
Flexible bootstrap based on the canonical representation
of fuzzy numbers

Przemyslaw Grzegorzewskia,b and Olgierd Hryniewicza and Maciej Romaniuka,c

aSystems Research Institute, Polish Academy of Sciences,
Newelska 6, 01-447 Warsaw, Poland

bFaculty of Mathematics and Information Science, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland

cWarsaw School of Information Technology, Newelska 6, 01-447 Warsaw, Poland
{pgrzeg,hryniewi,mroman}@ibspan.waw.pl

Abstract

A new resampling approach for simulating
bootstrapped samples of fuzzy numbers is
proposed. The secondary samples consist of
fuzzy numbers which preserve the canonical
representation (i.e., the value and ambigu-
ity) of fuzzy numbers belonging to the pri-
mary sample, although may differ from the
initial ones. This way the resulting boot-
strap distribution has a richer support than
obtained with the conventional method. Nu-
merical experiments concerning two statisti-
cal tests for the expected value of a fuzzy
random variable illustrate the suggested VA-
bootstrap method and some of its properties.

Keywords: Bootstrap, Resampling, Canon-
ical representation, Fuzzy data, Fuzzy num-
bers, Value, Ambiguity.

1 Introduction

The bootstrap, developed by Efron [7], is a popular
resampling statistical technique for assessing uncer-
tainty. Primary, it might be applied for estimating
standard errors and computing confidence intervals.
Generally, it appears extremely useful for estimating
the distribution of a statistic of interest without us-
ing normal theory or any other parametric approach.
Therefore, bootstrap methods become more and more
popular in situations where inference involves complex
procedures for which no theoretical results are avail-
able or remain questionable for the sample sizes met
in practice.

A situation sketched above is typical in fuzzy model-
ing and statistical inference based on imprecise data
expressed with fuzzy numbers. There, in most cases,
the underlying distribution of the analysed phenomena
remains unknown. Hence, in fuzzy context the boot-
strap appears as not only helpful but sometimes even

the onliest tool that enables to conduct any statistical
reasoning. In particular, the bootstrapped version of
statistical tests for fuzzy data were considered, e.g., by
Colubi et al. [3], Gil et al. [8], González-Rodŕıguez et
al. [9, 10], Grzegorzewski and Ramos-Guajardo [12],
Montenegro et al. [17] and Ramos-Guajardo and Lu-
biano [20]. Some other examples on the bootstrap ap-
plication in fuzzy modeling of the real-life problems,
like fuzzy rating in questionnaires [16], quality control
in cheese manufacturing [19] or fuzzy nonparametric
Shewhart’s control chart construction [23] are worth
mentioning too.

The classical bootstrap, in brief, involves drawing ran-
dom samples with replacement from the initial sam-
ple of the experiment outcomes. As it is known, such
bootstrap approach has an important disadvantage: it
generates only such values which belong to the input
(primary) sample. Consequently, nearly every boot-
strap sample contains repeated values. Moreover, if
the original sample size is small, all bootstrap sam-
ples consist of only few distinct values. It might be
quite strange especially if the unknown original distri-
bution is continuous. To overcome this inconvenience
some modifications and improvements of the standard
Efron’s idea were proposed, like the balanced boot-
strap by Davison et al. [4] or Graham et al. [11] or
various kinds of the so-called smoothed bootstrap dis-
cussed, e.g., by Silverman and Young [22], Hall et al.
[13] or De Angelis and Young [5].

The problem of excessive repetitions in bootstrap sam-
ples is also recognized as an unwanted situation in
modeling complex phenomena with imprecise data. To
increase the diversity of simulated results Romaniuk
and Hryniewicz [21] proposed two resampling methods
in which new triangular fuzzy numbers are generated
from the primary sample by adding some incremental
spreads for α-cuts.

In this paper we propose a completely new resam-
pling procedure based on the canonical representation
of fuzzy numbers. The key idea is to generate trian-
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gular or trapezoidal fuzzy numbers having the same
canonical representation, i.e., the same value and the
same ambiguity, as fuzzy observations in the primary
sample. This way we may avoid any repetitions in
the bootstrap sample since it consists of fuzzy num-
bers that can differ from the original observations. On
the other hand they cannot differ too much since the
main characteristics of the initial data are preserved.
Indeed, by fixing the value and ambiguity of each orig-
inal observation we determine its location and spread.
Thus, although a membership function of the gener-
ated fuzzy number may differ a little bit from the mem-
bership function of the initial observation, the main
information delivered by both fuzzy numbers is close.

