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Abstract

Generalize fuzzy operators for the framework
of lattices is the main objective of many re-
cent researches. Here we present a study
about how to define lattice-valued (U, N)-
implications i.e. the class of implications gen-
erated from a uninorm U and a fuzzy nega-
tion N. Moreover, we discuss about its ex-
tension from a lattice to a bigger one using
the e-operator.
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1 Introduction

The fusion between fuzzy logic and lattice theory has
been the main issue of many researches mainly because
of getting new ways to interpret mathematically some
particular problems [3, 4, 14, 15, 32]. For instance,
lattice-valued fuzzy logic has been considered in im-
age processing, mathematical morphology and artifi-
cial intelligent [9, 20, 21, 30].

In this framework Karagal et al. in [16, 17] have
presented a definition of uninorm and nullnorm on a
bounded lattice L and developed ways to construct
them and its characterization [18]. Cayli et al. in [§]
have introduced a new class of lattice-valued uninorms.
Also, lattice-valued fuzzy negations are considered in
[22].

Another important problem that relates fuzzy and lat-
tice theory is the construction of extension methods
for fuzzy operator able to preserve their characteris-
tics and properties [29]. In this sense, Palmeira and
Bedregal have presented a series of results of extension
of fuzzy operations (namely, t-norms, t-conorms and
negations in [22, 23], implications in [24, 25, 26], uni-
norms and nullnorms in [27], among others) in the seek
to uncover which properties are preserved by the ex-

tension methods via retraction [22] and via e-operators
[23] created by them. In particular, for uninorms and
nullnorms Palmeira and Bedregal show [27] how to ex-
tend these operators using the e-operators.

Taking that into account this paper has two main
goals. The first one is presenting a formalization of
notion of fuzzy implications generated from a uninorm
and a fuzzy negation ((U, N)-implications) for lattices.
The second one is applying the extension method via
e-operator presented in [23] for (U, N)-implications.

The paper is split as follows: Section 2 presents some
concepts related to lattice theory and the definitions
of L-uninorms, L-negations and L-implications. Sec-
tion 3 is devoted to present the extension method
via e-operator. In Sections 4 the definition of lattice-
valued (U, N)-implications and some results are pre-
sented and its extension is considered in Section 5.
Finally, some final remarks are given in Section 6.

2 Preliminaries

In this section some important definitions and results
from lattice theory are presented. For further reading
about these concepts we recommend [1, 5, 6, 10, 11,
12, 19].

2.1 Lattices and Morphims

Definition 2.1 Let L be a nonempty set. If Ap, and
V5 are two binary operations on L, then (L,Ap,Vr)
is a lattice provided that for each x,y,z € L, the fol-
lowing properties hold:

1. xANpy=yApz andxNpy=yVypx;

2. (xApy)Apz=xAp (YALz) and (VL y) VL z =
Vg (y AL z);

3 xAp(xVpy) =z and x Vg (x AL y) = x.

If in (L,AL,VL) there are elements 0r, and 1p such
that, for all x € L, x A, 1, = © and 'V 0 = =z,
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then (L,Ar,Vr,0r,11) is called a bounded lattice. A
lattice L is called a complete lattice if every subset of
it has a top and a bottom element.

Remark 2.1 A partial order can be constructed in L
by considering the relation a < b if and only if a =
anpb for alla,b € L. In case a and b are incomparable
elements of a lattice L i.e. a #b ora £ b orb < a,
we denote it by a || b.

Remark 2.2 Notice that given a lattice L we can con-
sider the subintervals of L as follows:

[a,b] ={x €L |a<x<b} foreach a,be L

Similarly, it may be defined (a,b], la,b) and (a,b).
Also, define the sets

A(e) = (0p,e] x [e,15)Ue, 1) x (0L, €]
B(e) = [0r,€e] x (e,11] U (e, 1] x [0, €]
0(6) = [OL,B) X [6, IL] U [6,1L] X [OL,G)

D(e) =[0g,e) x (e,1]U (e, 1] x [0r,€)

and
I.={zeL|x|e}

Definition 2.2 Let (L,AL,V1,0p,11) and
(M, Apny Vg, Oar, Lag) be two bounded lattices. A
mapping f L — M s said to be a lattice
homomorphism if, for all x,y € L, we have

1 f(xALy) = f(z) Am f(y);
2. flxVvry) = f(@)Vm f(y);

3. f(0r) =0ar and f(1p) = 1n.

