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Abstract

A concept of uncertainty–aware similarity
measure is being defined and discussed. The
aim of the paper is to support the opinion
that both definition and construction of such
measure should take into account the epis-
temic nature of compared incomplete (un-
certain) information. This approach, how-
ever, generates new challenges resulted from
the computational complexity of the prob-
lem. We define a set of properties to be satis-
fied by uncertainty–aware similarity measure
and we propose a new technique of construct-
ing such measures for Interval–Valued Fuzzy
Sets.

Keywords: Similarity, Uncertainty,
Interval–Valued Fuzzy Sets, IVFS.

1 Introduction

The need for modeling imprecise and incomplete in-
formation gave rise to a theory of fuzzy sets and its
many extensions. In this paper we give a special atten-
tion to Interval–Valued Fuzzy Sets (IVFS) since they
provide a way not only to model vagueness of mem-
bership values (information imprecision) but also hesi-
tation about those values (information incompleteness
or uncertainty).

An IVFS can be defined as a set of possible fuzzy sets,
one of which is the ”true” or ”real” one, presently not
known due to the lack of knowledge. Thus, IVFS is
a way to describe or represent some information that
is uncertain (the uncertainty is not of the probability
type, but arises from the lack of knowledge; it can be
reduced when knowledge increases). Such interpreta-
tion of an interval is of epistemic nature - contrary to
ontic one, when the interval is understood as a com-
plex, but certain, information [7]. We would thus re-
fer to an IVFS as to the set of its possible states. We

clearly distinguish a description of an (unknown) ob-
ject from the object itself (represented by one of the
possible states). The notion of uncertainty–aware sim-
ilarity measure that is proposed in this paper takes this
distinction into account. Let us assume for example
that we want to compare two identical IVFSs - [0.1,
0.8] and [0.1, 0.8]; obviously we notice the total simi-
larity of their description, however, it does not imply
total similarity of the objects that are being described.

The paper is entirely devoted to considerations about
uncertainty–aware similarity measures that take into
account an epistemic nature of data and their con-
struction methods for IVFSs. We propose a set of
properties to be satisfied by such measure, and we give
a method to construct it. The motivation for our work
is clear - similarity measure plays a fundamental role
in many fields and applications such as approximate
reasoning, decision-making systems, recommender sys-
tems, pattern recognition and others. On the other
hand we believe that the problem of information in-
completeness still requires closer look and insightful
investigation.

2 Definitions

Let U = {u1, u2, . . . , un} be a crisp universal set. A
mapping A : U → [0, 1] is called a fuzzy set (FS) in
U . For each 1 ≤ i ≤ n, the value A(ui) (ai for short)
represents the membership grade of ui in A. Any crisp
set X ⊆ U can be represented as a fuzzy set by its
characteristic function 1X . Let F(U) be the family of
all fuzzy sets in U .

A binary operation t : [0, 1] × [0, 1] → [0, 1] is called
a triangular norm (t-norm, for short) if it is commu-
tative, associative, non-decreasing in each argument,
and has 1 as neutral element. The most important
t-norms are minimum tmin(x, y) = min(x, y), prod-
uct tprod(x, y) = xy, and  Lukasiewicz t Luk(x, y) =
max(0, x + y − 1). A thorough investigation on t-
norms is done in the classical monograph of Klement
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Figure 1: Visualization of the Interval–Valued Fuzzy
Set Â and its Fuzzy Membership Function Family Ã
(shaded area). Dashed lines represent two embedded

fuzzy sets (possible states) A1 ∈ Ã and A2 ∈ Ã.

et. al.[13].

Definition 1. A similarity measure of fuzzy sets is
defined as a function on E ⊂ F(U)×F(U) [6, 30]

s : E→ R , (1)

where E needs to satisfy:

1. (A,B) ∈ E if and only if (B,A) ∈ E,

2. (A,B) ∈ E if and only if (A,1U ) ∈ E.

It is common to assume that the higher measure values
indicate higher similarity of arguments.

In the case where E = F(U) × F(U), all fuzzy sets
are comparable by a given similarity measure. Such a
situation is not always possible, because some of the
standard similarity measures are not defined for cer-
tain pairs of fuzzy sets.