Although one may ask why we restrict our attention
to triangular and trapezoidal fuzzy numbers only, the
reason is straightforward. As it has been noticed by
many researchers the trapezoidal or triangular fuzzy
numbers are most common in current applications
mainly because they are easy to handle and have a nat-
ural interpretation. As noted by Trillas: “the problems
that arise with vague predicates are less concerned
with precision and are more of a qualitative type; thus
they are generally written as linearly as possible. Nor-
mally it is sufficient to use a trapezoidal representa-
tion, as it makes it possible to define them with no
more than four parameters” (see [14]). Moreover, even
if the original data set consists of fuzzy numbers which
are neither triangular nor trapezoidal, one may easily
approximate them by such fuzzy numbers. In partic-
ular, an approximation algorithm which preserves the
value and ambiguity of the original fuzzy number is
given in [1], while the broad collection of approxima-
tion algorithms satisfying various requirements can be
found in [2].

This paper is organized as follows. In Sec. 2 basic
definitions and concepts related to fuzzy numbers and
their representation is recalled. Next, the proposed
resampling procedure for triangular and trapezoidal
fuzzy numbers is described in Sec. 3 and Sec. 4, re-
spectively. In both cases we provide the resampling
algorithms that could be applied directly by the users.
Finally, in Sec. 5 we deliver a few results of the sim-
ulation study performed to evaluate some properties
of the suggested method. In particular, we compare
the empirical size and the power of two tests equipped
with the standard bootstrap procedure and our flexi-
ble bootstrap algorithm.

2 Fuzzy data

A fuzzy number A is a fuzzy set in R which is normal,
fuzzy-convex, has upper semicontinuous membership
function A(x) and bounded support. A family of all
fuzzy numbers will be denoted by F(R). An α-cut of

a fuzzy number A, where α ∈ [0, 1], is defined by

A(α) =

{
{x ∈ R : A(x) > α} if α ∈ (0, 1],

cl{x ∈ R : A(x) > 0} if α = 0,

where cl stands for the closure operator. It is easily
seen that the α-cut A(α) of a fuzzy number A is a
closed interval A(α) = [AL(α), AU (α)].

The most often used fuzzy numbers are trapezoidal
fuzzy numbers with membership functions of the form

A(x) =


x−a1

a2−a1
if a1 < x 6 a2,

1 if a2 6 x 6 a3,
a4−x
a4−a3

if a3 6 x < a4,

0 otherwise,

(1)

where a1, a2, a3, a4 ∈ R such that a1 6 a2 6 a3 6 a4.
If a2 = a3 then A is said to be a triangular fuzzy
number.

Often, instead of declaring two points a1 and a4 de-
scribing the support of A and next two points for its
core, i.e., a2 and a3, it is more convenient to use
another parametrization through its location and a
spread of its arm. Namely, let us define the follow-
ing parameters

c :=
a2 + a3

2
, s :=

a3 − a2
2

,

l := a2 − a1, r := a4 − a3. (2)

One can easily identify c and s as the center and the
half of the core, respectively, while l and r stand for
the spread of the left and right arm of the membership
function A(x), respectively. Obviously, c ∈ R, while
s, l, r > 0. Using this notation a trapezoidal fuzzy
number A would be denoted as A(c, s; l, r). Similarly,
A(c; l, r) stands for a triangular fuzzy number (since
then s = 0).

To simplify the representation of fuzzy numbers Del-
gado et al. [6] suggested two parameters value and
ambiguity which represent some basic features of
fuzzy numbers and hence they were called the canon-
ical representation of fuzzy numbers.

A location of a fuzzy number A is characterized by its
value defined as follows

Val(A) =

∫ 1

0

α(AU (α) +AL(α))dα, (3)

whereas the ambiguity of A, given by

Amb(A) =

∫ 1

0

α(AU (α)−AL(α))dα, (4)

is a measure of the global spread (or vagueness) of a
fuzzy number A.