It is easy to verify that every lattice homomorphism
preserves the lattice order.

Definition 2.3 A homomorphism v of a lattice L
onto a lattice M is said to be a retraction if there ex-
ists a homomorphism s of M into L which satisfies
ros =idy . A lattice M is called a retract of a
lattice L if there is a retraction r, of L onto M, and
s is then called a pseudo-inverse of r.

o is the composition of functions.

2.2 (r,s)-Sublattices

Let L and M be bounded lattices and suppose there
exists a retraction r : L — M with pseudo inverse
s : M — L. In this case M is a retract of L and
we say that M is a (r, s)-sublattice of L. Notice that
the pair (r,s) is not unique which means that it can
exist different ways to embed M into L as a algebraic
retract. So, for each pair of homomorphisms (r,s) M
is a different retract of L giving us a flexible way to
thing about sublattices.

Definition 2.4 A retraction r : L — M (with
pseudo-inverse s) which satisfies s or < idy, is called
a lower retraction. If it (idy, < sor) we say that it is
an upper retraction.

Definition 2.5 Let M be a (r,s)-sublattice of L.
Thus, there is a retraction r1 from L onto M and a
pseudo-inverse s : M — L such that vy o s = idy;.
We say that

1. M is a lower sublattice of L if r1 is a lower re-
traction;

2. M is an upper sublattice of L whenever r1 is an
upper retraction;

3. If r1 is a lower retraction and there is an upper
retraction ro : L — M such that its pseudo-
inverse is also s, then M is called a full sublattice
of L. Notation: M QL over (r1,72,s).

2.3 L-uninorms

It is known from the literature that a t-norm (t-
conorm) on a bounded lattice L is an operation T :
L? — L which is commutative, associative, increas-
ing with respect both variables and has 17, (01) as the
neutral element. But it is possible consider other oper-
ations on lattices that have an element e € L/{0r,11}
as the neutral element. These operator are known as
uninorms and it were first defined on a bounded lattice
by Karagal and Mesiar in [17].

Definition 2.6 Let L be a bounded lattice. An opera-
tion U : L? — L is called a uninorm on L if for every
T,Y,2 € L7

(UI) U(xvy) = U(y,a:);
(U2) U(z,U(y, 2)) =U(U(z,y),2);
(U3) If x <p y then U(z,z) <p, U(y, 2);

(U4) There exists a neutral element e € L, i.e.
U(z,e) =z for every x € L.
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Remark 2.3 For all uninorm U on L it holds
U(0r,1;) € {0r,1.} since U is associative. In case
U(0p,15) = 0g, it is called a conjuntive uninorm and
if U0p, 1) = 1p, it is called a disjuntive uninorm.

They also have proven the following results:

Proposition 2.1 IfU is a uninorm on L with neutral
element e € L then

1.z Ay <U(z,y) <xVy for (z,y) € Ale);
Ulz,y
Uz,y
U

4. 1 <

) < for all (z,y) € L x [0, €;
) <y for all (x,y) € [01,€] x L;
(,y) for all (z,y) € L x [e,1L];
5.y <U(z, (2,y)

y) for all (z,y) € [e,1] x L.

Proposition 2.2 Let L be a bounded lattice and U be
an uninorm on L with neutral element e € L. Then

1. T = U|[0L,e]2 : [0[,,6]2 —

[0r,€] is a t-norm;

2. 8 ="Uliea,) : e 12]? = [e, 1] is a t-conorm.

Proposition 2.3 Let L be a bounded lattice and U :
L? — L be an idempotent uninorm with neutral ele-
ment e € L\{0p,1}.

