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Abstract

In this paper we investigate two generaliza-
tions, in fuzzy logic, of classical scheme of
reduction to absurdity. We compare them
with two possible generalizations of classical
hypothetical syllogism (in fuzzy logic) and
we show that generalized hypothetical syllo-
gism is more general. We present new results
concerning solutions of an inequality and an
equation connected directly with generaliza-
tion of scheme of reduction to absurdity in
fuzzy logic.

Keywords: Generalized reduction to ab-
surdity, generalized hypothetical syllogism,
fuzzy implications, R-implications, t-norms,
fuzzy negations

1 Introduction

There are many reasoning schemas (rules of inferences)
in classical logic, like modus (ponendo) ponens, modus
(tollendo) tollens, scheme of disjunctive reasoning, law
of contraposition, etc. They are also applied in the
terms of fuzzy logic. Namely, they are used in approx-
imate reasoning and/or fuzzy control. Recently, we
have investigated generalized hypothetical syllogism in
fuzzy logic [2] (see also [7]). This notion can be intro-
duced from a T -transitivity in the following way

T (I(x, z), I(z, y)) ≤ I(x, y), x, y, z ∈ [0, 1], (HS)

where T is a t-norm and I a fuzzy implication. How-
ever, involving Zadeh’s compositional rule of inference
(CRI) [8] we can receive the following functional equa-
tion, satisfied for all x, y ∈ [0, 1],

sup
z∈[0,1]

(T (I(x, z), I(z, y))) = I(x, y). (GHS)

In this paper we investigate different scheme – reduc-
tion to absurdity (in Latin “reductio ad absurdum”).
In general we can write it in fuzzy logic as follows

RULE: IF x is not A, THEN y is B
FACT: y is not B
CONCLUSION: x is A

where A,B are fuzzy sets that represent some proper-
ties. Based on rules from the Boolean algebra and im-
portant investigations from [6], where some generaliza-
tions of classical schemes of reasoning were examined
in fuzzy logic, we can write the following inequality,
which corresponds with the reduction to absurdity,

T (I(N(x), y), N(y)) ≤ x, x, y ∈ [0, 1]. (RA)

However, again using CRI it is possible to obtain the
functional equation of the form

sup
y∈[0,1]

T (I(N(x), y), N(y)) = x, x ∈ [0, 1], (GRA)

where N is a fuzzy negation, T a t-norm and I a fuzzy
implication.

The main goal of this article is to compare written
above inequalities and equations for generalized hypo-
thetical syllogism and generalized scheme of reduction
to absurdity in fuzzy logic. Moreover, we give some
new results concerning particular solutions of (RA)
and (GRA).

The paper is organised as follows. Section 2 contains
some important facts and definitions used in the se-
quel, while in Section 3 we present some properties re-
garding (RA) and some solutions of (RA) and (GRA)
for several families of fuzzy implications. We also
present some new results concerning (GHS).

2 Preliminaries

To make this work more self-contained, we place
some of basic definitions concerning fuzzy connectives
here. Note that the family of all increasing bijections
ϕ : [0, 1]→ [0, 1] will be denoted by the symbol Φ.

Definition 2.1 (see [3, 5]). A function T : [0, 1]2 →
[0, 1] is called a triangular norm (t-norm in short),
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if it satisfies, for all x, y, z ∈ [0, 1], the following con-
ditions:

(T1) T (x, y) = T (y, x),

(T2) T (x, T (y, z)) = T (T (x, y), z),

(T3) T (x, y) ≤ T (x, z) for y ≤ z, i.e., T (x, ·) is non-
decreasing,

(T4) T (x, 1) = x.

Definition 2.2 (see [5]). A function S : [0, 1]2 → [0, 1]
is called a triangular conorm (t-conorm in short),
if it satisfies, for all x, y, z ∈ [0, 1], the following con-
ditions:

(S1) S(x, y) = S(y, x),

(S2) S(x, S(y, z)) = S(S(x, y), z),

(S3) S(x, y) ≤ S(x, z) for y ≤ z, i.e., S(x, ·) is non-
decreasing,

(S4) S(x, 0) = x.