Any closed subset Ã of F(U) will be called Fuzzy
Membership Function Family (FMFF) (see [35]). Set

Ã represents all the possible states that can hide be-
hind uncertain information. Example FMFF is given
on Figure 1. We denote by FMFF(U) the set of
all FMFFs. This approach is largely inspired by the
Mendel representation theorem and his Wavy-Slice
representation [16, 17].

The cardinality of fuzzy sets has been extensively dis-
cussed in the literature (see [27]). In this paper we will
focus on scalar cardinalities of fuzzy sets which can be
characterised by the formula

σf (A) =
∑

1≤i≤n

f(A(xi)) , (2)

where f : [0, 1] → [0, 1] is a weighting function such
that f(0) = 0, f(1) = 1 and f(a) ≤ f(b) whenever a ≤

b. This approach formalises and reflects real human
counting process under information imprecision [28].
The most common weighting function is the identity
function fid(x) = x.

3 Similarity

Defining the similarity of epistemic data is a complex
problem. For example, it is necessary to answer the
question of how to determine the degree of similar-
ity, so that it reflects the similarity of information de-
scribed in an incomplete way. As it was noted in the
Introduction, even the total similarity of incomplete
descriptions does not guarantee the similarity of the
described phenomena or objects. For this reason, it is
necessary to model the similarity by means of a range
or subset.

Thanks to collecting and systematising properties of
many similarity measures [2–5, 8, 11, 14, 15, 18, 20–
24, 29, 32–34], it is possible to propose the concept of
uncertainty–aware similarity measure. In the further
part of the paper, examples of such measures will be
presented along with their basic properties.

Since the similarity of uncertain objects is a more com-
plex problem in comparison to classical similarity mea-
sure, the set of properties to be hold is wider.

Definition 2. A function s̃ : Ẽ → P([0, 1]) on Ẽ ⊂
FMFF(U)×FMFF(U) such that:

1. (Ã, B̃) ∈ Ẽ if and only if (B̃, Ã) ∈ Ẽ,

2. (Ã, B̃) ∈ Ẽ if and only if
(
Ã, {1U}

)
∈ Ẽ,

3. (Ã, B̃) ∈ Ẽ if and only if for any fuzzy sets A ∈ Ã,

B ∈ B̃: (
{A} , {B}

)
∈ Ẽ , (3)

is a uncertainty–aware similarity measure if it satisfies
following conditions:

(P1) For all (Ã, B̃) ∈ Ẽ,

s̃(Ã, B̃) = s̃(B̃, Ã) . (4)

(P2) For Ã, B̃ = F(U),

s̃(Ã, B̃) = [0, 1] (5)

(P3) For all (Ã, B̃) ∈ Ẽ, (Ã, C̃) ∈ Ẽ such that 1X ∈
Ã, 1X ∈ B̃ and 1Xc ∈ C̃ for some X ⊂ U ,

1 ∈s̃(Ã, B̃) , (6)

0 ∈s̃(Ã, C̃) . (7)
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(P4) For all fuzzy sets A,B ∈ F(U) such that

({A}, {B}) ∈ Ẽ,

s̃({A}, {B}) = {a}, for some a ∈ [0, 1] . (8)

(P5) For all (Ã, B̃) ∈ Ẽ and for any A,B ∈ F(U)

such that A ∈ Ã, B ∈ B̃,

s̃({A}, {B}) ⊂ s̃(Ã, B̃) . (9)

(P6) For any (Ã, C̃) ∈ Ẽ, (B̃, D̃) ∈ Ẽ such that Ã ⊂
B̃ and C̃ ⊂ D̃,

s̃(Ã, C̃) ⊂ s̃(B̃, D̃) . (10)

(P7) For all (Ã, B̃) ∈ Ẽ such that 0 ∈ s̃(Ã, B̃) there

exist A ∈ Ã and B ∈ B̃ such that σ(A ∩B) = 0.

To support the choice of the properties (P1)-(P7) let
us now discuss them briefly.

