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Abstract

This work studies typical hesitant fuzzy sets (THFS)
which can be used in group decision making (GDM)
due to the possibility of more flexible values for ex-
pressions given by a group of decision makers, instead
of using only one value resulting from aggregation ex-
pressing their preferences. Besides, formal definitions
on fuzzy sets and hesitant fuzzy sets are presented.
Moreover, it is considered its relations in THFS and
also properties related with consensus measures.

Keywords: Typical Hesitant Fuzzy Sets, Consensus
Measure, Group DecisionMaking.

1 Introduction

The concept of fuzzy sets (FS) [38] has been broadly accepted and
applied in many categories of decision making problems (DMP)
because of the fact that everything is allowed to be a matter of
degree in fuzzy logic (FL) [39]. The prominent characterization
of a FS is considering membership degrees to the elements.

In real-life situations, decision making problems contain many
kinds of uncertainties [9,24]. For the purpose of handling these
uncertainties, the extensions of FS as well as their applications
have been an increasing interest in recent years. Several exten-
sions have been developed since FS were introduced [7], such as
intutionistic fuzzy sets (IFS) working with the membership and
non-membership functions [3], type-2 fuzzy sets (T2FS) permit-
ting the membership to be a fuzzy set [11], type-n fuzzy sets [3],
fuzzy multisets considering elements which can be repeated more
than once and hesitant fuzzy sets (HFS), when the membership
function is expressed as a set of possible values [31].

HEFS can be applied in many decision making problems in order to
get a good alternative in DMP with multiple attributes and mul-
tiple persons, there are usually two ways: (1) aggregate the de-
cision makers opinions under each attribute for alternatives, then
aggregate the collective values of attributes for each alternative;
(2) aggregate the attribute values given by the decision makers for
each alternative, and then aggregate the decision makers opinions
for each alternative [34].

Aggregation functions such as the mean, median or OWA (or-
dered weighted average) operators are used in a wide range of

decision making contexts to summarize a set of inputs in a single
output [4]. They can be used to provide an overall rating for an
item or candidate based on multiple criteria, or to combine the
preferences of experts into a single group evaluation. In some sit-
uations, it may also be informative to have an idea of whether the
inputs agree with one another, or whether the aggregated score is
the result of a compromise between a number of disparate sub-
groups.

Multi-criteria decision making (MCDM) refers to evaluat-
ing, prioritizing or selecting over some available alternatives
{A1, Aa, ..., Ap } with respect to a set of criteria {c1, 2, ..., ¢q }
which are usually conflicted with each other. In order to do that,
it is necessary to assign a value to each alternative with respect to
each criterion.

For instance, suppose some specialists (M, J, W, C) provide rat-
ings for three styles of craft beers (shown in Table 1). As well
as comparing the average, we can also see that while everyone
more or less agrees that the craft beer Sour style is not very good,
and the Pale Ale style is not too bad, there is a lack of consensus
regarding the Weiss style.

l Craft beer style | M J w C | Average
Sour 03 02 02 04 0.275
Weiss 02 03 09 08 0.55
Pale Ale 065 0.7 065 06 0.65

Table 1: Individual ratings for craft beer styles.

Consensus measures, that is, functions which give an idea of how
much the inputs agree with one another, have been employed in-
creasingly in decision making contexts. Such measures have been
used in voting and preference aggregation, for example to de-
scribe a set of voters and group them according to the similarity
in their preferences [6].

Similar to the standard divergence of the mean in statistical sum-
maries, consensus measures can provide an indication of relia-
bility or the degree to which an entirely evaluation reflects the
opinions of a group. As such, they have also been used to inform
consensus reaching processes [6], where a minimum level of con-
sensus can be set and a final decision may not be accepted if the
consensus measure output is below this threshold. The consen-
sus level between the pairwise preferences of an individual and
the group can also be used to make recommendations that will
increase the overall agreement between experts.
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In [21], we find a review on decision making methods based on
fuzzy aggregation operators from 1986 to 2017, also including
HFS. However, it is clear that few works in the literature formally
define consensus on HFS. So, despite the many studies in HFS
and consensus measures for HFS, the present paper is focused on
THEFS.