Example 2.3. 1. The  Lukasiewicz t-norm,

TLK(x, y) = max(x + y − 1, 0), x, y ∈ [0, 1].

2. The  Lukasiewicz t-conorm,

SLK(x, y) = min(x + y, 1), x, y ∈ [0, 1].

Definition 2.4 (see [1, 5]). A non-increasing func-
tion N : [0, 1] → [0, 1] is called a fuzzy negation, if
N(0) = 1, N(1) = 0. Moreover, a fuzzy negation N is
called

(i) strict, if it is strictly decreasing and continuous,

(ii) strong, if it is an involution, i.e., N(N(x)) = x
for all x ∈ [0, 1].

Example 2.5. 1. The classical negation NC is
given by NC(x) = 1− x, for x ∈ [0, 1].

2. The least negation ND1 is given by

ND1(x) =

{
1, x = 0,

0, x > 0,
x ∈ [0, 1].

Definition 2.6 ([1, Definition 2.3.14]). Let T be a t-
norm and N a fuzzy negation. We say that a pair
(T,N) satisfies the law of contradiction if

T (x,N(x)) = 0, x ∈ [0, 1]. (LC)

Now, we recall the definition and some important
properties of fuzzy implications.

Definition 2.7 (see [1, 3]). A function I : [0, 1]2 →
[0, 1] is called a fuzzy implication, if it satisfies the
following conditions.

(I1) I is non-increasing with respect to the first vari-
able,

(I2) I is non-decreasing with respect to the second
variable,

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The family of all fuzzy implications will be denoted by
FI.

Definition 2.8 (see [1]). We say that a fuzzy impli-
cation I satisfies

(i) the identity principle, if

I(x, x) = 1, x ∈ [0, 1], (IP)

(ii) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)

(iii) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

(iv) law of contraposition with respect to N , if

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1], (CP)

(v) law of left contraposition with respect to
N , if

I(N(x), y) = I(N(y), x), x, y ∈ [0, 1], (L-CP)

(vi) law of right contraposition with respect to
N , if

I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R-CP)

Definition 2.9 ([1, Definition 1.4.15]). Let I be a
fuzzy implication. A function NI : [0, 1]→ [0, 1] given
by

NI(x) = I(x, 0), x ∈ [0, 1],

is called the natural negation of I.

Let us also recall definitions of two families of fuzzy
implications.

Definition 2.10 ([1, Definition 2.5.1]). A function
I : [0, 1]2 → [0, 1] is called a residual implication (R-
implication for short) if there exists a t-norm T such
that

I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1].

If I is generated from a t-norm T , then it will be de-
noted by IT .
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Definition 2.11 ([1, Definition 2.4.1]). A function
I : [0, 1]2 → [0, 1] is called an (S,N)-implication, if
there exist a t-conorm S and a fuzzy negation N such
that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

If I is generated from a t-conorm S and a fuzzy nega-
tion N , then it will be denoted by IS,N .

3 Properties of (RA) and (GRA)

Let us start with some general properties of triplets
(T, I,N) satisfying (RA).

Proposition 3.1. Let I ∈ FI, T be a t-norm and
N be a fuzzy negation. Next, let the triplet (T, I,N)
satisfies (RA).

1. If I satisfies (NP), then (T,N) satisfies (LC).

2. If NI is injective, then N−1I ≤ N .

3. If I satisfies (NP), then N ≤ NT .

4. If N 6= ND1 and I satisfies (NP), then T has
zero-divisors (a ∈ (0, 1) is a zero-divisor if there
exists b ∈ (0, 1) such that T (a, b) = 0).

5. If NI(x) 6= 0, x ∈ [0, 1), T is continuous and I
satisfies (NP), then there exists ϕ ∈ Φ such that

T (x, y) = (TLK)ϕ(x, y)

= ϕ−1(max(0, ϕ(x) + ϕ(y)− 1)),

for all x, y ∈ [0, 1].

