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Abstract

Generalize fuzzy operators for the framework
of lattices is the main objective of many re-
cent researches. Here we present a study
about how to define lattice-valued (U,N)-
implications i.e. the class of implications gen-
erated from a uninorm U and a fuzzy nega-
tion N . Moreover, we discuss about its ex-
tension from a lattice to a bigger one using
the e-operator.

Keywords: Uninorms, Implications,
(U,N)-implications

1 Introduction

The fusion between fuzzy logic and lattice theory has
been the main issue of many researches mainly because
of getting new ways to interpret mathematically some
particular problems [3, 4, 14, 15, 32]. For instance,
lattice-valued fuzzy logic has been considered in im-
age processing, mathematical morphology and artifi-
cial intelligent [9, 20, 21, 30].

In this framework Karaçal et al. in [16, 17] have
presented a definition of uninorm and nullnorm on a
bounded lattice L and developed ways to construct
them and its characterization [18]. Çayli et al. in [8]
have introduced a new class of lattice-valued uninorms.
Also, lattice-valued fuzzy negations are considered in
[22].

Another important problem that relates fuzzy and lat-
tice theory is the construction of extension methods
for fuzzy operator able to preserve their characteris-
tics and properties [29]. In this sense, Palmeira and
Bedregal have presented a series of results of extension
of fuzzy operations (namely, t-norms, t-conorms and
negations in [22, 23], implications in [24, 25, 26], uni-
norms and nullnorms in [27], among others) in the seek
to uncover which properties are preserved by the ex-

tension methods via retraction [22] and via e-operators
[23] created by them. In particular, for uninorms and
nullnorms Palmeira and Bedregal show [27] how to ex-
tend these operators using the e-operators.

Taking that into account this paper has two main
goals. The first one is presenting a formalization of
notion of fuzzy implications generated from a uninorm
and a fuzzy negation ((U,N)-implications) for lattices.
The second one is applying the extension method via
e-operator presented in [23] for (U,N)-implications.

The paper is split as follows: Section 2 presents some
concepts related to lattice theory and the definitions
of L-uninorms, L-negations and L-implications. Sec-
tion 3 is devoted to present the extension method
via e-operator. In Sections 4 the definition of lattice-
valued (U,N)-implications and some results are pre-
sented and its extension is considered in Section 5.
Finally, some final remarks are given in Section 6.

2 Preliminaries

In this section some important definitions and results
from lattice theory are presented. For further reading
about these concepts we recommend [1, 5, 6, 10, 11,
12, 19].

2.1 Lattices and Morphims

Definition 2.1 Let L be a nonempty set. If ∧L and
∨L are two binary operations on L, then 〈L,∧L,∨L〉
is a lattice provided that for each x, y, z ∈ L, the fol-
lowing properties hold:

1. x ∧L y = y ∧L x and x ∨L y = y ∨L x;

2. (x∧L y)∧L z = x∧L (y ∧L z) and (x∨L y)∨L z =
x ∨L (y ∧L z);

3. x ∧L (x ∨L y) = x and x ∨L (x ∧L y) = x.

If in 〈L,∧L,∨L〉 there are elements 0L and 1L such
that, for all x ∈ L, x ∧L 1L = x and x ∨L 0L = x,
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then 〈L,∧L,∨L, 0L, 1L〉 is called a bounded lattice. A
lattice L is called a complete lattice if every subset of
it has a top and a bottom element.

Remark 2.1 A partial order can be constructed in L
by considering the relation a ≤ b if and only if a =
a∧Lb for all a, b ∈ L. In case a and b are incomparable
elements of a lattice L i.e. a 6= b or a � b or b � a,
we denote it by a ‖ b.