1. U(l‘,y) < TALY fOT (‘T,y) € [OLae]Q;
2. zVpy <U(z,y) for (x,y) € [e,1L]%

2.4 Fuzzy Implications on L

Definition 2.7 [2] A function I : L x L — L s
a fuzzy implication on L if for each x,y,z € L the
following properties hold:

(I1) if v <y y then I(y,z) >1 I(z,2);
(12) if y <1 = then I(z,y) <z I(z,2);
(13) 1(01,0r) =11,
(14) I(1p, 1) =1p;
(15) I(11,0) =0p.

Consider also the following properties of an implica-
tion I on L:

(LB) I(0p,y) =11, for all y € L;

(RB) I(z,11) =1y, for all x € L;

(CC4) I(0p,1L) = 1p;

(NP) I(1,y) =y for each y € L (left neutrality prin-
ciple);

(EP) I(z, I(y, 2)) = Iy, I(s,
change principle);

(IP) I(z,x) = 1y, for each x € L (identity principle);
(OP) I(z,y) = 1y if and only if z < y (ordering
property);

(IBL) 1(z, 1(z, 1))
tive Boolean law);
(CP) I(z,y) = I(N(y),N(z)) for each x,y € L with
N a fuzzy negation on L (law of contraposition);
(L-CP) I(N(x),y) = I(N(y),z) (law of left contrapo-
sition);

(R-CP) I(z, N(y))
position);

(P) I(x,y) = 0 if and only if x = 1, and y = 0,
(Positivety).

z)) for all x,y,z € L (ex-

= I(z,y) for all z,y,z € L (itera-

= I(y,N(z)) (law of right contra-

2.5 L-Negations

Definition 2.8 A mapping N : L — L is a negation
on L or just an L-negation, if the following properties
are satisfied for each x,y € L:

(N.Z) N(OL) = 1L and N(lL) = OL and

(N2) If x <p y then N(y) <p N(z).

Moreover, the L-negation N is considered strong if it
also satisfies the involution property, i.e.

(N3) N(N(x)) =z for each x € L.

The L-negation is strict if satisfies the property:

(N4) N(x) <p, N(y) whenever y <p, x.

The L-negation N is frontier if satisfies the property:
(N5) N(z) € {Op,1.} if and only if = 0, orx =1y.

Definition 2.9 [2] Let I be a fuzzy implication on L.
If I(1;,«) = 0y, for some o € L then the function
N7 : L — L given by

Nf(x) =I(z,a) Ve € L (1)

is called the natural negation of I with respect to a.

3 [Extension Method via e-operators

The extension problem is a very interesting issue since
it can be considered in many different frameworks to
discuss about how a given function may be extended
preserving its properties.

We have been studied in recent years how to extend
a lattice-valued fuzzy operator preserving its alge-
braic properties and developed two different extension
method (via retraction [22] and via e-operator [23]) to
extend t-norms, t-conorms, fuzzy negations and impli-
cations [24].
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Definition 3.1 /23] Let M < L with respect to
(ri,72,8). A mapping © : M x M — L is called an
e-operator on M if it is isotonic and satisfies, for each
a,b € M and for each x € L, the following conditions:

(2)

ri(a®b)=aANpyb and ro(a®b)=aVyb

ri(z) @ry(z) =z

(3)

Lemma 3.1 [23] Consider M < L with respect to
(r1,7m9,5) and let ® be an e-operator on M. Then,

for all a,b € M and x,y € L, the following properties
hold:

1. a <y bif and only if r1(a®b) = a and ro(a®b) =
b;

2. For every a € M we have s(a) = a ® a;

3.
ri(z) <m ri(y) and r2(x) <amr ra(y) iff T <o y;
(4)
4. r1(z) = r1(y) and ro(x) = ro(y) if and only if
=Y,

5. ©® 1s commutative.