6. If I1 ∈ FI, T2 is a t-norm such that T2 ≤ T and
I1 ≤ I, then (T2, I1) satisfies (RA).

Proof. 1. It is enough to take x = 0. Hence we have
0 ≤ T (N(y), I(1, y)) = T (N(y), y) ≤ 0, for all y ∈
[0, 1].

2. If we take y = 0 and we assume NI is injective,
then for every x ∈ [0, 1] we obtain

T (1, I(N(x), 0)) ≤ x,

I(N(x), 0) ≤ x,

NI(N(x)) ≤ x,

N(x) ≥ N−1I (x).

3. It is immediate from the point 1. and from the
formula of NT (negation induced by T ) given by

NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0},

for x ∈ [0, 1].

4. If N 6= ND1 , then there exists x ∈ (0, 1) such that
N(x) > 0. Hence from the point 1. T has zero-divisors
because (T,N) satisfies (LC).

5. If NI(x) > 0 for x ∈ [0, 1), then every such x
is a zero-divisor of T . Moreover, the only continu-
ous t-norm such the set of zero-divisors is (0, 1) is
T = (TLK)ϕ, for some ϕ ∈ Φ (see [5, Remark 2.4,
Proposition 5.10]).

6. It is straightforward from the following inequalities,

T2(N(y), I1(N(x), y)) ≤ T2(N(y), I(N(x), y))

≤ T (N(y), I(N(x), y))

≤ x,

satisfied for all x, y ∈ [0, 1].

Now, we recall one result concerning triplets (T, I,N)
satisfying the (RA) but with some strong assumptions
regarding T and N .

Theorem 3.2 ([6, Proposition 6.3]). Let T be a con-
tinuous t-norm, N a strong negation and let I ∈ FI
satisfy (NP). Then the following statements are equiv-
alent.

(i) The triplet (T, I,N) satisfies (RA).

(ii) there exists ϕ ∈ Φ such that T = (TLK)ϕ, N ≤
(NC)ϕ and

ϕ(I(x, y)) ≤ 1−ϕ(N(y)) +ϕ(N(x)), x, y ∈ [0, 1].

Of course we can find some solutions of (RA), where
T is non-continuous.

Example 3.3. Let us consider the drastic (non-
continuous) t-norm given by

TD(x, y) =

{
0, x, y ∈ [0, 1),

min(x, y), otherwise,

and the Gödel implication given by

IGD(x, y) =

{
1, x ≤ y,

y, x > y.

Then it can be quite easily verified that the triplet
(TD, IGD, NC) satisfies (RA).

It is obvious that if a triplet (T, I,N) satisfies (GRA),
then such triplet satisfies also (RA). Similarly, if a
pair (T, I) satisfies (GHS), then (T, I) satisfies also
(HS). In general, without additional assumptions, the
opposite implications are not true.

Example 3.4. The triplet (TD, IGD, NC) satisfies
(RA) and does not satisfy (GRA). Furthermore,
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the pair (TD, IRC) satisfies (HS) and does not sat-
isfy (GHS), where IRC is the Reichenbach implica-
tion given by the formula IRC(x, y) = 1− x + xy, for
x, y ∈ [0, 1].

The next results show some sufficient conditions to
satisfy (GHS) and (GRA).

Proposition 3.5. Let T be a t-norm and I ∈ FI. If
the pair (T, I) satisfies (HS) and I satisfies (IP), then
(T, I) satisfies (GHS).

Proof. Let x, y ∈ [0, 1]. From one side, from (HS) and
monotonicity of supremum we have

sup
z∈[0,1]

(T (I(x, z), I(z, y))) ≤ sup
z∈[0,1]

I(x, y) = I(x, y).

On the other side,

sup
z∈[0,1]

(T (I(x, z), I(z, y))) ≥ T (I(x, y), I(y, y))

= T (I(x, y), 1) = I(x, y).

Therefore (GHS) is true for the pair (T, I).

However, the above condition is not necessary.

