *r | k1 | k1 | k1
* s *0r *r | *ar | O | xp |
0 0 * 0 0 0
1 ,8 *r *M 0 1
Vo B8 *T *M 0 1
alaV f| « « a |1
*7 ﬁ *7 *M 0 1
* M B *nar | ke | x| 1]
0 ﬁ 0 * M 0 1
1 1 1 1 1 1
—C ﬁ *r * N 0 1
ala — B nalxy | nall
*I B8 1 | *xum 0 1
*M ﬂ * M 1 * M 1
0 1 *J 1 1 1
1 ﬁ 0 *M 1

Furthermore, the negation —¢ : L® — L® and the
bi-implication <+¢: L® x L® — L® are defined as
follows for a,b € L®:

—ca=a—¢c 0,
a<—>cb=(a—>cb)/\c(b—>ca).

Let us shortly focus on the position of x; —¢ *; in
the truth table of the implication. We know that the
employment of the Sobociriski implication operation
on L*' would lead to x; —¢ *; = *;. However, to
preserve the well-known ordering property in a resid-
uated lattice that « — S = 1 if and only if a < S,
we approach to define: x; —¢ *;y = 1. It is worth
mentioning that such a setting of the implication was
approached in the Dragonfly algebra [27]. Moreover,
it equivalently holds in many algebras in three-valued
logic such as in the Nelson algebra, the Lukasiewicz
algebra, the Godel algebra, or even in the Bochvar ex-
ternal algebra which deals with indeterminable value
(cf. [15]). On the other hand, it makes a good sense
from the application point of view, e.g., for a set of
fuzzy rules, if the antecedent of a rule enters with g,
the rule can be omitted and does not affect on the
other rules in the reasoning process.

Remark 1 The proposed operations are formed based
on a sort of the combination of three algebras of op-

erations with a slight modification for some pairs of
elements. This approach is not new as the existence of
the combination of the Bochvar algebra, the Sobociriski
algebra and the Kleene algebra into a set of operations
has been formed in partial fuzzy set theory [22]. In that
paper, the authors defined the ordering of the dummy
values according to the three algebras to define the op-
erations connecting them.

2.3 Properties

This section is devoted to investigating properties of
the proposed operations. Let us recall that the order-
ing < on L® is defined such that it reflects the chain
L = [0,1] and apart from that, 0 < xp; < 1, %57 is
incomparable to any o € L\ {0,1}, and finally, s is
not comparable to any oo € L*M .

Lemma 2.1 The following hold for any a,b,c € L®:

—_

a®cb<aAch,
a®Rcb=b®ca,
aVeb=bVga,
a/\C(b/\Cc):(a/\cb)/\cc,

aVe (bVee)=(aVeb) Ve e,
a/\c(b\/cc)Z(a/\(;'b)\/C (a/\cc) ,
a<b iff a—=cb=1,
a<b=b—cc<a—cc,

)

ahNcb=bAca,

= W

o J O

AAA/_\,.\A/_\/_\,.\
e Ut
= D DD D DO —

a<b= —¢cb< ca.

Sketch of the proof: The validity of (1)-(9) can be eas-
ily checked by making x; or xj; appearing in the ar-
guments. O

Lemma 2.2 Let L be a residuated lattice such that ®
is without zero divisors. Then the following porperties
hold for any a,b,c € L®:
a®c (b®cc) = (a®cb)®cc,
(aVeb)®cc=(a®cc) Ve (b&¢ c) .

(10)
(11)

Sketch of the proof: The properties naturally hold in
L*! and the assumption of ® has no zeros divisors
leads to the validity of them on L*™ as well. (Il

Lemma 2.3 The following holds for any a,b,c € L®:

}(a®c (b®cc) = ((a®cb) @c c) , (12)
L((aveb)®ce) =l ((a®cc)Ve (b@cc), (13)
a<b=](a®cc) <] (b®cc). (14)

Sketch of the proof: On L*!| the equalities in (12)-(13)
and the inequality in (14) hold without the help of |.
However, on L** | the operation | has to be considered
for the validity of (12)-(14). O
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Lemma 2.4 For any a,b,c € L®:
Ha®cb) <le iff la<lb—cle. (15)

Sketch of the proof: Alternately replacing a, b, ¢ by xps
and similarly, by x; and check the equivalence of both
inequalities with help of |. O

3 Compositions of partial fuzzy
relations

This section directly applies the proposed operations
to define compositions of partial fuzzy relations and
study their properties. By F®(U) = {A: U — L®},
we denote a set of all partial fuzzy set on U.