In this sense, this revision summarizes properties from selected
papers in order to underground future work and contribute with
a formal definition of consensus measures on THFS, making use
of aggregation operators and fuzzy connectives acting on Typical
Hesitant Fuzzy Elements.

This paper is organized as follows: In Section 2 the notion of
fuzzy sets together with fuzzy negations and other properties are
provided. Definitions of aggregation operators, fuzzy preference
relations and fuzzy consensus measure are also given. The no-
tion of hesitant fuzzy sets together with hesitant fuzzy negations
and aggregation operators in HFS are reported in Section 3. Def-
initions of preferences relations and consensus measure in HFS
is also presented, as well as some selected articles already pub-
lished in the literature, in which consensus measure is applied in
the HFS context. Section 4 studies the definition of THFS includ-
ing the definition of admissible order on those sets. Final remarks
are presented in Section 5.

2 Fuzzy Sets and Consensus Measures

We start with some definitions adopted on fuzzy sets, fuzzy pref-
erences relations and fuzzy consensus measure.

2.1 Fuzzy Sets

FS theory has been widely applied in a diversity of areas to handle
uncertainty. Let U = [0, 1] be the set of all fuzzy values and <¢r
be the usual partial order of real numbers on U. Some important
concepts are:

Definition 1 [7, Def. 2.1] A (type-1) fuzzy set A on X # (0 is
a mapping A : X — U, where a real number A(x) € U is the
membership degree of an element x € X ina FS A.

2.2 Fuzzy Negations and Dual Functions

Definition 2 (Fuzzy negation [6, Def. 5]). A function N : U —
U is called a fuzzy negation if it verifies:

N1: N(0) =1and N(1) = 0 (boundary conditions); and

N2: If x > y then N(z) < N(y), Yo,y € U (monotone non-

increasing property).

In addition, fuzzy negations which also satisfy the involutive
property (N3) are called strong fuzzy negations (SFN).

N3: N(N(z)) =z,Vz € U.
A fuzzy negation is strict if it is continuous and strictly decreas-

ing. All SFN are strict and the more representative SFN is the
Zadeh’s negation that is given by Ns(z) = 1 — z.

Let N be a FN function and f : U™ — U be a real function. The
N-dual function of f is denoted by fn : U™ — U and defined
as:

(@, 2) = N(F(N(@1),...,N(@a)). (1)

By Eq.(1), f and fn are dual functions. If N is a SFN function,
(fn)~ = f, i.e, the N-dual function of fx coincides with f.
Thus, it is clear that f is a self-dual function.

2.3 Aggregation Operators

Definition 3 (Aggregation function [6, Def. 1]). A function f :
U" — U,n > 1is called an aggregation function if it is mono-
tone non-decreasing in each argument and satisfies the boundary
conditions f(0, ...,0) = 0and f(1,...,1) = 1.

Two distinct classes of aggregation functions are called triangular
norms (t-norms) and triangular conorms (t-conorms).

Definition4 [/9] A t-(cojnorm is a binary function
T(S):U? = U satisfying the commutativity, associativity,
monotonicity and it has 1(0) as neutral element.

Additionally, let Fx be the set of all FS on the universe X # 0.
Thus A <z, B ifandonly if A(z) < B(z), forall z € X and
A, B € Fx, and the following holds:

Proposition 1 /7, Prop. 2.1] Let T, S : U? — U be a t-norm
and t-conorm, respectively. (Fx,Ur, ,Nx, ) is a complete lat-
tice, where for all A, B € Fx, union and intersection are, re-
spectively, defined by: (AUrx, B)(z) = S(pa(z), us(z)) and
(AN, B)(x) = T(ua(a), in ().

max(x,y) is a t-conorm and
Tv(z,y) = min(z,y) is a t-norm. (Sm,Twm) is a pair
of Ns-mutual dual aggregation functions. Moreover, union
and intersection in this case can be, respectively, defined by:
(AUry B)(z) = max(ua(x), pp(x)) and (ANFy B)(z) =
min(jia (2), i ()-

Example1 Sy (z,y) =

So, (U,Ur,Nr,0,1) is a complete lattice of fuzzy values.