Example 3.6. Let IKD be the Kleene-Dienes impli-
cation given by

IKD(x, y) = max(1− x, y), x, y ∈ [0, 1].

Then the pair (TD, IKD) satisfies (HS) although IKD

does not satisfy (IP). Moreover, this pair satisfies
(GHS). Indeed, if x = 0, then for all y ∈ [0, 1]

sup
z∈[0,1]

TD(IKD(0, z), IKD(z, y))

= sup
z∈[0,1]

TD(1,max(1− z, y))

= sup
z∈[0,1]

max(1− z, y) = 1 = IKD(x, y),

and similarly, if y = 1, then for all z ∈ [0, 1] we have

sup
z∈[0,1]

TD(IKD(x, z), IKD(z, 1))

= sup
z∈[0,1]

TD(max(1− x, z), 1)

= sup
z∈[0,1]

max(1− x, z) = 1 = IKD(x, y).

Next, from the definition of the drastic t-norm TD, for
every x ∈ (0, 1], y ∈ [0, 1) and z ∈ (0, 1) we have

TD(IKD(x, z), IKD(z, y)) = 0,

thus when x ∈ (0, 1] and y ∈ [0, 1) we have

sup
z∈[0,1]

TD(IKD(x, z), IKD(z, y))

= max(TD(IKD(x, 0), IKD(0, y)),

TD(IKD(x, 1), IKD(1, y)))

= max(1− x, y) = IKD(x, y).

Therefore the pair (TD, IKD) satisfies (GHS).

Since each R-implication satisfies (IP) (see e.g. [1,
Theorem 2.5.4]), the following fact is true for all
R-implications.

Corollary 3.7. For a t-norm T the following state-
ments are equivalent.

(i) The pair (T, IT ) satisfies (HS).

(ii) The pair (T, IT ) satisfies (GHS).

Now, let us return to (RA) and (GRA).

Proposition 3.8. Let T be a t-norm, N be a strict
negation and I ∈ FI. If the triplet (T, I,N−1) satis-
fies (RA) and NI ◦N−1 = id (i.e., NI = N), then the
triplet (T, I,N−1) = (T, I,N−1I ) satisfies (GRA).

Proof. Let x ∈ [0, 1]. On the one hand, from (RA)
and monotonicity of supremum we have

sup
y∈[0,1]

T (I(N−1(x), y), N−1(y)) ≤ sup
y∈[0,1]

x = x.

On the other hand, from our assumption we obtain

sup
y∈[0,1]

T (I(N−1(x), y), N−1(y))

≥ T (I(N−1(x), 0), N−1(0))

= T (I(N−1(x), 0), 1) = NI ◦N(x) = x.

Therefore (GRA) is true for the triplet (T, I,N−1).

Example 3.9. It can be easily checked that the triplet
(T, I,NI), where T = TD and

I(x, y) = max(1− x2, y), x, y ∈ [0, 1],

satisfies (RA). From the above result we know that
this triplet satisfies also (GRA).

Proposition 3.10. Let T be a t-norm, I ∈ FI and
let NI be a strong negation.

1. If the pair (T, I) satisfies (GHS), then the triplet
(T, I,NI) satisfies (GRA).

2. If the pair (T, I) satisfies (HS), then the triplet
(T, I,NI) satisfies (RA).

Proof. 1. Let us take y = 0 and substitute NI(x)
instead of x in (GHS). Then we have the following
equations

sup
z∈[0,1]

T (I(NI(x), z), I(z, 0)) = I(NI(x), 0),

sup
z∈[0,1]

T (I(NI(x), z), NI(z)) = NI(NI(x)),

sup
z∈[0,1]

T (I(NI(x), z), NI(z)) = x,

which means that the triplet (T, I,NI) satisfies
(GRA).
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2. This proof is similar to that above.

Therefore, in some cases we can apply the following
theorem valid for R-implications.

Theorem 3.11 ([2, Theorem 4.12]). Let T ∗ be a t-
norm and T be a left-continuous t-norm. Then the
following statements are equivalent.