Definition 5 Let X,Y,Z be finite non-empty uni-
verses and let R € FO(X xY),S € FO(Y x Z).
Then compositions R oc S, R <¢ S, R>¢ S and
ROc S € FO(X x Z) are defined as follows

(R oc S)(J?,Z) = \/C (R(l‘,y) ®c S(y,z)) )
yey

(R<c S)(x,2) =\ (R(z,y) =c S(y.2))

yeYy

(Rec S)(@,2) =\ (Rz,y) +c S(y.2))

yey

(RDC S)(J?,Z) = /\C (R(x,y) «rc S(yaz)) :

The meanings of such compositions are similar to that
of the standard compositions (cf. [14]). The only dif-
ference is that they may deal with undefined values.
Following the previous cases of compositions of partial
fuzzy relations incorporating the concept of excluding
features (cf. [11, 12]), the proposed compositions may
employ with such concept of excluding features as well.
The definition is given as follows:

Definition 6 Let X,Y,Z be finite non-empty uni-
verses and let R € FO®(X xY), S,E € FO(Y x Z).
Then the composition Roc S'E € FO(X x Z) is de-
fined as follows

(R oc S\E)(Z‘,Z) :\/C (R('T7y) ®c S(y,z)) ®c
yey

e \/C (R(x,y) Je] E(yv Z)) :
yey

Now, we focus on studying the valid properties of the
introduced compositions. Let R, Ry, Ry € F@(X xY),
S,51,9; € .F@(Y X Z), and T € .F@(Z X U)

Proposition 3.1 (Associativity of o) Let ® be with-
out zero divisors. Then

(Rog S)ocT=Roc (SocT).

Sketch of the proof: Based on (5) and (10). O

Proposition 3.2 (|-Associativity of o)
L (Roc S)ocT) =l (Roc (SocT)) .

Sketch of the proof: Due to (12), (13) and the fact that
l(aVeb)=laVelbforallabe L®. O

Proposition 3.3 (Antitonicity of the BK-product)
RiCRy= R <¢c SO Ry<¢c S,
S1CSy=R>c S D R>c S,

Sketch of the proof: Directly using (8). O

Proposition 3.4 (/-Monotonicity of o)

Ri C Ry =] (RiocS)C|(RaocS),

S1C Sy =] (Roc S1) €l (Roc Sz) .
Sketch of the proof: Applying (14) and the fact that
l(aVeb)=laVelbforall abe L. O

Proposition 3.5 (Union-o distributivity) Let @ be
without zero divisors. Then

(R1Uc R2) oc S = (R1o¢ S)Uc (Raoc 5),
Roc (Sl Ueo Sg) = (R oc Sl) Ueo (R oc Sg) .
Sketch of the proof: Based on property (11). O

Proposition 3.6 (]-Union-o distributivity)
L((R1Uc Rp) o¢ S) =] (R10o¢ S)Uc (R 0¢ S)) ,
L (Roc (S1Uc S2)) =L ((Roc S1) Uc (Roc S2)) -

Sketch of the proof: Using property (13) and the fact
that | (a Vo b) =l a Ve J b for all a,b € L9. O

Proposition 3.7 Let RT (z,y) = R(y,z). Then
(ROC S)T = ST o RT,

(R<c 8)T = 8T >¢ RT
(R >c S)T =97 <c RT7
(Roc S)T = ST oe RT .

Sketch of the proof: Using that ®¢ is commutative. [J

Proposition 3.8

ROoc S = (R<105) Ng (RDcS) .
Sketch of the proof: Applying the definition of ¢
and property (4). O

When incorporating with excluding features, the fol-
lowing properties are obtained.
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Proposition 3.9 (Associativity of o) Let ® be with-
out zero divisors. Then

(Roc S)oc T'E = Roc (SocT) (Soc E) .

Sketch of the proof: Based on Proposition 3.1. g
Proposition 3.10 (J-Monotonicity of o)

Sl - SQ i\l, (R oc SRE) §¢ (R oc S%E) R
FEi CEy, =] (R oc S\El) ol (R oc S\EQ) .