2.4 Fuzzy Preference Relations

For a finite set of alternatives, x = {1, z2..., Zn }, a fuzzy pref-
erence relation (FPR) is a fuzzy set on the product set x X x as
follows.

Definition 5 [44, Def. 1] A FPR R on x is characterized by a
membership function ur : x X x = U.

Thus, the FPR R can be represented by an n X n matrix [R] =
(7ij)nxn where 7;; = ur(zi,x;) foralli,j € {1,2,...,n}. In
addition, an element 7;; is interpreted as the preference degree of
x; over ;. If:

(i) 7;; = 0.5, then it indicates indifference between z; and x;
or maximal fuzziness;

(i)

(iii)

ri; > 0.5, then z; is preferred to x;;

ri; = 1, it implies that alternative x; is definitely preferred
to alternative x; (crisp case);
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In some situations, it is required that R satisfies the additive reci-
procity property:
Tij‘i’rji =1 173:1,2,71

For instance, using the example in Table 1, it is possible to present
the preference matrices for each specialist, related to all craft beer
styles. Consider the preferences for the sour, weiss and pale ale
styles are in this order in the rows and columns of each matrix. It
can be noticed that for specialist M matrix, the sum of her pref-
erences between the weiss and the sour styles has to be the value
1. For example, as M’s preference value for the weiss style, over
the sour, is 0.7 then the preference value for the sour style, over
the weiss, is 0.3, that it, the sum of the preferences between these
two styles is equal to 1. Analogously, this was also analyzed for
all the other relations between styles.

0.500 0.600 0.316
[R'] = 0.400 0.500 0.235
0.684 0.765 0.500
0.500 0.400 0.222
[R*] = 0.600 0.500 0.300
0.778 0.700 0.500
0.500 0.182 0.235
[R*] = 0.818 0.500 0.581
0.765 0.419 0.500
0.500 0.333  0.400
[R'] = 0.667 0.500 0.571
0.600 0.429 0.500

2.5 Fuzzy Consensus Measure

Consensus measures, that is, functions which give an overall idea
of how much the inputs agree with one another, have been em-
ployed increasingly in GDM contexts.

As proposed in [6], consensus measures are defined by functions
on the unit interval [0, 1] modelling the agreement related to sev-
eral inputs based on two main properties. The first is the unanim-
ity: interpreting the complete consensus which is achieved when
all inputs are the same. The second is the minimal consensus,
which is related to the special case of two inputs, resulting in a
null-consensus whenever one of theses inputs lies at one of ex-
tremes (either O or 1) in the unit interval. The main idea of a
consensus measure is formalized as follows:

Definition 6 [6, Def. 7] A function C : U™ — U is said to be a
consensus measure if it satisfies:

Cl: C(a,a,....a)=1,VacU (Unanimity);
C2: C(0,1)=C(1,0)=0 (Minimum consensus for n=2).

Further desired properties of consensus measures [6]:

C3: C(x1,22,...,2n) = C(Ze), To(2)s - Ta(n)), for all o-
permutation on {1,...,.n} and x € U™ (Symmetry);

C4: C(z1,22,...,2n) =0, when n=2k, k=#{z;: z; =0} =
#{xi: x; =1} (Maximum dissension);

C5: C(x1,x2,...,xn) = C(N(z1), N(x2),..., N(zn)), when
N is a strong fuzzy negation (Reciprocity);

C6: C(x) =C(x,x) = C(x,x,x) and so on, Vx € U™ (Repli-
cation invariance);

C7: For n = 2k, let half of the evaluations be equal and denoted
asa = (a,a,...,a) € U If |a — x;| < |a — yj| for j =
1,...,k then C(a,x1,22,....xx) > C(a,y1,Y2,-- Yk)-
(Monotonicity w.r.t. majority).

There are many works related to consensus measure which have
been employed increasingly in GDM contexts, in most cases
fuzzy connectives and aggregation operators are considered, re-
porting the sets of membership degree which are obtained from
specialist opinions. Such measures have been applied in voting
preferences aggregation [1] and used to inform consensus reach-
ing processes [16].