The first property, symmetry, is a common and widely
accepted condition for every similarity measure, and
so it is in the presence of uncertainty. Next prop-
erties should be considered taking into account the
specificity of epistemic information. Thus, (P2) re-
quires that no information implies no conclusions -
when comparing totally unknown object, the similar-
ity should also remain unknown. On the other hand,
if the information is complete (FMFF reduces to a sin-
gle FS) then their similarity should also be completely
known (without uncertainty) - that is the meaning of
the property (P4).

By (P3) we make two observations; two FMFFs could
be similar to a degree 1 only if they share at least one
common state (6). On the other hand, if two FMFFs
are to some extend inconsistent, then a value 0 should
be a possible value of their similarity (7). In general,
when a degree of uncertainty of two FMFFs decreases
so does similarity measure - see (P6). Consequently,
for any pair of possible states, their similarity measure
belongs to the similarity of FMFFs (P5).

Finally, (P7) indicates that if a value 0 is one of the
possible values of similarity of two FMFFs then there
exists two states that are disjoint.

4 Uncertainty–aware similarity
measures for IVFS

Interval–valued fuzzy set (IVFS) theory, which is a
special case of type-2 fuzzy set theory, was introduced
by Zadeh [31]. Let I([0, 1]) be the set of all closed
subintervals of [0, 1]. A mapping Â : U → I([0, 1]) is
called an interval–valued fuzzy set. For each 1 ≤ i ≤ n,

the value Â(ui) = [A(ui), A(ui)] ∈ I([0, 1]) represents
the membership of an element ui in Â. Usually A and
A are called the lower and upper membership func-
tions of Â respectively. In epistemic approach, interval
Â(ui) is understood to contain the true membership
degree of ui in some incompletely known fuzzy set A
represented by Â. We denote the set of all interval–
valued fuzzy sets in U by IV(U).

Most known extensions of fuzzy sets can be fully accu-
rately represented using FMFF. Interval–Valued Fuzzy
Set Â can be also viewed as the following FMFF (see
Figure 1):

Ã =
{
A ∈ F(U) : ∀x∈U A(x) ≤ A(x) ≤ A(x)

}
. (11)

Referring to the Mendel’s Wavy-Slice representation
theorem [16, 17], in case of Interval–Valued Fuzzy Sets,
FMFF is equivalent to FOU (Footprint of Uncertainty)

Ã = FOU(Â) . (12)

Since there is a one-to-one correspondence between Â
and Ã, those two representations will be used inter-
changeably.

In the previous sections, we presented the properties of
a uncertainty aware similarity measure for the general
epistemic data represented by FMFF. In the following
we will propose the construction method of such mea-
sures for IVFS. Note that each function f : X → Y can
be calculated for set-valued data A ⊂ X in following
way

f(A) = {f(a) : a ∈ A} ⊂ Y . (13)

This approach can be used to obtain new similarity
measures for uncertain data.

Definition 3. Let s : E → [0, 1] be a similarity mea-

sure of fuzzy sets. Function ŝ : Ê → P([0, 1]) can be
defined in following way:

ŝ(Â, B̂) =
{
s(A,B) : A ∈ Ã, B ∈ B̃

}
, (14)

where

Ê =
{

(Â, B̂) ∈ IV(U)× IV(U) : Ã× B̃ ⊂ E
}
. (15)

Sometimes it may be useful to represent fuzzy
set A on finite universe U as a vector xA =(
A(u1), · · · , A(u|U |)

)
∈ [0, 1]|U |.

Definition 4. Fuzzy set similarity measure s : E →
[0, 1] is called continuous if function f : X → [0, 1]
defined on

X =
{

(xA,xB) ∈ [0, 1]2|U | : (A,B) ∈ E
}
. (16)

as
f(xA,xB) = s(A,B) , (17)

is continuous in the whole domain.
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Lemma 1. For each continuous fuzzy set similarity
measure s : E → [0, 1], function ŝ from Definition 3
can be simplified to

ŝ(Â, B̂) =

 inf
A∈Ã
B∈B̃

s(A,B), sup
A∈Ã
B∈B̃

s(A,B)

 . (18)

Theorem 2. For each continuous fuzzy set similarity
measure s : E→ [0, 1] that satisfies

1. for each (A,B) ∈ E, we have s(A,B) = s(B,A),

2. for each (A,B) ∈ E, if s(A,B) = 0 then σ(A ∩
B) = 0,

3. for each X ⊂ U such that (1X ,1Xc) ∈ E we have
(1X ,1Xc) = 0 and (1X ,1X) = 1,

function ŝ from Definition 3 is uncertainty–aware sim-
ilarity measure of IVFS from Definition 2.