Remark 2.2 Notice that given a lattice L we can con-
sider the subintervals of L as follows:

[a, b] = {x ∈ L | a ≤ x ≤ b} for each a, b ∈ L

Similarly, it may be defined (a, b], [a, b) and (a, b).
Also, define the sets

A(e) = (0L, e]× [e, 1L) ∪ [e, 1L)× (0L, e]

B(e) = [0L, e]× (e, 1L] ∪ (e, 1L]× [0L, e]

C(e) = [0L, e)× [e, 1L] ∪ [e, 1L]× [0L, e)

D(e) = [0L, e)× (e, 1L] ∪ (e, 1L]× [0L, e)

and

Ie = {x ∈ L | x ‖ e}

Definition 2.2 Let (L,∧L,∨L, 0L, 1L) and
(M,∧M ,∨M , 0M , 1M ) be two bounded lattices. A
mapping f : L −→ M is said to be a lattice
homomorphism if, for all x, y ∈ L, we have

1. f(x ∧L y) = f(x) ∧M f(y);

2. f(x ∨L y) = f(x) ∨M f(y);

3. f(0L) = 0M and f(1L) = 1M .

It is easy to verify that every lattice homomorphism
preserves the lattice order.

Definition 2.3 A homomorphism r of a lattice L
onto a lattice M is said to be a retraction if there ex-
ists a homomorphism s of M into L which satisfies
r ◦ s = idM

1. A lattice M is called a retract of a
lattice L if there is a retraction r, of L onto M , and
s is then called a pseudo-inverse of r.

1◦ is the composition of functions.

2.2 (r, s)-Sublattices

Let L and M be bounded lattices and suppose there
exists a retraction r : L → M with pseudo inverse
s : M → L. In this case M is a retract of L and
we say that M is a (r, s)-sublattice of L. Notice that
the pair (r, s) is not unique which means that it can
exist different ways to embed M into L as a algebraic
retract. So, for each pair of homomorphisms (r, s) M
is a different retract of L giving us a flexible way to
thing about sublattices.

Definition 2.4 A retraction r : L −→ M (with
pseudo-inverse s) which satisfies s ◦ r 6 idL is called
a lower retraction. If it (idL 6 s ◦ r) we say that it is
an upper retraction.

Definition 2.5 Let M be a (r, s)-sublattice of L.
Thus, there is a retraction r1 from L onto M and a
pseudo-inverse s : M −→ L such that r1 ◦ s = idM .
We say that

1. M is a lower sublattice of L if r1 is a lower re-
traction;

2. M is an upper sublattice of L whenever r1 is an
upper retraction;

3. If r1 is a lower retraction and there is an upper
retraction r2 : L −→ M such that its pseudo-
inverse is also s, then M is called a full sublattice
of L. Notation: M E L over (r1, r2, s).

2.3 L-uninorms

It is known from the literature that a t-norm (t-
conorm) on a bounded lattice L is an operation T :
L2 → L which is commutative, associative, increas-
ing with respect both variables and has 1L (0L) as the
neutral element. But it is possible consider other oper-
ations on lattices that have an element e ∈ L/{0L, 1L}
as the neutral element. These operator are known as
uninorms and it were first defined on a bounded lattice
by Karaçal and Mesiar in [17].

Definition 2.6 Let L be a bounded lattice. An opera-
tion U : L2 → L is called a uninorm on L if for every
x, y, z ∈ L,

(U1) U(x, y) = U(y, x);

(U2) U(x, U(y, z)) = U(U(x, y), z);

(U3) If x ≤L y then U(x, z) ≤L U(y, z);

(U4) There exists a neutral element e ∈ L, i.e.
U(x, e) = x for every x ∈ L.
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Remark 2.3 For all uninorm U on L it holds
U(0L, 1L) ∈ {0L, 1L} since U is associative. In case
U(0L, 1L) = 0L it is called a conjuntive uninorm and
if U(0L, 1L) = 1L it is called a disjuntive uninorm.

They also have proven the following results:

Proposition 2.1 If U is a uninorm on L with neutral
element e ∈ L then

1. x ∧ y ≤ U(x, y) ≤ x ∨ y for (x, y) ∈ A(e);

2. U(x, y) ≤ x for all (x, y) ∈ L× [0L, e];

3. U(x, y) ≤ y for all (x, y) ∈ [0L, e]× L;

4. x ≤ U(x, y) for all (x, y) ∈ L× [e, 1L];

5. y ≤ U(x, y) for all (x, y) ∈ [e, 1L]× L.