Proposition 3.1 /23] Let M < L with respect to
(r1,79,8) and ® an e-operator on M. Thus, if N is a
fuzzy negation on M then

NG () = N(r1(z)) © N (ra(x)) ()

s a fuzzy negation on L. Moreover,

1. If N is involutive then Ng 18 also involutive.

2. If a is an equilibrium point of fuzzy negation N
then s(a) is an equilibrium point of NE.

For fuzzy implication the extension works as in the
following proposition.

Proposition 3.2 [18] Let M < L with respect to
(r1,72,5) and ® be an e-operator on M. If I : M? —
M is a fuzzy implication then function Ug L2 — L
defined by

I3 (2,y) = I(r2(2),m1(y) © U(ri(2),m2(y))  (6)

for all z,y € L is a fuzzy implication L.

In our recent researches we have applied the about
method for many lattice-valued fuzzy operators and
proved that the method is efficient in preserving some
properties. For applications, we have extended func-
tions related to image processing and mathematical
morphology such as retricted equivalence functions
[7, 28].

For lattice-valued uninorms we have got the following
results (see [27]).

Proposition 3.3 Let M < L with respect to (11,72, S)
and ® be an e-operator on M. Thus, given an uninorm
U on M, the function Ug : L2 — L defined by

U (z,y) = U(ri(z),r1(y)) © Ura(z),m2(y))  (7)

is an uninorm on L with respect to the neutral element
e’ = s(e).

Theorem 3.1 Let M < L with respect to (r1,r2,S),
® be an e-operator on M and ¢’ = s(e). Then UY
defined by Equation (7) is such that

1. UE is conjuntive whereas U is conjuntive;
Ug is disjuntive whereas U is disjuntive;
If U is idempotent then UL is idempotent;
zApy <US(x,y) SaViy for (z,y) € Ae);
Ug(:my) < x for all (z,y) € L x [0p,€'];
Ug(x,y <y for all

x,y) € [0r,€'] X L;

(
(

S S R e )

) Y)
z <UE(z,y) for all (z,y) € L x [¢/,1];
( Y)

y <UE(z,y) for all (z,y) € [¢/,11] x L.

Proposition 3.4 Let M < L with respect to (11,72, 8)
and ©® be an e-operator on M. Thus, if U is an uni-
norm on M with respect to neutral element e € M
then the Identity
E E E
T@ = (U|[0M,6]2)® = U@ |[0L’6’]2 = TUg

(8)
holds?.

Proposition 3.5 Let M <L with respect to (11,72, 8)
and ® be an e-operator on M. IfU : M? — M

is an tdempotent uninorm with neutral element e €
L\{OL, 1L} then

[OL7 el] 2 5

[6,, IL]2.

1. UE(2,y) <axApy for (z,y) €
2. x\/LySUg(x,y) for (z,y) €

2Similarly for S§ = (U|[e,1M]2)g = Ughe’,lL]Q = SUg
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4 (U, N)-implications on lattices

The (S, N)-implications are those fuzzy implications
generated from a t-conorm S and a negation N and
a generalization of them can be obtained naturally
by means changing the t-conorm S for a uninorm U
(namely (U, N)-implications) as defined by Baczynski
and Jayaram in [2]. Here we present an extension of
the class of (U, N)-implications for the framework of
lattices as follows.

Let L be a bounded lattice, N : L — L be a fuzzy
negation and U : L? — L be a uninorm with neutral
element e € L. Then function [y n) : L? — L given
by

I(U,N)(Ivy) = U(N(I),y), Vz,y € L (9)

satisfies (I1), (I2) and (I5). Indeed, notice first that
Iyny(1L,0L) = U(N(12),0r) = U(0r,0r) = Op
which proves that (I5) holds.

Now, let © <; y and z € L. Since N(y) <; N(x)
whereas © <p, y then

Iy ny(z,2) =U(N(x),2) 2 UN(y),2) = Lw,n)(,2)
and
LNy (z,0) = U(N(2),2) <y U(N(2),y) = Lw,n)(2,9)

i.e. properties (I1) and (I2) hold for Iy, x).