Consensus provides understanding by distinct ways in GDM con-
texts, briefly described considering [16] and [28]:

e The state of agreement in a group, meaning a common
feeling between the individuals about the values in question.
From this perspective, consensus has been denoted as a full
and unanimous agreement, though it has been considered
questionable if such state is possible in a real world context.

e Methodology to reach consensus, which is also related to
the sense given above, but having an evolution, in which the
group attest for consensus with respect to their testimonies.
This evolution can be freely reached or facilitated by a spe-
cial individual.

e Method in which decisions should be meant in multi-
person settings, aiming to achieve the consent, not neces-
sarily the agreement, of the individuals by arranging views
of all parties involved to obtain a decision that will produce
what will be useful to the entire group. It is not necessarily
related to a particular individual who may give consent to,
and not necessarily his first choice, but because, for exam-
ple, he wants to cooperate with the group.

The first approaches of consensus reaching process started be-
tween the 40s and 50s, with two main contributions considered
the start of participatory management in GDM [12].

Later, consensus theory is developed in a more general form in
1981. These initial formulations describe the formation of group
consensus, but do not provide an adequate account of settled pat-
terns of disagreement. Later, many models of consensus reaching
have been proposed, notably in the domain of so called rational
consensus. Then, in 1985, classical consensus approaches were
given, where the notion of consensus has conventionally been un-
derstood in terms of strict and unanimous agreement. Other con-
tributions in fuzzy consensus and GDM appear in [35].

It is possible to find different consensus approaches in the litera-
ture, according to different criteria as the reference domain, con-
sidering distinct consensus approaches.

A. Consensus measures focused on an expert set, where con-
sensus degrees are obtained in three steps:

(1) for each pair of individuals, a degree of agreement as
to their opinions between all the pairs of options are
computed,
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(ii) these agreement degrees are combined to obtain a de-
gree of agreement of each pair of individuals as to their
preferences between pairs of options; and finally,

(iii) these agreement degrees are combined to obtain an
agreement degree of pairs of individuals as to their
preferences between pairs of options, which is the con-
sensus degree of the group of experts.

B. Consensus measures can also focus on the alternative set,
considering three levels of FPR:

(i) level of preference, indicating the consensus degree
existing among all the preference values attributed by
the experts to a specific preference;

(ii) level of alternative, which allows us to measure the
consensus existing over all the alternative pairs where
a given alternative is present; and

(iii) level of preference relation, evaluating the social con-
sensus, that is, the current consensus existing among
all the experts about all the preferences.

According to [17], in order to guide the experts to change their
preferences during the discussion process, the analysis of levels
in preferences relation seems to be adequate in consensus process
designs. In addition, four current trends in the field of consensus
models were also discussed:

I. Adaptative consensus models, providing strategies adapting
the number of changes in the GDM problem which are re-
quired to the experts in each round of consensus. Research
focuses in managing distinct representations of preference
relations and methodologies and guarantying convergence
of adaptive consensus [22].

I Trust based consensus models, providing techniques to ex-
plore unsuitable specialists for the decision process in order
to consider a subgroup of relevant specialist improving the
achievement of solutions of problems in GDM [2];

III Dynamic and changeable consensus models, investigating
situations where alternatives might change or disappear
while experts are discussing/making decision [32];

IV Consensus models based on agent theory, as a tool to ob-
tain alternatives based on anthologies providing an advanced
representation of information for possible evaluation of al-
ternatives analyzed by groups of specialists [23].

The use of these models is still in an early stage of development
and several future challenges have still to be solved.

In [35], it is introduced an algorithm that can automatically mod-
ify the diverging individual FPR so as to reach an acceptable con-
sensus, avoiding to make the specialists change their preferences
and then, turning the decision more scientific and more efficient.

Example 2 A GDM can be described as follows: For | =
1,2, ..,m, suppose that m decision makers e; provide their in-
dividual FPR R = (rﬁj)nxn over the alternatives x1, %2, ...Tn,
and let A = (A1, A2, .., )\m)T be the weight vector of the decision
makers e; (I = 1,2, .., m) with the condition > ", \; = 1 and
0 < A\ < 1. The next example applies the algorithm proposed
in [35, Alg. 4.1], using data presented in Table 1.