491



Since a value and ambiguity represent basic features
of a fuzzy number, therefore two fuzzy numbers with
the same ambiguity and value might be considered as
similar (sometimes they are even treated as “almost
equal”, see [6]).

One can easily find that the value and ambiguity of
a trapezoidal fuzzy number A(c, s; l, r) are given as
follows

Val(A) = c+
r − l

6
, (5)

Amb(A) = s+
r + l

6
. (6)

Obviously, if A(c; l, r) is a triangular fuzzy number,
then its value is still given by (5), while its ambiguity
reduces to

Amb(A) =
r + l

6
. (7)

For more details on fuzzy numbers, their types, charac-
teristics and approximations we refer the reader to [2].

3 Triangular observations

Let X̃1, . . . , X̃n denote a fuzzy random sample which
realization is given by the triangular fuzzy numbers
x̃1, . . . , x̃n ∈ F(R), where x̃i = x̃i(ci; li, ri), i =
1, . . . , n. In the following, this sample will be called
the primary (initial) sample. Let us compute a value
and ambiguity of each observation. This way we ob-
tain a set of pairs

(Val(x̃1),Amb(x̃1)), . . . , (Val(x̃n),Amb(x̃n)), (8)

where the corresponding values and ambiguities are
calculated from (5) and (7), respectively.

The main idea of the proposed bootstrap technique
is to generate randomly fuzzy observations from the
set (8). Obviously, although the value and ambiguity
characterize nicely a fuzzy number, they do not iden-
tify it completely. Of course, this imposes some re-
strictions, but we have still some room for the choice
of the particular membership function. Let us consider
how it works.

Given (Val∗,Amb∗) as an output of a random choice
from (8), by (5) and (7) we obtain{

r − l = 6Val∗ − 6c,

r + l = 6Amb∗,

moreover, by the definition, r, l > 0. Some immediate
transformations yield in{

l = 3(Amb∗ −Val∗ + c),

r = 3(Amb∗ + Val∗ − c),
(9)

and hence, by r, l > 0, we obtain

Val∗ −Amb∗ 6 c 6 Val∗ + Amb∗. (10)

Now we are able to formulate the desired bootstrap
algorithm. Keeping in mind (9) and (10), we obtain

Algorithm 1.

1) Given a fuzzy sample x̃1, . . . , x̃n ∈ F(R), where
x̃i = x̃i(ci; li, ri), i = 1, . . . , n, compute the value
Val(x̃i) and ambiguity Amb(x̃i) for each observa-
tion i = 1, . . . , n.

2) Let j := 1.

3) Generate randomly (with equal probabilities) a pair
(Val∗j ,Amb∗

j ) from
(Val(x̃1),Amb(x̃1)), . . . , (Val(x̃n),Amb(x̃n)).

4) Generate a random value c∗j from the uniform dis-

tribution on the interval
[
Val∗j − Amb∗

j ,Val∗j +

Amb∗
j

]
.

5) Compute l∗j := 3
[
Amb∗

j −Val∗j + c∗j
]
.

6) Compute r∗j := 3
[
Amb∗

j + Val∗j − c∗j
]
.

7) Let j := j + 1.

8) If j < n go to step 3.

Thus, following Algorithm 1 we receive the bootstrap
sample of fuzzy triangular numbers x̃∗1, . . . , x̃

∗
n, where

x̃∗i = x̃∗i (c∗i ; l∗i , r
∗
i ), i = 1, . . . , n.

Example 1. Suppose that x̃ = (6; 1, 2) is the ran-
domly chosen observation from the initial sample. For
this fuzzy number we have Val(x̃) = 6 1

6 and Amb(x̃) =
1
2 . Then, according to step 4 of Algorithm 1, the
core c∗ of the new bootstraped fuzzy number is ran-
domly generated from the uniform distribution on the
interval

[
5 2
3 , 6

2
3

]
. If, e.g., c∗ = 6 1

3 is selected, then
by (9) we obtain l∗ = 2 and r∗ = 1, so the result-
ing fuzzy number is x̃∗ =

(
6 1
3 ; 2, 1

)
. One may con-

clude immediately that although x̃∗ 6= x̃, both fuzzy
numbers have identical global location and spread, i.e.
Val(x̃∗) = 6 1

6 = Val(x̃) and Amb(x̃∗) = 1
2 = Amb(x̃).