Proposition 2.2 Let L be a bounded lattice and U be
an uninorm on L with neutral element e ∈ L. Then

1. T = U |[0L,e]2 : [0L, e]
2 → [0L, e] is a t-norm;

2. S = U |[e,1L]2 : [e, 1L]2 → [e, 1L] is a t-conorm.

Proposition 2.3 Let L be a bounded lattice and U :
L2 → L be an idempotent uninorm with neutral ele-
ment e ∈ L\{0L, 1L}.

1. U(x, y) ≤ x ∧L y for (x, y) ∈ [0L, e]
2;

2. x ∨L y ≤ U(x, y) for (x, y) ∈ [e, 1L]2.

2.4 Fuzzy Implications on L

Definition 2.7 [2] A function I : L × L −→ L is
a fuzzy implication on L if for each x, y, z ∈ L the
following properties hold:

(I1) if x 6L y then I(y, z) >L I(x, z);

(I2) if y 6L z then I(x, y) 6L I(x, z);

(I3) I(0L, 0L) = 1L;

(I4) I(1L, 1L) = 1L;

(I5) I(1L, 0L) = 0L.

Consider also the following properties of an implica-
tion I on L:

(LB) I(0L, y) = 1L, for all y ∈ L;

(RB) I(x, 1L) = 1L, for all x ∈ L;
(CC4) I(0L, 1L) = 1L;
(NP) I(1L, y) = y for each y ∈ L (left neutrality prin-
ciple);
(EP) I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L (ex-
change principle);
(IP) I(x, x) = 1L for each x ∈ L (identity principle);
(OP) I(x, y) = 1L if and only if x 6L y (ordering
property);
(IBL) I(x, I(x, y)) = I(x, y) for all x, y, z ∈ L (itera-
tive Boolean law);
(CP) I(x, y) = I(N(y), N(x)) for each x, y ∈ L with
N a fuzzy negation on L (law of contraposition);
(L-CP) I(N(x), y) = I(N(y), x) (law of left contrapo-
sition);
(R-CP) I(x,N(y)) = I(y,N(x)) (law of right contra-
position);
(P) I(x, y) = 0L if and only if x = 1L and y = 0L
(Positivety).

2.5 L-Negations

Definition 2.8 A mapping N : L → L is a negation
on L or just an L-negation, if the following properties
are satisfied for each x, y ∈ L:
(N1) N(0L) = 1L and N(1L) = 0L and
(N2) If x 6L y then N(y) 6L N(x).
Moreover, the L-negation N is considered strong if it
also satisfies the involution property, i.e.
(N3) N(N(x)) = x for each x ∈ L.
The L-negation is strict if satisfies the property:
(N4) N(x) <L N(y) whenever y <L x.
The L-negation N is frontier if satisfies the property:
(N5) N(x) ∈ {0L, 1L} if and only if x = 0L or x = 1L.

Definition 2.9 [2] Let I be a fuzzy implication on L.
If I(1L, α) = 0L for some α ∈ L then the function
Nα
I : L→ L given by

Nα
I (x) = I(x, α) ∀x ∈ L (1)

is called the natural negation of I with respect to α.

3 Extension Method via e-operators

The extension problem is a very interesting issue since
it can be considered in many different frameworks to
discuss about how a given function may be extended
preserving its properties.

We have been studied in recent years how to extend
a lattice-valued fuzzy operator preserving its alge-
braic properties and developed two different extension
method (via retraction [22] and via e-operator [23]) to
extend t-norms, t-conorms, fuzzy negations and impli-
cations [24].
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Definition 3.1 [23] Let M E L with respect to
(r1, r2, s). A mapping � : M ×M −→ L is called an
e-operator on M if it is isotonic and satisfies, for each
a, b ∈M and for each x ∈ L, the following conditions:

r1(a� b) = a ∧M b and r2(a� b) = a ∨M b (2)

r1(x)� r2(x) = x (3)

Lemma 3.1 [23] Consider M E L with respect to
(r1, r2, s) and let � be an e-operator on M . Then,
for all a, b ∈ M and x, y ∈ L, the following properties
hold:

1. a 6M b if and only if r1(a�b) = a and r2(a�b) =
b;

2. For every a ∈M we have s(a) = a� a;

3.

r1(x) 6M r1(y) and r2(x) 6M r2(y) iff x 6L y;
(4)

4. r1(x) = r1(y) and r2(x) = r2(y) if and only if
x = y;

5. � is commutative.