As presented in Subsection 2.4, we consider four specialists
e (I = 1,2,3,4) providing ratings for three styles of craft beers

(n = 1,2,3), and their corresponding matrices of FPR about
three craft beer styles. So, in this example we applied the algo-
rithm [35, Alg. 4.1] to reach an acceptable group consensus, that
is summarized in the following steps:

Step 1. Constructing multiplicative consistent FPR Fl =
(Fij)any from R' = (Tij)3><3, for 1 = 1,...,4. Thus, for
1,7 =1,...,n, we obtain the following expression:

,z VI, (rierey)

T YT (riereg) + Y/TT2, (0= ra) (1= 15))

.=l .
The matrices R of preference relation are as follows:

- 0.500 0.400 0.684
[R']=| 0.600 0.500 0.765
0.316 0.235 0.500
B 0.500 0.600 0.778
[R?]= | 0.400 0.500 0.700
0.222 0.300 0.500
B 0.500 0.818 0.765
(R3] = 0.182 0.500 0.420
0.235 0.580 0.500
B 0.500 0.667 0.600
(R =| 0.333 0.500 0.429
0.400 0.571 0.500

Step 2. Then, the individual FPR o (I = 1,2,3,4) are aggre-
gated into a group FPR R by Eq. (2). For convenience, let s = 0,

;11 (Téj))‘l

Ti; =
T T )N + T, (L =)

Lii=1,2...n (2

Then, we obtain the matrix E(O) as follows:

0.500 0.634 0.712

R” = 0366 0500 0.588
0.288 0.412 0.500
Step 3. The deviation degree between each individual FPR El(o)
and the group FPR F(O) is done by Eq. (3):
n n
d(ﬁl(S),E(S)) _ % ZZ H;s) _ T§;>|- 3)

i=1 j=1

The results parameters are reported in the sequence:

AR, By = 0.0975, AR, R2”) = 0.0473,
AR, 7y = 0.0901, AR, RT) = 0.0673.

As the algorithm indicates, without loss of generality, it is con-
sidered p = 0.05. Thus: AR, RT"”) = 0.0975 > 0.05;
AR, 7 0.0901 > 005 dR”,R7")
0.0673 > 0.05. Then, step 4 should be performed.
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Step 4. Supposing a normalization n = 0.5, then it is cal-

culated again the terms Rl(l) = (Fg;g)nxn, I = 1,3,4 and
RrY = (Tg;))an, whereﬁl(l) = El(o), l=1,3and i,7,1l = 2:

—(0) (1—n) ((0)
(1) (rijl)( n>(rij )"

Tijr = ;
e+ (T an (=7
m (1)y A
a Hl:l(rijl) ! o
T = Do po Do 1,7 =1,2,3,4.
Hl:l(’"ijz) P+ (- Tijl) ¢

Thus, the following holds:

W 0.500 0.518 0.698
[RT"]=| 0482 0500 0.683 |;
0.302 0.317 0.500

0.500 0.736 0.739
= | 0.264 0.500 0.504 |;
0.261 0.496 0.500

. 0.500 0.651 0.658
R = | 0349 0.500 0508 | ;
0.342 0.492 0.500

. 0.500 0.630 0.720
E"Y1=1{ 0370 0.500 0.600
0.280 0.400 0.500

7]

Then, let s = 1. Returning to Step 3, it is necessary to recalculate
the deviation degree between each individual preference relation

E§” and the group preference relation Em by Eq. (3):

dEB®Y, RTY) = 0.0499, dR", B2") = 0.0473,
ARV, Ry = 0.0475,  dR™, BT = 0.0332.

Now, all of the deviation relations are less then 0.05, thus the
acceptable consensus of the group is achieved.