4 Trapezoidal observations

Now suppose that the realization of a fuzzy ran-
dom sample (i.e. the initial sample) X̃1, . . . , X̃n is
given by the trapezoidal fuzzy numbers x̃1, . . . , x̃n ∈
F(R), where x̃i = x̃i(ci, si; li, ri), i = 1, . . . , n.
As in Section 3 we compute the value and am-
biguity of each observation and obtain the set
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of pairs (Val(x̃1),Amb(x̃1)), . . . , (Val(x̃n),Amb(x̃n)),
where the corresponding values and ambiguities are
calculated from (5) and (6), respectively. Then, sim-
ilarly as in the case of triangular data, we take ran-
domly one pair and denote it by (Val∗,Amb∗).

Given (Val∗,Amb∗), by (5) and (6) we have{
r − l = 6Val∗ − 6c,

r + l = 6Amb∗ − 6s,

where s, r, l > 0, which is equivalent to{
l = 3(Amb∗ −Val∗ + c− s),
r = 3(Amb∗ + Val∗ − c− s).

(11)

Since r, l > 0, we obtain

Val∗ −Amb∗ + s 6 c 6 Val∗ + Amb∗ − s, (12)

where s > 0. However, since the upper bound of (12)
has to be not smaller than its lower bound, we obtain
additionally that

0 6 s 6 Amb∗. (13)

Summing up the forementioned considerations and
(11), (12) and (13), we obtain the following bootstrap
algorithm for trapezoidal fuzzy data

Algorithm 2.

1) Given a fuzzy sample x̃1, . . . , x̃n ∈ F(R), where
x̃i = x̃i(ci, si; li, ri), i = 1, . . . , n, compute the
value (Val(x̃i) and ambiguity Amb(x̃i) for each ob-
servation i = 1, . . . , n.

2) Let j := 1.

3) Generate randomly (with equal probabilities) a pair
(Val∗j ,Amb∗

j ) from
(Val(x̃1),Amb(x̃1)), . . . , (Val(x̃n),Amb(x̃n)).

4) Generate a random value s∗j from the uniform dis-

tribution on the interval
[
0,Amb∗

j

]
.

5) Generate a random value c∗j from the uniform dis-

tribution on the interval
[
Val∗j −Amb∗

j + s∗j ,Val∗j +

Amb∗
j − s∗j

]
.

6) Compute l∗j := 3
[
Amb∗

j −Val∗j + c∗j − s∗j
]
.

7) Compute r∗j := 3
[
Amb∗

j + Val∗j − c∗j − s∗j
]
.

8) Let j := j + 1.

9) If j < n go to step 3.

As the output of Algorithm 2 we receive the bootstrap
sample of fuzzy trapezoidal numbers x̃∗1, . . . , x̃

∗
n, where

x̃∗i = x̃∗i (c∗i , s
∗
i ; l∗i , r

∗
i ), i = 1, . . . , n.

Example 2. Let x̃ = (6, 1; 2, 3) be an observation
chosen randomly from the initial sample. For this
fuzzy number we have Val(x̃) = 61

6 and Amb(x̃) = 1 5
6 .

Then, according to step 4 of Algorithm 2 we generate
a random value s∗ from the uniform distribution on
the interval

[
0, 1 5

6

]
. If, e.g., s∗ = 1 is selected, then

in compliance with step 5, the value c∗ is randomly
chosen from the uniform distribution on the interval[
5 1
3 , 7
]
. Suppose, that we have obtained c∗ = 6 2

3 .
Hence, by (11) we compute l∗ = 4 and r∗ = 1 and we
finally obtain the new fuzzy number x̃∗ = (6 2

3 , 1; 4, 2).
Obviously, x̃∗ 6= x̃, however their fundamental charac-
teristics are identical, i.e. Val(x̃∗) = 6 1

6 = Val(x̃) and
Amb(x̃∗) = 15

6 = Amb(x̃).