Sketch of the proof: Due to Proposition 3.4 and the
fact that | (e ®c b) =} a ®¢ | b. O

Proposition 3.11 (Union-o distributivity) Let ® be
without zero divisors. Then

Ro¢ (51 Uc SQ)\E = (Ro¢ S}E) Uc (Roc S\QE) .

Sketch of the proof: Applying Proposition 3.5. ]
Proposition 3.12 (}-Union-o distributivity)

+ (R o¢ (51U Sg)‘E)
=] ((R oc S1E) Uc (Roc S;E)) .

Sketch of the proof: Using property (13) and the fact
that | (a ®c b) =] a ®c¢ | b. O

4 Illustrative example and discussion

In order to observe the behaviour of the introduced
compositions, we consider a simple example regard-
ing biological classification problems. Let X =
(a1, 27}, ¥ = {yn,- o yia} and Z = {z1,..., 20}
are finite sets of animals, features of animals and
classes of animals, respectively. The elements in the
sets X,Y and Z are considered as follows:

e x; — Rabbit, x5 — Flying fox, x3 — Prince basket-
tail, x4 — Swallow, x5 — Raccon dog, ¢ — Sunda
colugo, x7 — Climbing fish;

e y; — animal flies, yo — animal has feathers, Y3 —
animal has fins, y4 — animal has hair, y5 — animal
has teeth, yg — animal climbs (trees), y7 — animal
lays eggs, ys — animal swims, y9 — animal is warm-
blooded, y19 — animal eats plants only (herbivo-
rous), y11 — animal is nocturnal (active in night
time), y12 — animal is skillful on the ground;

e z; — Leporidae, zo — Bats, z3 — Dragonfly, z4 —
Bird, z5 — Dog, zg — Colugo, z7 — Fish.

Partial fuzzy relations R, S, E are considered in Ta-
ble 1, Table 2 and Table 3. The membership degrees
in such relations can be determined based on the fol-
lowing facts. Firstly, there are some pairs of elements
that are easily defined for the truth degrees by ob-
serving the features of the animals or by learning from
the literature that provides information for the depen-
dence of the features and the classes. For example, we
know that Rabbit is active between sunset and night
so we may determine the truth degree of R(x1,y11) is
0.5, similarly, the Sunda colugo is good at climbing
trees but not an expert one so we may determine the
truth degree of R(xg,ys) is 0.9. Secondly, there are
some pairs of elements whose truth values are miss-
ing or indeterminable due to lacking of information
or the pairs of elements contain contradictory pieces
of information, respectively. For example, the Fly-
ing fox is a kind of bat so it is both warm-blooded
and cold-blooded depending on their active and sleep-
ing time, so its relationship with “warm-blooded” is
filled in by indeterminable value *;. Similarly, the
truth degree of the relationship between feature “ani-
mal swims” and the class Dragonfly is assigned by *y,
since, the nymphs swim and live underwater that may
last as long as five years. In some cases, the replace-
ment by the missing value %,; for the truth values is
more appropriate. For instance, we may not know if
the Raccoon dog is able to swim or not as some dogs
do not swim or swim very badly but we can check for
its ability later and thus, its relation with the feature
of “animal swims” would be filled in by *,;. Similarly,
the truth degree for that the Fish class are herbivo-
rous, may be missing in determination as the number
of herbivorous fish species remains unknown in the fish
population.

R |\ y1 |y |ys | va | Us | s | Yz
xz1 | O 0 0 1 1 0 0
2o | 1] 010 1 | 1 |*xm]| 0
25| L | 0] 003 [*m| 0 |1
Ty | 1 1 0 0 0 0 1
x5 | 0 0 0 1 1 05| 0
zg | O 0 0 1 1 091 0
xz7 | O 0 1 0 0.3 0 1

Ys | Yo | Y10 | Y11 | Y12

0 1 1 0.5 1

0 *7 1 1 0

*7 0 0 0 0

0 1 1 0 0.2

*M 1 0 0 1

0 1 1 1 0

1 0 0 | xp | 0.7

Table 1: Relationship of animals and features
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S 21 Z2 z3 24 z5 Z6 z7
Y1 0 1 1 08| 0 |02]0.1
y2 | O 0 0 1 0 0 0
ys | O 0 0 0 0 0 1
ys| 1 | 1 |01 0 [08] 1
Ys 1 1 * M 0 1 1 0.6
ye | 0 [09] O 0 | xr [09] O
yvv] 0 | 0 | 1L | 10009
ys 0 0 *7 0.5 *r 0 1
vo | 1 |« | O | T | 1 | 1 |01