The proof was given in [34].

5 Extensions of popular similarity
measures

The following section presents the extensions of known
similarity measures to their uncertainty–aware ver-
sions obtained using the Definition 3. As will be
shown, the calculation of some generated similarity
measures is computationally difficult, while other mea-
sures can be calculated using simple formulas. A par-
ticularly interesting case is the Jaccard index.

5.1 Distance based similarity measures

The similarity measure based on the metric of the dis-
tance meets the assumption of the Theorem 2. Thanks
to this, appropriate extensions are uncertainty–aware
similarity measures.

5.1.1 Minkowski distance

The extensions of similarity measures based on gener-
alized Minkowski’s metric are relatively simple to cal-
culate. By using (18) we get the following measure of
similarity:

ŝdr (Â, B̂) =

 inf
A∈Ã
B∈B̃

1− dr(A,B)

|U |
, sup
A∈Ã
B∈B̃

1− dr(A,B)

|U |

 ,
(19)

which is defined for all pairs of interval–valued fuzzy
sets. For simplicity, let us denote this interval by [a, b].

Then we can transform the lower limit value in the
following way:

a = inf
A∈Ã
B∈B̃

1− dr(A,B)

|U | = 1− sup
A∈Ã
B∈B̃

dr(A,B)

|U |

= 1− 1

|U | sup
u∈U

au∈Â(u)

bu∈B̂(u)

(∑
u∈U

|au − bu|r
) 1

r

= 1− 1

|U |

(∑
u∈U

max
{
|A(u)−B(u)|, |A(u)−B(u)|

}r) 1
r

.

(20)

Analogous transformations lead to a direct formula for
the upper limit b. This formula is a simple sum and
no numerical optimisation is needed to calculate it.
Another important observation is the fact that this
formula takes into account only values of the lower
and upper membership functions of IVFSs Â and B̂.
Hence, these measures are computationally efficient
despite the fact that their construction uses a compu-
tationally inefficient method that takes into account
the infinite FMFF.

In a very similar way we can get extensions of simi-
larity measures based on d∞ distance. The formulas
obtained are analogous and have the same computa-
tional complexity.

5.1.2 Other distances

The similarity measure can also be defined as the angle
between two vectors:

scos θ(A,B) =

∑
u∈U

µA(u)µB(u)√∑
u∈U

µA(u)2
√∑
u∈U

µB(u)2
. (21)

In the case when any of the fuzzy sets is empty, the
measure is not specified, so

E =
{
(A,B) ∈ IV(U)× IV(U) : A 6= 1∅ & B 6= 1∅

}
.
(22)

Measure scos θ(A,B) takes the largest value when the
angle between the vectors representing the fuzzy sets
is 90◦. This similarity measure is used when it is par-
ticularly important to compare the shape of the mem-
bership function of fuzzy sets. The cosine of the angle
is not the only angular measure. Many modifications
of (21) can be found in the literature [12].

The above definition can not easily be simplified as it
was in the case of Minkowski’s distance. The problem
of constructing an algorithm that enables the efficient
calculation of such a similarity measure is still open.
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5.2 Logic based similarity measures

Logic–based measures [9, 10] use the interpretation of
the membership function of a fuzzy set as the degree of
truth of the proposition represented by this fuzzy set.
The basic method assumes the use of an implication
operator, which allows constructing both the measures
of inclusion and similarity. In classic logic, the implica-
tion operator can be defined in several equivalent ways.
The generalization to the case of fuzzy logic, where in-
finitely many degrees of truth are admitted, resulted in
the creation of many not equivalent definitions of the
concept. The most frequently used implication opera-
tors are S–implications and R–implications [1, 25].