5 Simulation study

Nowadays, statistical tests for fuzzy sample attract at-
tention of many researches (see, e.g., [8, 10, 12, 15, 17,
20]). Most of these tests utilize bootstrap methods to
determine a null distribution under study. This is the
reason that we also examine our new bootstrap meth-
ods suggested in Sec. 3 and Sec. 4 with two tests for
the expected value. The first one is a bootstrapped
version of the Körner test [15], while the second one
is developed by Montenegro et al. [10, 17]. From now
on, they will be denoted as the K-test and the M-test,
respectively. Both tests were designed to verify a hy-
pothesis on the expected value E X̃ of a random fuzzy
variable, i.e.

H0 : E X̃ = ṽ vs. H1 : E X̃ 6= ṽ, (14)

where E X̃ corresponds to the Aumman type mean of
the fuzzy random variable X̃(α) (see, [18]), and ṽ ∈
F(R) is a fixed fuzzy number considered further on as
the true population mean.

Because of the limited space in this contribution we re-
strict our attention to triangular fuzzy numbers and,
consequently, to the resampling method developed in
Sec. 3 (further on denoted as VA-method). To be
more specific, we consider three types of triangular
fuzzy numbers to model the primary fuzzy random
sample X̃1, . . . , X̃n. The first type (say, type A) is

given by fuzzy numbers X̃i(ci; li, ri) with centres (i.e.,
parameter ci) randomly generated from the standard
normal distribution N(0, 1) and spreads (i.e., li and ri)
also randomly generated from the chi-square distribu-
tion with one degree of freedom χ2(1). All random
variables mentioned above are independent. A sample
of the second type (say, type B) is generated as fuzzy
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numbers X̃i(ci; li, ri) with centres ci from the standard
normal distribution N(0, 1) and asymmetrical spreads,
i.e., li drawn from the exponential distribution Exp(2)
with parameter 2 and ri drawn from the exponential
distribution Exp(4) with parameter 4. Fuzzy numbers
of the third kind (type C) have centers generated from
the standard normal distribution N(0, 1), but both
spreads are independently drawn from the uniform dis-
tribution U([0, 0.4]). Similar types of fuzzy numbers
were considered in various studies, see [3, 15, 21].

For each type of fuzzy numbers, initial random sam-
ples of size n are used as input sets for the K-test
and M-test. To compare various starting parameters
we consider n = 5, 10, 30, 100 corresponding to small
and medium sample sizes. Then, each test is per-
formed with the help of the classical bootstrap and
the proposed VA-method. In both cases we consider
several numbers b of the generated bootstrapped sam-
ples (namely, b = 100, 200, 1000), which consist of n
elements, to investigate a possible influence of b on
the final results. In each experiment the whole re-
sampling procedure is iterated 100000 times (see, e.g.,
[8, 10, 17, 20, 21] for more details concerning the sim-
ilar comparisons).

n 5 10 30 100
b 100
Boot. 0.16024 0.10113 0.07006 0.06331
VA 0.15954 0.10476 0.07616 0.06814
b 200
Boot. 0.15438 0.09686 0.0658 0.05795
VA 0.15236 0.09833 0.0711 0.06207
b 1000
Boot. 0.14834 0.0911 0.06297 0.05449
VA 0.14523 0.09421 0.06519 0.0585

Table 1: Empirical K-test size α̂ for triangular num-
bers of type A.

As the essential benchmark we use the empirical size
of the test α̂ (i.e., the estimated percentage of the true
null hypothesis rejections) and its relation to the nom-
inal significance level α. In our experiments we set the
standard value α = 0.05. Results given in Tables 1–
6 show that both the classical approach (denoted by
“Boot.”) and the suggested VA resampling procedure
are very close to each other. It seems that the empir-
ical sizes of the test α̂ converge to the same limits as
the initial sample n and the number of the bootstrap
replications b increase. To ease noting the existing
differences, those α̂, which are closer to the nominal
significance level α = 0.05, are given in boldface. For
example, if n = 5, b = 100 and α̂ = 0.16024, as in
Table 1, then the true null hypothesis was rejected in
16% of the cases (on average) for the small primary

sample (with 5 elements) and 100 replications of the
bootstrapped sample.

n 5 10 30 100
b 100
Boot. 0.17437 0.1078 0.07297 0.0633
VA 0.168 0.10542 0.07108 0.05378
b 200
Boot. 0.16529 0.10371 0.06852 0.05739
VA 0.16395 0.10009 0.06591 0.04933
b 1000
Boot. 0.16155 0.09762 0.06543 0.05515
VA 0.15952 0.09628 0.06162 0.04674

Table 2: Empirical K-test size α̂ for triangular num-
bers of type B.

n 5 10 30 100
b 100
Boot. 0.17553 0.10833 0.07303 0.06285
VA 0.17183 0.10803 0.07445 0.06319
b 200
Boot. 0.16669 0.10309 0.06878 0.05775
VA 0.16806 0.1021 0.06895 0.05746
b 1000
Boot. 0.16255 0.0977 0.06584 0.0556
VA 0.16352 0.09843 0.06432 0.05432

Table 3: Empirical K-test size α̂ for triangular num-
bers of type C.