(i) The pair (T ∗, IT ) satisfies (GHS).

(ii) T ∗ ≤ T .

Corollary 3.12. Let T ∗ be a t-norm, T be a left-
continuous t-norm and NIT be a strong negation.
Then the following statements are equivalent.

(i) The triplet (T ∗, IT , NIT ) satisfies (GRA).

(ii) T ∗ ≤ T .

Proof. (i) =⇒ (ii) Since T is a left-continuous t-
norm, the following equivalence is true (see [1, Propo-
sition 2.5.2]), for all x, y ∈ [0, 1],

T (x, y) ≤ T (x, y)⇐⇒ IT (x, T (x, y)) ≥ y.

Let us recall that if N = NIT is a strong negation,
then IT satisfies (L-CP) with N (see [1, Proposi-
tion 2.5.28]). Hence, for arbitrary fixed x, y ∈ [0, 1],
we have

T (x, y) = sup
z∈[0,1]

T ∗(IT (N(T (x, y)), z), N(z))

= sup
z∈[0,1]

T ∗(IT (N(z), T (x, y)), N(z))

≥ T ∗(IT (N(N−1(x)), T (x, y)), N(N−1(x)))

= T ∗(IT (x, T (x, y)), x) ≥ T ∗(x, y).

(ii) =⇒ (i) If T ∗ ≤ T , then from Theorem 3.11 we
know that the pair (T ∗, IT ) satisfies (GHS). Thus in
virtue of Proposition 3.10 we obtain that the triplet
(T ∗, IT , NIT ) satisfies (GRA).

Moreover, we have also the following fact.

Proposition 3.13. For a t-norm T the following
statements are equivalent.

(i) The pair (T, IT ) satisfies (HS).

(ii) T is left-continuous.

Proof. (i) =⇒ (ii) Suppose that the pair (T, IT ) satis-
fies (HS) and T is not left-continuous. Then there exist

x, y, z ∈ [0, 1] such that IT (x, y) ≥ z and T (x, z) > y
(see [1, Proposition 2.5.2]). Hence

y < T (x, z) ≤ T (x, IT (x, y))

= T (IT (1, x), IT (x, y)) ≤ IT (1, y)

= y;

a contradiction.

(ii) =⇒ (i) Note that (HS) is nothing else but the T -
transitivity – the property satisfied for pairs (T, IT ),
where T is a left-continuous t-norm (see [4, Proposi-
tion 1.6]).

Now we can formulate the following corollary.

Corollary 3.14. Let T be a t-norm. If IT satisfies
(L-CP) with a negation N , then the following state-
ments are equivalent.

(i) The triplet (T, IT , N) satisfies (RA).

(ii) T is left-continuous.

Proof. (i) =⇒ (ii) This part of the proof is similar to
the proof of Proposition 3.13. Suppose that IT is not
left-continuous. Then there exist x, y, z ∈ [0, 1] such
that IT (y, x) ≥ z and T (y, z) > x. Note that if IT
satisfies (L-CP) with a negation N , then N = NIT

is strong ([1, Proposition 2.5.26]), and therefore y =
N(y0) for some y0 ∈ [0, 1]. Hence

x < T (y, z) ≤ T (y, I(y, x))

= T (N(y0), IT (N(y0), x))

= T (N(y0), IT (N(x), y0))

≤ x;

a contradiction.

(ii) =⇒ (i) If T is left-continuous and IT satisfies
(L-CP) with N , then again from [1, Proposition 2.5.2]
we have

IT (N(y), x) ≥ IT (N(x), y)⇐⇒
T (N(y), IT (N(x), y)) ≤ x,

for all x, y ∈ [0, 1].

Remark 3.15. We know that if IT satisfies (L-CP)
with a negation N , then N = NIT is strong (see [1,
Proposition 2.5.26]). However it is not equivalent with
left-continuity of T . Indeed, the Fodor implication
given by

IFD(x, y) =

{
1, x ≤ y,

max(1− x, y), x > y,
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which satisfies (L-CP) with NC can be generated from
the non left-continuous t-norm TnM∗ given by

TnM∗(x, y) =

{
0, x + y < 1,

min(x, y), otherwise.