The simplest co-implication operator is defined as:

Ψ(a, b) = min(a⇒ b, b⇒ a) . (23)

The similarity measure is then defined as the mini-
mum, average or maximum value obtained for all ele-
ments of the universe. The most interesting is the case
of the average, where the similarity measure is defined
as

sΨ(A,B) =
1

|U |
∑
u∈U

Ψ(µA(u), µB(u)) . (24)

For simplicity, we denote by [a, b] the similarity value
returned by measure extended according to the Defi-
nition 3. Then the value of the lower bound can be
transformed as follows:

a = inf
A∈Ã
B∈B̃

1

|U |
∑
u∈U

Ψ(µA(u), µB(u)) =

=
1

|U |
∑
u∈U

inf
µ
Â

(u)≤x≤µÂ(u)

µ
B̂

(u)≤y≤µB̂(u)

Ψ(x, y) . (25)

Similarly, we can convert the upper limit. This simple
transformation allows for a significant simplification
of the problem of calculating the infimum and supre-
mum. Instead of optimizing the value of the whole
sum, it is enough to examine how the co-implication
operator behaves. For example, for the  Lukasiewicz’s
implication operator, we get the following equality:

inf
µ
Â

(u)≤x≤µÂ(u)

µ
B̂

(u)≤y≤µB̂(u)

Ψ Luk(x, y)

= inf
µ
Â

(u)≤x≤µÂ(u)

µ
B̂

(u)≤y≤µB̂(u)

min{1, 1− x+ y, 1− y + x}

= min{1, 1− µÂ(u) + µ
B̂

(u), 1− µB̂(u) + µ
Â

(u)} .

Thanks to this property, the calculation of the ex-
tended similarity measure ŝΨ is possible directly with-
out the need for numerical optimization techniques.

Unfortunately, the problem of calculating the measure
ŝΨ is not so simple in the general case. For the two
basic families of implication operators: S–implications
and R–implications, the simple way to directly cal-
culate the similarity measure is not known. It is an
interesting and still open problem for further research,
but it is not in the scope of this paper.

5.3 Set theory based similarity measures

The Jaccard index is the most commonly used simi-
larity measure. It formalizes the observation that, for
two sets: the more common and less different elements
they have, the more similar they are. As a reminder,
the Jaccard index for fuzzy sets is defined as

sJ(A,B) =
|A ∩B|
|A ∪B|

, where |A ∪B| 6= 0 . (26)

Because A∩B ⊂ A∪B, Jaccard index can be viewed as
the ratio of the number of common elements of A and
B to the number of all elements in A or B. Another
look at Jaccard’s index comes from the observation
that

sJ(A,B) =
|A ∩B|
|A ∪B|

=
|(A ∪B) ∩ (A ∩B)|

|A ∪B|
= σ(A ∩B|A ∪B) . (27)

According to the interpretation of relative cardinality
as a degree of inclusion, the degree of similarity be-
tween two fuzzy sets is defined as the degree to which
the fuzzy set A ∪B is contained in A ∩B. Of course,
the opposite inclusion always holds. This approach is
also interesting because it refers to the concept of in-
clusion of fuzzy sets (in this case defined as relative
cardinality).

Both proposed interpretations can be generalized us-
ing t-norm T and t-conorm S. In addition, the cardi-
nality of the fuzzy set can also be defined using any
weighting function f . In this way, we get the following
two definitions of the generalized Jaccard index:

s′T,S,f (A,B) =
σf (A ∩T B)

σf (A ∪S B)
, (28)

s′′T,S,f (A,B) =σT,f (A ∩T B|A ∪S B)

=
σf ((A ∪S B) ∩T (A ∩T B))

σf (A ∪S B)
. (29)

It should be noted that both generalizations are not
specified in the case where σf (A ∪S B) = 0. Unfor-
tunately, the unambiguous definition of the similarity
value in this case is not possible. Thus, the domain of
similarity measures can be defined as follows:

ES,f = {(A,B) ∈ F(U)×F(U) : σf (A ∪S B) 6= 0} .
(30)
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For any t-conorm S and weighting function f , ES,f
satisfies both conditions required for the domain of
similarity measure given in the Definition 1. In addi-
tion, many specific pairs of fuzzy sets belong to this
family. For example, for any set of X ⊂ U both
(1X ,1X) ∈ ES,f , as well as (1X ,1Xc) ∈ ES,f , which
results directly from the properties of t-operations and
operations on fuzzy sets. One special case seems par-
ticularly important when

ES,f = IV(U)× IV(U) \ {(∅, ∅)} = E∅ , (31)

which occurs, for example, for ESmax,fid .