Going into details, when discussing the K-test (Tables
1–3), it seems that the VA-method dominates the clas-
sical bootstrap for type B fuzzy numbers. In the case
of type A fuzzy numbers, the advantage of the VA-
method appears only for small sample sizes. For type
C fuzzy numbers situation is not completely clear, but
it seems that the behavior of the VA-method improves
and prevail the classical approach as the number of the
bootstrap repetitions b increases.

In the case of the M-test (see Tables 4–6), the gen-
eral comparison of the classical bootstrap and the VA-
method shows that there is also no apparent winner:
for small sample sizes sometimes the VA-method is
better, otherwise the classical approach dominates.
When we compare the situation under different num-
ber of bootstrap repetitions no obvious conclusion im-
poses.

Next step of the numerical experiment was the power
study of the K-test and the M-test equipped with both
the classical bootstrap or the VA-method. Because
the null and the alternative hypotheses (14) in these
tests concern the strict equality or inequality for a
fuzzy number, the respective procedure has to be ap-
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n 5 10 30 100
b 100
Boot. 0.03375 0.04906 0.0562 0.05892
VA 0.0339 0.04347 0.0489 0.05107
b 200
Boot. 0.02988 0.04449 0.05196 0.05473
VA 0.02915 0.03915 0.04493 0.04597
b 1000
Boot. 0.02748 0.04047 0.04916 0.05064
VA 0.02603 0.03567 0.04078 0.0423

Table 4: Empirical M-test size α̂ for triangular num-
bers of type A.

n 5 10 30 100
b 100
Boot. 0.03634 0.05033 0.05777 0.05862
VA 0.03724 0.04912 0.05488 0.05569
b 200
Boot. 0.03095 0.04593 0.05286 0.05344
VA 0.03248 0.04367 0.04989 0.04911
b 1000
Boot. 0.02871 0.04107 0.05009 0.05087
VA 0.02997 0.04058 0.04564 0.0469

Table 5: Empirical M-test size α̂ for triangular num-
bers of type B.

plied. To examine the power of the both tests, we
estimated the number of rejections under increasing
shift ε ∈ R of realizations of the initial fuzzy sample,
when ε = 0.25, 0.5, 0.75. We observed the behaviour
of the procedures under study using the same values
of parameters b and n as before. Because of lack of
space we present to the reader the experimental re-
sults corresponding to fuzzy numbers of type C only
(see Tables 7–8).

n 5 10 30 100
b 100
Boot. 0.03246 0.04915 0.05742 0.05851
VA 0.03352 0.05026 0.0588 0.05903
b 200
Boot. 0.02663 0.04431 0.05325 0.05327
VA 0.02832 0.04433 0.05351 0.05314
b 1000
Boot. 0.02381 0.04006 0.04954 0.05113
VA 0.02612 0.04026 0.04874 0.05046

Table 6: Empirical M-test size α̂ for triangular num-
bers of type C.

For the both tests the differences in the simulated
power between the two considered approaches are rel-

atively small. Both resampling procedures behave in
rather consistent way, i.e., the percentage of rejections
generally grows as n or b increases. To emphasize,
better results (if they exists) are given in boldface.

n 5 10 30 100

ε 0.25

b 100
Boot. 0.22496 0.199 0.3177 0.72024
VA 0.22174 0.19778 0.31772 0.72126
b 200
Boot. 0.21777 0.19247 0.31134 0.71411
VA 0.21791 0.19106 0.30949 0.71335
b 1000
Boot. 0.21218 0.18781 0.30239 0.71188
VA 0.21284 0.18705 0.30398 0.71282