Proposition 3.1 [23] Let M E L with respect to
(r1, r2, s) and � an e-operator on M . Thus, if N is a
fuzzy negation on M then

NE
� (x) = N(r1(x))�N(r2(x)) (5)

is a fuzzy negation on L. Moreover,

1. If N is involutive then NE
� is also involutive.

2. If a is an equilibrium point of fuzzy negation N
then s(a) is an equilibrium point of NE

� .

For fuzzy implication the extension works as in the
following proposition.

Proposition 3.2 [13] Let M E L with respect to
(r1, r2, s) and � be an e-operator on M . If I : M2 →
M is a fuzzy implication then function UE� : L2 −→ L
defined by

IE� (x, y) = I(r2(x), r1(y))� U(r1(x), r2(y)) (6)

for all x, y ∈ L is a fuzzy implication L.

In our recent researches we have applied the about
method for many lattice-valued fuzzy operators and
proved that the method is efficient in preserving some
properties. For applications, we have extended func-
tions related to image processing and mathematical
morphology such as retricted equivalence functions
[7, 28].

For lattice-valued uninorms we have got the following
results (see [27]).

Proposition 3.3 Let M EL with respect to (r1, r2, s)
and � be an e-operator on M . Thus, given an uninorm
U on M , the function UE� : L2 −→ L defined by

UE� (x, y) = U(r1(x), r1(y))� U(r2(x), r2(y)) (7)

is an uninorm on L with respect to the neutral element
e′ = s(e).

Theorem 3.1 Let M E L with respect to (r1, r2, s),
� be an e-operator on M and e′ = s(e). Then UE�
defined by Equation (7) is such that

1. UE� is conjuntive whereas U is conjuntive;

2. UE� is disjuntive whereas U is disjuntive;

3. If U is idempotent then UE� is idempotent;

4. x ∧L y ≤ UE� (x, y) ≤ x ∨L y for (x, y) ∈ A(e′);

5. UE� (x, y) ≤ x for all (x, y) ∈ L× [0L, e
′];

6. UE� (x, y) ≤ y for all (x, y) ∈ [0L, e
′]× L;

7. x ≤ UE� (x, y) for all (x, y) ∈ L× [e′, 1L];

8. y ≤ UE� (x, y) for all (x, y) ∈ [e′, 1L]× L.

Proposition 3.4 Let M EL with respect to (r1, r2, s)
and � be an e-operator on M . Thus, if U is an uni-
norm on M with respect to neutral element e ∈ M
then the Identity

TE� = (U |[0M ,e]2)E� = UE� |[0L,e′]2 = TUE
�

(8)

holds2.

Proposition 3.5 Let M EL with respect to (r1, r2, s)
and � be an e-operator on M . If U : M2 → M
is an idempotent uninorm with neutral element e ∈
L\{0L, 1L} then

1. UE� (x, y) ≤ x ∧L y for (x, y) ∈ [0L, e
′]2;

2. x ∨L y ≤ UE� (x, y) for (x, y) ∈ [e′, 1L]2.

2Similarly for SE
� = (U |[e,1M ]2)

E
� = UE

� |[e′,1L]2 = SUE
�
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4 (U,N)-implications on lattices

The (S,N)-implications are those fuzzy implications
generated from a t-conorm S and a negation N and
a generalization of them can be obtained naturally
by means changing the t-conorm S for a uninorm U
(namely (U,N)-implications) as defined by Baczynski
and Jayaram in [2]. Here we present an extension of
the class of (U,N)-implications for the framework of
lattices as follows.

Let L be a bounded lattice, N : L → L be a fuzzy
negation and U : L2 → L be a uninorm with neutral
element e ∈ L. Then function I(U,N) : L2 → L given
by

I(U,N)(x, y) = U(N(x), y), ∀x, y ∈ L (9)

satisfies (I1), (I2) and (I5). Indeed, notice first that
I(U,N)(1L, 0L) = U(N(1L), 0L) = U(0L, 0L) = 0L
which proves that (I5) holds.