Y10 0.7 0.3 0 * M 0 1 *M
Y11 0.8 0.9 *M 0.3 *xr 1 *xr
yi2 | 1 0 0 |04 1 0 |03

Table 2: Relationship of features and classes

E | z1 | 22| 23 | z4 | 25 | 26 27
v1 | 1[0 0 0 1108108
ya | 1 1 1 0 1 1 1
yz | 1 1 1 1 1 1 0
ya | 01 0 08| 1 0 0 1
ys | 0 | O 0 1 0 0 0
v | 1 | O 1 1 0 0 1
yr | 1 1 0 0 1 1 0
ys | 1 1 0 0 0 1 0
y9 | 0 | O 1 0 0 0 |08
yi0 | 0 | O 1 0 1 0 0
y11 | 0| 0O 0 |07 0 0 0
yi2 | 0| 1 1 0 0 1 0

Table 3: Relationship regarding excluding features of
features and classes

To illustrate the results, let us use the Lukasiewicz
algebra as the underlying algebraic structure. Then
we have the following compositions, R oc S, RO¢c S
and Roc S'\E:

R o S Z1 z9 z3 Z4 z5 Z6 z7

T 1 1 0.4 1 1 1 106
To 1 1 (08| 1 1 |06
T3 0.3 1 1 1 0.1 1 109
T4 1 1 1 1 1 109}
Ts5 1 0.1 1 1 1 106
g 1 1 101 1 1 1 |06
T7 07103 | 1 1 (07103 1
ROc S 21 29 23 Z4 25 26 27

1 071 0 0 0 0 0 0

xTo 0 * M 0 0 0 0 0

T3 0 0O | x| O 0 0 0

Ty 0 0 0 |« | O 0 0 |’
5 * M 0 0 0 0 0 0

T6 0 0 0 0 008]| O

T7 0 0 0 0 0 0 | *m

RocS'E | z1 | 22| 23 | 24 | 25 | 26 | 21
T 1 0 0 0 0 0 0
T 0 |1 0 010102]0
T3 0 0109]07] 0 0 | 0.1
T4 0 |0] O 1 0| 0 0
T5 051 0 0 0 1 0 0
T 011 1 0 010 1 0
Ty 0 |0] O 00| O 1

The basic composition R o S classified each sample
into too many classes with high membership degrees
so, it does not help the classification task. To im-
prove such result, the BK-square product RO¢ S is
applied, however, the membership degrees are lowered
too much so that they give no information for the clas-
sification problem. Moreover, the appearance of the
missing values in the result brings obstacles for the
classification task as well. When the basic composi-
tion incorporating the excluding features R og S‘E
is applied, it brings a promising result. In partic-
ular, apart from samples x3 — Prince basketail and
¢ — Sunda colugo which have suspicions belonging to
the respective classes z4 and z; besides their correct
classes, the other samples are classified to their correct
classes. Moreover, undefined values are eliminated in
the obtained result.

The obtained results demonstrate that the proposed
compositions may successfully deal with two types of
undefined values. In other words, the formation of the
proposed operations brings effectiveness. Of course, to
get the real potential of such operations as well as the
derived compositions, a practical example is necessary
to consider. Let us leave this issue for future work.

The proposed operations were formed based on an ap-
propriate combination of the Dragonfly operations, the
Sobocinski operations, and the Bochvar operations.
This direction may not be unique to set up operations
working with both types of undefined values. Indeed,
one may think of other directions such as a general-
ization of a four-valued algebra or a six-valued alge-
bra. However, the question is whether these directions
provide operations being suitable to elaborate compo-
sitions of partial fuzzy relations or not. We may con-
sider this issue as an open problem, and leave it for
future work as well. Here, let the proposed operations
serve as an initial approach towards building a method
of compositions of partial fuzzy relations, helping to
solve classification problems whose data may contain
missing and indeterminable values.
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