In addition, supposing U is disjunctive it can be proved
that Iy, ny is a fuzzy implication on L as follows:

Iy,ny(0r,0) =U(1L,0L) =U(0L, 1) =11
Iwny(1p, 1) = U(N(1L), 1) =U(0r, 1) = 11,
In this way, (U, N)-implications can be defined.
Proposition 4.1 Let L be a bounded lattice, N : L —
L be a fuzzy negation and U : L?> — L be a disjunc-
tive uninorm with neutral element e € L. Then the
function Iy ny : L? — L given by Eq. (9) is a fuzzy

implication.

Proposition 4.2 Let Iy ny be a (U, N)-fuzzy impli-
cation on L. Then

1. I(U’N) satisfies (CC4) and (EP);
2. Ni, , =N and Iy, n) satisfies R-CP(N);

8. if N is strong then Iy ny satisfies L-CP(N).

Proof: Let be z,y,z € L. Then

1. (CC4) is straightforward. Moreover,
Lo ny(z, Lon(y, 2) =

[T
S5=
252

Se =28
<& g
e
O
vt\z

2. (R-CP)
Iuny(z,N(y)) =

Il
S

Also, notice that
Ni @) =Iwn)(z,e) =U(N(z),e) = N(z)

3. (L-CP) Suppose that N is strong. Hence

Iiw,ny(N(z),y) U(N(N(x)),y)
Ul(z,y)
Uly,z)
U(N(N(y)),x)
= TN (N(y), )

O

Theorem 4.1 Let I : L? — L be a fuzzy implication
and N : L — L be a fuzzy negation. Define function
Ur:L? > L as

Ur(z,y) = I(N(x),y) Yo,y € L (10)

If I satisfies (L-CP) and (EP) and N is such that Nfo
N = Idy, for an arbitrary but fived o« € L/{0r,1L}
then Ur as in Eq. (10) is an uninorm with neutral
element «.

Proof: Let be z,y,z € L. Thus

(U1) Since I satisfies (L-CP) then
i.e. U is commutative;
(U2) By (L-CP) and (EP) it follows that
(10)

PN @

Ur(z,Ur(y, 2))

(EP)
= U](U](l‘,

)
(U3) Suppose that 2 <; y and hence N(y) <y,
Thus

Urle,2) = I(N(z).2) S I(N (). 2) = Ur(y.2)

(U4) Finally, let’s prove that « is an neutral element of
U;. Indeed, since Nj* o N = Idy, it follows

Urla,z) = Ur(z,a) = I(N(z),a) = Nf'(N(z)) =z

O
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5 Extension of (U, N)-implications

Let L be a bounded lattice, M < L with respect to
(r1,r2,8), ® an e-operator on M. Let’s prove that for
every conjunctive uninorm U : M? — M and fuzzy
negation N : M — M, function

US(NE(2),y) Yo,y L (11)
is a fuzzy implication L whereas Ug and Ng are
extensions via e-operator @ of U and N respec-
tively. Indeed, first notice that for all z,y € L
we have that r(z) <p ro(x) hence N(ra(x)) <u
N(r1(2)), r1(N(r1(2)) © N(ra(x)) = N(ra(x)) and
ro(N(r1(z)) ® N(ra(x))) = N(r1(z)). Thus

Ug (N (x),y)
US(N(ri(z)) ©
U(ri(N(ri(z)) ©
OU (rz(N(ri(z)) ©
U(N(rz2(2)),r1(y))
OU(N(ri(z)),m2(y))

Taking this into account and supposing that U is con-
junctive (i.e. U(Opr,1p) = U(lpas,00) = 1as), we
have that

Iy, ne(0L,0L)

IUg,Ng (z,y) =

IUg,NéE (l‘,y)

N(ra(z)), y)
N(ra(z))),r1(y))