Both similarity measures are equivalent for both clas-
sic and fuzzy sets, for which the intersection and sum
of sets is defined using Tmin and Smax with the iden-
tity weighting function. For the other t-operations this
equality may not hold. Therefore, in the further part
of this section, we will consider them separately. As
it turns out, they have very similar but not identical
properties.

Theorem 3. Fuzzy set similarity measure s′T,S,f
meets the assumptions of the Theorem 2. In addi-
tion, if the t-norm T does not have zero divisors and
∀x∈(0,1]f(x) > 0, s′′T,S,f also has this property.

Remark 1. Classic fuzzy Jaccard index

s′Tmin,Smax,fid
(A,B) =

|A ∩min B|
|A ∪max B|

(32)

satisfies the assumptions of Theorem 2.

Theorem 4. Fuzzy set similarity measures s′T,S,f and
s′′T,S,f are continuous if functions T , S, f are contin-
uous in their entire domains.

As with the angular distance, it is not possible to easily
simplify formulas for lower and upper limits. Measure
s′′T,S,f is defined by the generalized relative cardinality
of fuzzy sets, making it possible to simplify the prob-
lem of its efficient calculation. For this purpose, we
will use the concept of generalized relative cardinality
of interval–valued fuzzy sets [36].

Definition 5. Function σ̂f,T : Ef → I([0, 1]) induced
by a continuous t-norm T and a continuous weighting
function f where

σ̂f,T (Â|B̂) =

[
inf
A∈Ã
B∈B̃

σf,T (A|B), sup
A∈Ã
B∈B̃

σf,T (A|B)

]

and

Ef = {(Â, B̂) ∈ IV(U)× IV(U) : ∀
B∈B̃

σf (B) > 0}, (33)

is called generalized interval–valued relative cardinal-
ity.

One can see the following relationship between the
extended Jaccard’s index ŝ′′T,S,f and the generalized
interval–valued relative cardinality σ̂f,T :

ŝ′′T,S,f (Â, B̂) =

=

[
inf
A∈Ã
B∈B̃

A′=A∩TB
B′=A∪SB

σf,T (A′|B′), sup
A∈Ã
B∈B̃

A′=A∩TB
B′=A∪SB

σf,T (A′|B′)

]

=σ̂f,T (Â ∩T B̂|Â ∪S B̂) . (34)

Thanks to the above equation, the value of the ex-
tended Jaccard index can be calculated by means of
generalized interval–valued relative cardinality. The
effective solution of this computational problem was
given in [36]. Unfortunately, the problem of effective
calculation of the s′T,S,f in the general case still re-
mains an open problem. However, it should be men-
tioned that for the extension of the classical Jaccard
index, effective algorithms enabling its calculation in
O(n log n) were given [19, 26].

6 Conclusions

There are two main contributions made in this pa-
per. The first one was collecting and systematizing a
set of properties for uncertainty–aware similarity mea-
sure. Our approach gives a full picture of the simi-
larity of incompletely known information and allows
reasoning about the amount of uncertainty of com-
pared objects, thus informs about the quality of this
comparison. The second result, presented in Section 4
and 5, is the observation, that uncertainty–aware sim-
ilarity measure may be constructed from fuzzy simi-
larity measures under certain conditions. In this way
we have opened a new path for constructing new sim-
ilarity measures. We showed that this path is very
promising since we have already managed to obtain
some interesting results by restricting our considera-
tions to IVFS. However, it must be mentioned that
processing general epistemic data requires much more
research to be computationally feasible.
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