Now, let x ≤L y and z ∈ L. Since N(y) ≤L N(x)
whereas x ≤L y then

I(U,N)(x, z) = U(N(x), z) ≥L U(N(y), z) = I(U,N)(y, z)

and

I(U,N)(z, x) = U(N(z), x) ≤L U(N(z), y) = I(U,N)(z, y)

i.e. properties (I1) and (I2) hold for I(U,N).

In addition, supposing U is disjunctive it can be proved
that I(U,N) is a fuzzy implication on L as follows:

I(U,N)(0L, 0L) = U(1L, 0L) = U(0L, 1L) = 1L

I(U,N)(1L, 1L) = U(N(1L), 1L) = U(0L, 1L) = 1L

In this way, (U,N)-implications can be defined.

Proposition 4.1 Let L be a bounded lattice, N : L→
L be a fuzzy negation and U : L2 → L be a disjunc-
tive uninorm with neutral element e ∈ L. Then the
function I(U,N) : L2 → L given by Eq. (9) is a fuzzy
implication.

Proposition 4.2 Let I(U,N) be a (U,N)-fuzzy impli-
cation on L. Then

1. I(U,N) satisfies (CC4) and (EP);

2. Ne
I(U,N)

= N and I(U,N) satisfies R-CP(N);

3. if N is strong then I(U,N) satisfies L-CP(N).

Proof: Let be x, y, z ∈ L. Then

1. (CC4) is straightforward. Moreover,

I(U,N)(x, I(U,N)(y, z)) = U(N(x), U(N(y), z))
= U(N(x), U(z,N(y)))
= U(U(N(x), z), N(y))
= U(N(y), U(N(x), z))
= I(U,N)(y, I(U,N)(x, z))

2. (R-CP)

I(U,N)(x,N(y)) = U(N(x), N(y))
= U(N(y), N(x))
= U(y,N(x))

Also, notice that

Ne
I(U,N)

(x) = I(U,N)(x, e) = U(N(x), e) = N(x)

3. (L-CP) Suppose that N is strong. Hence

I(U,N)(N(x), y) = U(N(N(x)), y)
= U(x, y)
= U(y, x)
= U(N(N(y)), x)
= I(U,N)(N(y), x)

�

Theorem 4.1 Let I : L2 → L be a fuzzy implication
and N : L → L be a fuzzy negation. Define function
UI : L2 → L as

UI(x, y) = I(N(x), y) ∀x, y ∈ L (10)

If I satisfies (L-CP) and (EP) and N is such that Nα
I ◦

N = IdL for an arbitrary but fixed α ∈ L/{0L, 1L}
then UI as in Eq. (10) is an uninorm with neutral
element α.

Proof: Let be x, y, z ∈ L. Thus

(U1) Since I satisfies (L-CP) then

UI(x, y) = I(N(x), y) = I(N(y), x) = UI(y, x)

i.e. UI is commutative;

(U2) By (L-CP) and (EP) it follows that

UI(x, UI(y, z))
(10)
= I(N(x), I(N(y), z))

(L−CP )
= I(N(x), I(N(z), y))

(EP )
= UI(N(z), UI(N(x), y))
= UI(UI(x, y), z)

(U3) Suppose that x 6L y and hence N(y) 6L N(x).
Thus

UI(x, z) = I(N(x), z)
(I1)

6 I(N(y), z) = UI(y, z)

(U4) Finally, let’s prove that α is an neutral element of
UI . Indeed, since Nα

I ◦N = IdL it follows

UI(α, x) = UI(x, α) = I(N(x), α) = Nα
I (N(x)) = x

�
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5 Extension of (U,N)-implications

Let L be a bounded lattice, M E L with respect to
(r1, r2, s), � an e-operator on M . Let’s prove that for
every conjunctive uninorm U : M2 → M and fuzzy
negation N : M →M , function

IUE
� ,N

E
�

(x, y) = UE� (NE
� (x), y) ∀x, y ∈ L (11)

is a fuzzy implication L whereas UE� and NE
� are

extensions via e-operator � of U and N respec-
tively. Indeed, first notice that for all x, y ∈ L
we have that r1(x) 6M r2(x) hence N(r2(x)) 6M
N(r1(x)), r1(N(r1(x)) � N(r2(x))) = N(r2(x)) and
r2(N(r1(x))�N(r2(x))) = N(r1(x)). Thus