U(N(r2(0r)),r1(0
U(N(r1(01)),m2(0r))
U(lar,00) ©U(1ps,00)
s(U(1ar,00)) = s(1y) = 1p,

prove that IUg,Ng(llnlL) = 1L-

L)®

Simillary, one can

Also,

Tye ne(1e,0L) U(N(r2(1£)),m1(02))©
U(N(r1(1)),m2(0r))
U(0ar,0n7) © U(Oar,0nr)
S(U(OM,OM)) = S(OM) = OL

Therefore, (I3), (I4) and (I5) hold for IUgWg'

Moreover, for all x,y,z € L such that x <, y. In this
case, for i € {1,2} we have that 7;(z) < r;(y) and
hence N (r;(y)) <am N(ri(z)). Thus

Iy ne(@z) = UN(ra(@),m(2)
OU(N(ri(z)), r2(2))
2 U(N(r2(y)),ri(2))
OU(N(r1(y)), r2(2))
= IUg,Ng(?hz)
and
Iy ne(za) = UN(ra(z),m())
OU(N(r1(2)),r2(x))
<t U(N(ra2(2)),m1(y)
OU(N(r1(2)),r2(y))
= IUg,Ng Zay)

which proves that Iye np satisfies (I1) and (I2).

N(ra(x))),r2(y))

Theorem 5.1 Let L be a bounded lattice, M < L with
respect to (r1,7r2,5), © an e-operator on M. For every
conjunctive uninorm U : M? — M and fuzzy negation
N : M — M, function defined by Eq. (11) is a (U, N)-
implication on L.

Proposition 5.1 Let L be a bounded lattice, M < L
with respect to (r1,72,8), ® an e-operator on M.
Given an uninorm U : M? — M and a fuzzy nega-
tion N : M — M it holds that

Iye ne = (Iun)5 (12)

Proof: For all x,y,z € L it follows that

Iye ne(@,y) = UZ(NE(2),y)

= UE(N(ri(z)) © N(ra(x)),y)
= U(ri(N(ri(z)) © N(r2(x))),m1(y))

OU(r2(N(r1(z)) © N(rz2(z))),m2(y))
= U(N(r2(z)),m1(y)) © UN(r1(z)), r2(y)
= IUN(Tz( )ﬂ“l(y))QIU,N(T1($)7T2(Q))
= (Iun)E(z,

O

Proposition 5.2 Let L be a bounded lattice, M < L
with respect to (r1,72,8), ® an e-operator on M, U :
M? — M be an uninorm with neutral element e and
N : M — M be a fuzzy negation. If Iy n is a (U, N)-
fuzzy implication on M then

1. Iye ne satisfies (CC4) and (EP) whereas Iy n
satifies that properties;

’

e E —
2. NI(UE vE) = N (where ¢’ = s(e)) and lwe NE)

satzsﬁes R-CP(N);
if NE is strong then lwe NE) satisfies L-CP(N).
Proof: Let us consider z,y, 2z € L.

1. The proof for (CC4) is similar to (I3) in the Theo-
rem 5.1. Moreover, we have

I(Ug,Ng) (z, I(Ug,Ng)(% z))

2. For any x € L it follows that

’

e _ _ 17E(NE
leg,z@(x) - I<U£»N£>($’€/) =Ug (Ng (2),s(e))

U(N(ry(z)),e) © U(N(ri(2),e))

397
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= N(rz2(z)) © N(ri(z)) = N§ (z)
Similarly to the prove of item (2) of Proposition 4.2
one can verify that R-(CP) holds for Twe ngy;

3. Analogous to the proof of item (3) of Proposition
4.2.

O

Theorem 5.2 Let L be a bounded lattice, M < L with
respect to (r1,72,5), ® an e-operator on M, I : M? —
M be a fuzzy implication and N : M — M be a fuzzy
negation. Define function Ulg :L? = L as

Ups (z,y) = IE(NE(z),y) for all z,ye L  (13)

If I satisfies (L-CP) and (EP) and N is such that

NI(UE NE) o NE = I where ¢’ = s(e) then Ure is an

um’norm on L with neutral element €’.