3 Approaches for Consensus Measures on H

In 2010, Torra [31] introduces the notion of the so-called Hesitant
Fuzzy Sets (HFS) which are defined in terms of functions return-
ing a set of membership degrees for each element in the domain
X # 0. HFS are represented as “a function h that when applied to
X returns a subset of [0, 1].” As well, Torra presents a Lemma that
HFS, where h(x) is a non-empty closed interval, are Intuitionistic
Fuzzy Sets (IFS), and as a consequence, they are interval-valued
fuzzy sets and also, fuzzy sets.

3.1 Hesitant Fuzzy Sets

Definition 7 [34, Def. 2] Let x be a non-empty fixed set, a HFS
on x is determined by a function h : x — o(U).

Based on Def. 7, a HFS on y is determined by a function h that
when applied to x returns a subset of U.

Moreover, a HFS can also be constructed from a set of fuzzy set.
Definition 8 [31, Def. 5] Let M = {ua, ..., in} be a set of n

membership functions. The HFS associated with M is given as
ha : X = o(U), b (x) = {p(x): p € M}

In the process of MCDM, HFS can be useful to handle situations
where there is indecision among many possible values for the
preferences over objects. In such case, M represents the assess-
ments of the experts for each alternative and h s the assessments
of the set of experts. However, note that it only allows to recover
those HFS whose memberships are given by sets of cardinality
less than or equal to n.

Afterward, results from Xia and Xu’s research [34] completed the
original Torra’s definition of HFS by including the mathematical
representation of a HES as follows

E={{z,he(2)) : v €x}, @

where hg () is a set of some values in the unitary interval [0, 1],
denoting the possible membership degree of an element x € x
to the set E. For convenience, h = hg(z) is called the hesitant
fuzzy element (HFE) of F and H = {hg(z): z € x} , the set
of all HFE of E. Despite the differences in their definitions, the
concepts of HFS and HFE can be used indistinctly [24].

A HFS in H on y is a set of subsets in the unitary interval [0,1],
one set for each element of the reference set X. A HFE is one of
such sets, the one for a particular z € x.

Xu-Xia-partial order [37] compares two HFE of different car-
dinalities, assuming the pessimistic scenario where the decision
makers expect unfavorable outcomes.

They repeat the shortest element of the HFE with lower cardi-
nality until both HFE have the same cardinality (a kind of (-
normalization according to [4]) and then, they order these ele-
ments and compare the greatest elements of both HFE and so on,
which means comparing the elements until reaching the lowest of
both HFE. Formally, this will be defined as follows and to do so,
we denote N, = {1, ..., k}.

Based on [30, Def. 7], let H = {X C U : X is finite, X # 0}.
Given X € H, letox : Nxx — X be mapping such that for any
1 € Ny (x_1), the following holds:

ox(i) <ox(i+1). )

The o-permutation in Eq. (5) can also be obtained by taking an
increase reordering (via permutation) of elements in X.

Consider the n-dimensional upper simplex, given as L, (U) =
{x=[z1,...,2,) € U™ : 1 < ... < z,}. Based on [30, Def.
8], forany n € NT = N — {0}, when m = #X, we define the
function 3,, : H — L,, as follows:

[ox(1),...,0x(1),0x(2),...,0x(m)],if m <n;
N—— ————

B (z)= m—n+1 times
[cx(m —n+1),...,0x(m)], otherwise.

The partial order of Xu-Xia denoted by <xx was reported
in [29], as follows:

Definition 9 /30, Def. 9] Given X,Y € H, we say

X <xx Y & Bn(X)<r, Bu(Y),withn=max(#X, #Y).

According with [30, Prop.1], (H, <xx) is a complete lattice with
the bottom and top elements given by Oy = {0} and 1u = {1},
respectively.
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HFS have been widely studied and applied because it is able to
manage multilevels of uncertatity, mainly when dealing with sit-
uations in which the decision makers are hesitant about alterna-
tives and linguistic variables needed to express their preferences.
Main related works, consolidate applications in science and possi-
ble new perspectives are revised in systematic reviews, presenting
recent and relevant literature of HFS, such as [7], [18] and [21].

In the next section it is also shown selected papers concerning
HFS, mainly the ones which are related to THFS and/or to Con-
sensus Measures approaches.