IUE
� ,N

E
�

(x, y) = UE� (NE
� (x), y)

= UE� (N(r1(x))�N(r2(x)), y)
= U(r1(N(r1(x))�N(r2(x))), r1(y))

�U(r2(N(r1(x))�N(r2(x))), r2(y))
= U(N(r2(x)), r1(y))
�U(N(r1(x)), r2(y))

Taking this into account and supposing that U is con-
junctive (i.e. U(0M , 1M ) = U(1M , 0M ) = 1M ), we
have that

IUE
� ,N

E
�

(0L, 0L) = U(N(r2(0L)), r1(0L))�
U(N(r1(0L)), r2(0L))

= U(1M , 0M )� U(1M , 0M )
= s(U(1M , 0M )) = s(1M ) = 1L

Simillary, one can prove that IUE
� ,N

E
�

(1L, 1L) = 1L.

Also,

IUE
� ,N

E
�

(1L, 0L) = U(N(r2(1L)), r1(0L))�
U(N(r1(1L)), r2(0L))

= U(0M , 0M )� U(0M , 0M )
= s(U(0M , 0M )) = s(0M ) = 0L

Therefore, (I3), (I4) and (I5) hold for IUE
� ,N

E
�

.

Moreover, for all x, y, z ∈ L such that x 6L y. In this
case, for i ∈ {1, 2} we have that ri(x) 6M ri(y) and
hence N(ri(y)) 6M N(ri(x)). Thus

IUE
� ,N

E
�

(x, z) = U(N(r2(x)), r1(z))

�U(N(r1(x)), r2(z))
>L U(N(r2(y)), r1(z))

�U(N(r1(y)), r2(z))
= IUE

� ,N
E
�

(y, z)

and

IUE
� ,N

E
�

(z, x) = U(N(r2(z)), r1(x))

�U(N(r1(z)), r2(x))
6L U(N(r2(z)), r1(y))

�U(N(r1(z)), r2(y))
= IUE

� ,N
E
�

(z, y)

which proves that IUE
� ,N

E
�

satisfies (I1) and (I2).

Theorem 5.1 Let L be a bounded lattice, M EL with
respect to (r1, r2, s), � an e-operator on M . For every
conjunctive uninorm U : M2 →M and fuzzy negation
N : M →M , function defined by Eq. (11) is a (U,N)-
implication on L.

Proposition 5.1 Let L be a bounded lattice, M E L
with respect to (r1, r2, s), � an e-operator on M .
Given an uninorm U : M2 → M and a fuzzy nega-
tion N : M →M it holds that

IUE
� ,N

E
�

= (IU,N )E� (12)

.

Proof: For all x, y, z ∈ L it follows that

IUE
� ,N

E
�

(x, y) = UE� (NE
� (x), y)

= UE� (N(r1(x))�N(r2(x)), y)
= U(r1(N(r1(x))�N(r2(x))), r1(y))

�U(r2(N(r1(x))�N(r2(x))), r2(y))
= U(N(r2(x)), r1(y))� U(N(r1(x)), r2(y))
= IU,N (r2(x), r1(y))� IU,N (r1(x), r2(y))
= (IU,N )E�(x, y)

�

Proposition 5.2 Let L be a bounded lattice, M E L
with respect to (r1, r2, s), � an e-operator on M , U :
M2 → M be an uninorm with neutral element e and
N : M → M be a fuzzy negation. If IU,N is a (U,N)-
fuzzy implication on M then

1. IUE
� ,N

E
�

satisfies (CC4) and (EP) whereas IU,N
satifies that properties;

2. Ne′

I
(UE
� ,NE

� )
= NE

� (where e′ = s(e)) and I(UE
� ,N

E
� )

satisfies R-CP(N);

3. if NE
� is strong then I(UE

� ,N
E
� ) satisfies L-CP(N).