Proof: Let be xz,y,z € L. Thus
(U1) Since I satisfies (L-CP) then

= I(r2(NZ(2)),71(y)) © I(ri(NE (), 72(y)

= I(N(ri(z)),r1(y)) © I(N(ra(z)), m2(y))
I(N(ri(y)), ri(x)) © I(N(r2(y)), r2(x))

= I(ra(NE(y)),r1(2)) © I(ri(NE(y)), ra(

= Ig(Ng(y),x)

= Ujg(y,.’lﬁ)

ie. Ulg is commutative;

(U2) By (L-CP) and (EP) it follows that

Ulg (m, Ulg (y,2))

= I(N(r1(2)), I(N(r1 (), 71(2)))
OI(N(ra(x)), I(N (r3(y)), 72(2)))
CEPIN (1 (), TN (1 (2)), 71.(9))
OI(N(ra(x)), I(N(r3(2)), 72(y)))
D 1N (2)), TN (1 (2)), 71 (1))
OI(N(ra(2)), I(N(ra(x)), 72(y)))
= Ulg(Ulg(xay)vZ)

Us(e,2) = IE(NE (@), 2) € TE(NE(y), 2)

Ulg (ya Z)

(U4) Finally, let’s prove that « is an neutral element
of U;r. Indeed, since Nj* o N = Idy, it follows

Ulg(e’,x) UIE(.’E e’)
IE(NE(2), 5(¢))
I( (r1(2)),

N(ri(z)

/-\

6 Final Remarks

In this paper we introduced the concept of implica-
tions in the context of lattices, besides characterizing
the construction of uninorms from L-implications and
L-negation. Further, we presented a way to extend
(U, N)-implications and studied some of the proper-
ties that are preserved by the extension method via
e-operators. Results once again proved the efficiency
and robustness of the method, as we have seen in
[23, 25, 26, 27, 28].

As future works, we wish to continue the study of the
application of the extension method via e-operators
to other functions in the context of the lattice fuzzy
theory and also to propose a new and more flexible
extension method.

Acknowledgment

Authors thanks to the FAPESB (Fundacdo de Am-
paro a Pesquisa da Bahia) for the financial support
iven through research project JCB number 0059/2016
and Brazilian funding agency CNPq under process
307781/2016-0.

References

[1] P. Akella. Structure of n-uninorms. Fuzzy Sets and
Systems, 158:1631-1651, 2007.

M. Baczynski and B. Jayaram. Fuzzy Implications.
Studies in Fuzziness and Soft Computing, Volume
231, Springer-Verlag Berlin Heidelberg, 2008.

B. C. Bedregal, H. S. Santos and R. Callejas-
Bedregal. T-norms on bounded lattices: t-norm
morphisms and operator. IEEE International Con-
ference on Fuzzy Systems, 2228, 2006.

B. C. Bedregal and A. Takahashi. The best inter-
val representations of t-norms and automorphisms.
Fuzzy Sets and Systems, 157:3220-3230, 2006.

G. Birkhoff. Lattice Theory. American Mathemat-
ical Society. Providence. RI, 1973.

S. Burris and H. P. Sankappanavar. A Course in
Universal Algebra. The Millennium Edition, New
York 2005.

B. Bedregal, H. Bustince, E.S. Palmeira, G.P.
Dimuro and J. Ferndndez. Generalized interval-
valued OWA operators with interval weights de-
rived from interval-valued overlap functions. Int.
J. Approx. Reasoning 90: 1-16, 2017.

398



ATLANTIS
PRESS

[8] G.D. Cayli, F. Karagal and R. Mesiar. On a new
class of uninorms on bounded lattices. Information
Sciences, 367-368: 221-231, 2016.

[9] T. Chaira and A.K. Ray. Region extraction using
fuzzy similarity measures. J. Fuzzy Math., 11(3):
601-607, 2003.

[10] G. Chen and T. T. Pham. Fuzzy Sets, Fuzzy Logic
and Fuzzy Control Systems. CRC' Press, Boca Ra-
ton, 2001.

[11] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. 2nd ed. Cambridge University
Press. Cambridge, 2002.