One of sufficient conditions in such cases for T to be
left-continuous can be satisfying (RA) by the triplet
(T, IT , NIT ).

Remark 3.16. Assumptions of having left-continuous
t-norm and strong negation N were crucial in previ-
ous results. Note that for such fuzzy negation (S,N)-
implication IS,N satisfies (L-CP) with N (see [1,
Proposition 2.4.3]). However, if we consider such
(S,N)-implications, which are also R-implications
generated from a left-continuous t-norm, we obtain
only IS,N = (ILK)ϕ, for ϕ ∈ Φ, where ILK is
the  Lukasiewicz implication given by the formula
ILK(x, y) = min(1− x + y, 1), for all x, y ∈ [0, 1].

Example 3.17. Despite this, we can find (S,N)-
implications (which are not R-implications at the
same time) satisfying (RA), for example the triplets
(TLK, IRC, NC) and (TD, IRC, NC) satisfy (RA).

Theorem 3.18. Let T be a continuous t-norm, S
be a t-conorm, N be a strong negation and let I be
an (S,N)-implication. If the triplet (T, I,N) satisfies
(GRA), then T = (TLK)ϕ and N ≤ (NC)ϕ, for some
ϕ ∈ Φ. Moreover, if T = (TLK)ϕ, N ≤ (NC)ϕ and
S ≤ (SLK)ϕ, for some ϕ ∈ Φ, then the triplet (T, I,N)
satisfies (GRA).

Proof. Assume that the triplet (T, I,N) satis-
fies (GRA). From Theorem 3.2 we know that T =
(TLK)ϕ and N ≤ (NC)ϕ, for some ϕ ∈ Φ.

Assume now that T = (TLK)ϕ, N ≤ (NC)ϕ and S ≤
(SLK)ϕ, for some ϕ ∈ Φ. Thus, for x, y ∈ [0, 1], we
obtain

T (N(y), I(N(x), y)) = (TLK)ϕ(N(y), S(x, y))

= ϕ−1(max(ϕ(N(y)) + ϕ(S(x, y))− 1, 0))

≤ ϕ−1(max(ϕ((NC)ϕ(y)) + ϕ((SLK)ϕ(x, y))− 1, 0))

≤ ϕ−1(max(−ϕ(y) + min(ϕ(x) + ϕ(y), 1), 0))

≤ ϕ−1(max(min(ϕ(x), 1− ϕ(y)), 0))

≤ ϕ−1(ϕ(x)) = x,

which proves that the triplet (T, I,N) satisfies (RA).
However, NI = N and N is the strong negation. From
Proposition 3.8 we obtain the thesis.

Let us finish with the following example which illus-
trates the last theorem.

Example 3.19. Consider the following functions

I(x, y) = max(1− x, y), x, y ∈ [0, 1],

T (x, y) =
√

max(x2 + y2 − 1, 0), x, y ∈ [0, 1],

N1(x) =
√

1− x2, x ∈ [0, 1].

Thus, I is the Kleene-Dienes implication (it is an
(S,N)-implication, cf. [1, Table 2.4]), T = (TLK)ϕ
and N1 = (NC)ϕ, where ϕ(x) = x2, for all x ∈ [0, 1].
From the above theorem the triplet (T, I,N) satisfies
(GRA), where N = NC ≤ (NC)ϕ.

4 Conclusions

We have investigated the scheme of reduction to ab-
surdity (GRA) and generalized hypothetical syllogism
(GHS). We presented some similar results for both
of them. Also we shown that in some cases (GHS)
is more general. Moreover, we presented conditions
when (RA) is equivalent to (GRA).
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[1] M. Baczyński, B. Jayaram, Fuzzy Implications,
Vol. 231 of Studies in Fuzziness and Soft Comput-
ing, Springer, Berlin Heidelberg, 2008.
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