Proof: Let us consider x, y, z ∈ L.
1. The proof for (CC4) is similar to (I3) in the Theo-
rem 5.1. Moreover, we have

I(UE
� ,N

E
� )(x, I(UE

� ,N
E
� )(y, z)) = UE� (NE

� (x), UE� (NE
� (y), z))

= U(N(r2(x)), U(N(r2(y), r1(z)))
�U(N(r1(x)), U(N(r1(y), r2(z)))

= U(N(r2(y)), U(N(r2(x), r1(z)))
�U(N(r1(y)), U(N(r1(x), r2(z)))

= I(UE
� ,N

E
� )(y, I(UE

� ,N
E
� )(x, z))

2. For any x ∈ L it follows that

Ne′

I
(UE
� ,NE

� )
(x) = I(UE

� ,N
E
� )(x, e

′) = UE� (NE
� (x), s(e)) =

= U(N(r2(x)), e)� U(N(r1(x), e)) =
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= N(r2(x))�N(r1(x)) = NE
� (x)

Similarly to the prove of item (2) of Proposition 4.2
one can verify that R-(CP) holds for I(UE

� ,N
E
� );

3. Analogous to the proof of item (3) of Proposition
4.2.

�

Theorem 5.2 Let L be a bounded lattice, M EL with
respect to (r1, r2, s), � an e-operator on M , I : M2 →
M be a fuzzy implication and N : M → M be a fuzzy
negation. Define function UIE� : L2 → L as

UIE� (x, y) = IE� (NE
� (x), y) for all x, y ∈ L (13)

If I satisfies (L-CP) and (EP) and N is such that
Ne′

I
(UE
� ,NE

� )
◦ NE
� = Id where e′ = s(e) then UIE� is an

uninorm on L with neutral element e′.

Proof: Let be x, y, z ∈ L. Thus
(U1) Since I satisfies (L-CP) then

UIE� (x, y) = IE� (NE
� (x), y)

= I(r2(NE
� (x)), r1(y))� I(r1(NE

� (x)), r2(y))
= I(N(r1(x)), r1(y))� I(N(r2(x)), r2(y))
= I(N(r1(y)), r1(x))� I(N(r2(y)), r2(x))
= I(r2(NE

� (y)), r1(x))� I(r1(NE
� (y)), r2(x))

= IE� (NE
� (y), x)

= UIE� (y, x)

i.e. UIE� is commutative;

(U2) By (L-CP) and (EP) it follows that

UIE� (x, UIE� (y, z))
(13)
= IE� (NE

� (x), IE� (NE
� (y), z))

= I(N(r1(x)), I(N(r1(y)), r1(z)))
�I(N(r2(x)), I(N(r2(y)), r2(z)))

(L−CP )
= I(N(r1(x)), I(N(r1(z)), r1(y)))
�I(N(r2(x)), I(N(r2(z)), r2(y)))

(EP )
= I(N(r1(z)), I(N(r1(x)), r1(y)))
�I(N(r2(z)), I(N(r2(x)), r2(y)))

= UIE� (UIE� (x, y), z)

(U3) If x 6L y then NE
� (y) 6L NE

� (x). Thus

UI(x, z) = IE� (NE
� (x), z)

(I1)

6 IE� (NE
� (y), z) = UIE� (y, z)

(U4) Finally, let’s prove that α is an neutral element
of UI . Indeed, since Nα

I ◦N = IdL it follows

UIE� (e′, x) = UIE� (x, e′)

= IE� (NE
� (x), s(e))

= I(N(r1(x)), e)� I(N(r2(x)), e)
= Ne

I (N(r1(x)))�Ne
I (N(r2(x)))

= r1(x)� r2(x) = x

�

6 Final Remarks

In this paper we introduced the concept of implica-
tions in the context of lattices, besides characterizing
the construction of uninorms from L-implications and
L-negation. Further, we presented a way to extend
(U,N)-implications and studied some of the proper-
ties that are preserved by the extension method via
e-operators. Results once again proved the efficiency
and robustness of the method, as we have seen in
[23, 25, 26, 27, 28].

As future works, we wish to continue the study of the
application of the extension method via e-operators
to other functions in the context of the lattice fuzzy
theory and also to propose a new and more flexible
extension method.
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