3.2 Hesitant Fuzzy Negations

Definition 10 [29] Let N': H — H be a function. N is a hesi-
tant fuzzy negation (HFN) if

WN1) N(Ou)=1m and N (1u) = 0w (boundary condition);
W2) X <xx Y = N(Y) <xx N(X) (decreasing).

A HFN N is strong if it is involutive, i.e. if for each X € H it
satisfies: (N3) N(NV(X)) = X.

3.3 Aggregation Operators on HFSs

Definition 11 Let <y be a partial order on H. A function
A: H" — H is an n-ary hesitant aggregation function w.r.t.
<m, (H, <u)-aggregation function in short, if the isotonicity and
boundary conditions hold, Vi = 1,...,n:

(A1) A(X1,...,Xn) <u A(Y1,...,Yy), when X; <g Yi;
(.AZ) .A(OH, ey OH) = 0]1-11 and .A(].]}ﬂ7 ey IH) = lH.

Analogously, the extension of the notion of t-norms and t-
conorms for THFS can also be done. Thus,

Definition 12 /30, Def. 12] A function T,S : H x H — H is
a typical hesitant triangular (co)norm, H-t-(co)norm in short, if
commutativity, associativity, monotonicity hold and it has 1w (Om)
as neutral element.

Torra, in [31], proposed a definition of union and intersection for
Hesitant Fuzzy Sets (HFS) that extends those by Zadeh. Given
A,B € HFS(x) and where S and T are a t-conorm and a t-norm
respectively, it is defined that:

(AUx B)(z)={t € A(z) U B(z):t > S(inf A(z), inf B(z))};

(Ang B)(z)={t € A(z) U B(x):t < T(sup A(x),sup B(z))}.

By [7], (H(X),Un, Nw) is not a lattice. If for e.g. X =
{z}. Consider the HFS A = {0.3,0.5,0.6} and B =
{0.4,0.5,0.7,0.8}, then A Ngr B=1{0.3,0.4,0.5,0.6} and so
AUn (Anu B) = {0.3,0.4,0.5,0.6} which is different from A.
So, AUn (ANu B) # A, and the law of absorption does not hold.

3.4 Preference Relations on Hesitant Fuzzy Sets

The concept of HFS has shown itself to be useful in GDM
problems. The definition of Hesitant Fuzzy Preference Relation
(HFPR) was extended in [36].

Definition 13 /27, Def. 5] Let X = {1, 22, ...,2n} be a fixed
set. A HFPR H on X, ,represented by H = (h;j)nxn C X X X
where h;; = {hfj,ﬂ =1,2,...,#hi;} (#hi; is the number of
values in h;;) is a HFE indicating all the possible preference
degree(s) of alternative x; over x;. Additionally, for i,57 =

1,...,n, hi; should satisfy the following conditions:

WP+ 03P =1, hi = 0.5, #hij = #hji, and
a(B) o(B+1) o(B+1) a(B) .
hij < hi]. R hﬁ < hji 1< 7,
being hfj(ﬁ) the [Bth smallest value in h;; and h;r]-(ﬁ) the (th
greater value in hj;.

3.5 Consensus Measure in Hesitant Fuzzy Sets

The idea here is to extend the notion of consensus measures from
the unitary interval [0, 1] to THFE. Analyzing the works in the
literature, studies about consensus measure applied to THFS are
minimal, as it is briefly addressed in the following related works.

In [13], Farhadinia investigates the relationship between entropy,
similarity measure and distance measure for HFS and interval-
valued hesitant fuzzy sets (IVHFS). Beliakov et al, in [6], focus
on the problem of constructing functions that are able to measure
the degree of consensus for a set of inputs provided over the unit
interval, from aggregation functions and fuzzy implications.

In [42], Zhang et al. present a consensus support model for GDM
with hesitant fuzzy information. The hesitant fuzzy decision ma-
trix is aggregated by using the additive aggregation (AA) operator
and, in the selection process, based on the consentaneous group
decision matrix, the additive weighted aggregation (AWA) opera-
tor is used to derive the overall attribute values of alternatives, by
which the most desirable alternative can be found out.