ε 0.5

b 100
Boot. 0.36195 0.43961 0.79944 0.9987
VA 0.35853 0.43703 0.79904 0.99864
b 200
Boot. 0.35157 0.42882 0.79486 0.99867
VA 0.35244 0.42901 0.79472 0.99869
b 1000
Boot. 0.34748 0.42479 0.79131 0.99885
VA 0.34767 0.42217 0.79273 0.99893

ε 0.75

b 100
Boot. 0.54304 0.71307 0.98386 1
VA 0.54079 0.7111 0.98425 1
b 200
Boot. 0.53448 0.70511 0.98386 1
VA 0.53467 0.70805 0.9835 1
b 1000
Boot. 0.52919 0.70456 0.98447 1
VA 0.52863 0.7022 0.98363 1

Table 7: K-test power analysis for triangular numbers
of type C.

The differences between the bootstrap procedures are
hardly discernible especially for the K-test, where it is
difficult to designate the real winner. It can be seen
also in Figure 1, where the percentages of rejections
are shown for some range of smaller values of the shift
(i.e., ε ∈ [0.05, 0.25]) and n = 5, b = 100. The situation
is slightly more clear in the case of the M-test. As it is
seen in Table 8 and in Figure 2, the VA-method gives
the higher percentages of rejections especially for the
smallest sample size n, i.e., n = 5.
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Figure 1: Power curves of the K-test for triangular
numbers of type C for n = 5, b = 100 (the classical
bootstrap – circles, the VA-method – squares).

n 5 10 30 100

ε 0.25

b 100
Boot. 0.04708 0.1045 0.27674 0.70835
VA 0.04763 0.10472 0.27601 0.70968
b 200
Boot. 0.03834 0.09749 0.26958 0.70123
VA 0.04177 0.09739 0.26873 0.70248
b 1000
Boot. 0.03571 0.09049 0.26048 0.69996
VA 0.03792 0.0899 0.26096 0.7012

ε 0.5

b 100
Boot. 0.08898 0.2769 0.76116 0.99863
VA 0.08967 0.27502 0.76064 0.9985
b 200
Boot. 0.07711 0.26214 0.75629 0.99851
VA 0.08138 0.26332 0.75503 0.99855
b 1000
Boot. 0.07073 0.25315 0.75066 0.99871
VA 0.07326 0.25213 0.75301 0.9988

ε 0.75

b 100
Boot. 0.15996 0.52679 0.97706 1
VA 0.16177 0.52473 0.97759 1
b 200
Boot. 0.14084 0.51102 0.97743 1
VA 0.14723 0.51362 0.97705 1
b 1000
Boot. 0.13156 0.50551 0.97771 1
VA 0.13547 0.50407 0.97696 1

Table 8: M-test power analysis for triangular numbers
of type C.
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Figure 2: Power curves of the M-test for triangular
numbers of type C for n = 5, b = 100 (the classical
bootstrap – circles, the VA-method – squares).

6 Conclusions

A flexible bootstrap approach for triangular and trape-
zoidal fuzzy numbers was proposed. Contrary to the
classical Efron’s method, our new algorithm generates
values which are not necessary repetitions of the obser-
vations from the primary sample and are more diver-
sified in some way. However, the resulting fuzzy num-
bers from the bootstrap samples preserve two impor-
tant characteristics of the initial observations related
to their canonical representation, i.e., the values and
ambiguities of the original fuzzy data. Actually, there
is no need to assume that the original sample consists
of triangular or trapezoidal fuzzy numbers only. A
declaration of a fuzzy number type is required just for
generating bootstrap samples.

The paper implies two resampling algorithms ready
for a direct use by the practitioners. The proposed
methodology was also compared with the classical
bootstrap via simulation study focused on two statis-
tical tests. The initial results show that our new VA-
method exhibits some promising properties and appli-
cation potential, especially in the case of the small pri-
mary sample sizes and the K-test (for the true null hy-
pothesis) or the M-test (when the power study is taken
into account). Hence, more extended study would be
still desirable. Moreover, further studies should go be-
yond hypothesis testing to examine the suggested ap-
proach in other fields od statistical inference. It seems
also that the general idea of generating bootstrap sam-
ples which preserve some other characteristics of fuzzy
numbers may lead to alternative flexible resampling
procedures and it is worth a further study.
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