[12] P. Hajek. Metamathematics of Fuzzy Logic.
Kluwer Academic Publishers, Dordrecht, 1998.

[13] Y.L. Han and F.G. Shi. A new way to extend
fuzzy implications. Iranian Journal of Fuzzy Sys-
tems, 15(3):79-97, 2018.

[14] A.K. Hans-Peter and L.B. Shapiro. On simultane-
ous extension of continuous partial functions. Pro-
ceedings of America Mathematical Society, 125(6):
1853-1859, 1997.

[15] K. Horiuchi and H. Murakami. Extension of the
concept of mappings using fuzzy sets. Fuzzy Sets
and Systems, 56(1): 79-88, 1993.

[16] F. Karagal, M.A Ince and R. Mesiar. Nullnorms
on bounded lattices. Information Sciences, 325:
227-236, 2015.

[17] F. Karacal and R. Mesiar. Uninorms on bounded
lattices. Fuzzy Sets and Systems, 261: 33-43, 2015.

(18] F. Karagal, U. Ertugrul and R. Mesiar. Charac-
terization of uninorms on bounded lattices. Fuzzy
Sets and Systems, 308: 54-71, 2017.

[19] E. P. Klement, R. Mesiar and E. Pap. Triangular
Norms. Kluwer Academic Publishers, Dordrecht,
2000.

[20] K. Murota and A. Shioura. Extension of M-
convexity and L-convexity of polyedral convex
functions.  Advances in Applied Mathematics,
25(4): 352-427, 2000.

[21] M. Nachtegael, P. Sussner, T. Mélange, and
E.E. Kerre. On the role of complete lattices in
mathematical morphology: From tool to uncer-
tianty model. Information Sciences, 181:1971—
1988, 2011.

[22] E.S. Palmeira and B.C. Bedregal. Extension of
fuzzy logic operators defined on bounded lattices
via retractions. Computer € Mathematics with Ap-
plications, 63: 1026-1038, 2012.

[23] E.S. Palmeira, B. Bedregal and R. Mesiar. A new
way to extend t-norms, t-conorms and negations.
Fuzzy Sets and Systems. 240: 1-21, 2014.

[24] E.S. Palmeira, B. Bedregal, J. Fernandez and
A. Jurio. On extension of lattice-valued impli-
cations via retractions. Fuzzy Sets and Systems.
240:66-85 , 2014.

[25] E.S. Palmeira, B. Bedregal and J.A.G. dos San-
tos. Some results on extension of lattice-valued QL-
implications. J. Braz. Comp. Soc. 22(1): 4:1-4:9,
2016.

[26] E.S. Palmeira and B. Bedregal. Some re-
sults on extension of lattice-Valued XOR, XOR-
implications and E-implications. IPMU (2): 809-
820, 2016.

[27] E.S. Palmeira and B. Bedregal. Using e-operators
to extend lattice-valued uninorms and nullnorms.
2017 IEEE International Conference on Fuzzy Sys-
tems - FUZZ-IEEE, 1-6, 2017.

[28] E.S. Palmeira, B. Bedregal, H. Bustince, D. Pa-
ternain, L. De Miguel. Application of two differ-
ent methods for extending lattice-valued restricted
equivalence functions used for constructing similar-
ity measures on L-fuzzy sets. Information Sciences
441: 95-112, 2018.

[29] S. Saminger-Platz, E. P. Klement and R. Mesiar.
On extensions of triangular norms on bounded lat-
tices. Indagationes Mathematicae, 19(1): 135-150,
2008.

[30] W. Siler and J.J. Buckley. Fuzzy expert sys-
tems and fuzzy reasoning. Indag. Mathem., N. S.,
19(1):135-150, 2008.

[31] Y. Su, W. Zong and H. Liu. Migrativity property
of uninorms. Fuzzy Sets and Systems, 287: 213—
226, 2016.

[32] M. Takano. Strong completeness of lattice-valued
logic. Arch. Math. Logic, 41:497-505, 2002.

399