Rodriguez and Martinez, in [26], provide a new consensus model
for GDM problems dealing with Hesitant Fuzzy Linguistic Term
Sets (HFLTS) that have been proposed to deal with hesitancy in
linguistic GDM problems. In [15], Gonzales-Arteaga et al. study
a different approach to the measurement of consensus based on
Pearson correlation coefficient. The new correlation consensus
degree measures the concordance between the intensities of pref-
erence for pairs of alternatives as expressed by the experts.

Ding et al., in [10], developed two methods for hesitant fuzzy
multiple criteria GDM with group consensus in which all the ex-
perts use hesitant fuzzy decision matrices (HFDM) to express
their preferences. The purpose is to present two new consensus
models applied in different GDM situations.

Observe that in all these related works, none have introduced an
axiomatic expression for the theoretical definition of consensus
measure in THES.

4 Typical Hesitant Fuzzy Sets

When the membership degree of each of the elements is given by a
finite and non-empty subset of [0, 1], HFS are called Typical Hes-
itant Fuzzy sets (THFS). Relevant works in HFS actually make
use of THFS or only works if the HFE are finite and non-empty.

Definition 14 [4, Def. 8] Let H be the set of all finite non-empty

443



£

ATLANTIS
PRESS

subsets of [0,1], and let x be a nonempty set. A THFS A over x is
given by Eq. (4) where hg : x — HL

Each hg(z) € H is called a typical hesitant fuzzy element of H
(THFE) and the cardinality of X, i.e. the number of elements of
X is referred to as #X. The ‘" smallest element of a THFE X
will be denoted by X @,

There are several proposals of orders for THFE, as for example
the ones given in [4,33,37,40,41]. The unique consensus among
all these orders is that all of them refines ! the following restrictive
order on Hi:

X=0g; or
XSRHY<:> YIIH; or

#X=#Yand XD<Y D vi=1,... #X.

It is very restrictive since two THFE are comparable whenever
both have the same cardinality.

Definition 15 /8] Let <gu be a partial order. The order < is
called an admissible order on H with respect to <w if: (i) = is
a linear order on H and (ii) for all X1,X2 € H, X1 < X2
whenever X1 <p Xo when the <y is <rm we just call < of
admissible order.

One can observe that the admissible orders in the previous defini-
tion is not equivalent to the notion of admissible order for HFEs
presented in [33]. In fact, it proposes a total order that is for HFEs
restricted to a size n.

Next the most relevant articles on THFS are addressed. Note that
there are no works using THFS with admissible orders. Since it
could be possible to use total order to ordering the membership
degree sets obtained from many specialists in decision making , it
makes possible to compare more results, justifying the relevance
of our proposal.

THES were first presented by Bedregal et al. in [5]. Since
then, they have been studied, exploring the properties of hesitant
fuzzy connectives, providing examples and investigating exten-
sions from other fuzzy logic approaches. Then, some works came
next, such as [5], [4], [30], [14], [20], [25] [43] and [40].

Many other works in the literature only study about hesitant fuzzy
sets instead of typical hesitant fuzzy sets. That is why, in this work
the study focuses on THFS.

5 Final Considerations

THES possessing a finite-set-valued fuzzy membership degrees
called THFEs is a special kind of hesitant fuzzy sets. THFE
are quite useful for MCDM in hesitant fuzzy setting. The ongo-
ing work will explore THFS to express this membership degree
through a set of THFE, which will consider the opinion given by
the group of experts.

There are many studies about HFS, but not many when the sub-
ject is THFS and even less using consensus measure for THFS
and also applying admissible orders for better comparison of the
results obtained. The main research arise from the agreement of
THFE with each other and the possibility and also reliability of

'A partial order <; on a set S refines another partial order
<z on S if (9, <2) C (5,<1), ie. foreach z,y € S such that
x <5 y we have that z <7 y.

the combination of these elements into a single output, contribut-
ing with new theoretical support for GDM problems.

This is the first step in order to extend the results presented in [6],
proposing THFS and applying an axiomatic expression for theo-
retical definition of consensus measure in THFS based on admis-
sible orders.
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