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Abstract

In this paper we study Lotka-Volterra model
of oscillating chemical reactions via fuzzy dif-
ferential equations, where the initial condi-
tions are given by interactive fuzzy num-
bers. The concept of interactivity is associ-
ated with the notion of joint possibility distri-
bution. The fuzzy solution is given by a nu-
merical method which considers fuzzy arith-
metic with interactivity. We present some
examples to illustrate that different types of
interactivity produce different solutions.

Keywords: Fuzzy initial value problem,
Sup-J extension principle, Interactive fuzzy
numbers, Chemical reactions.

1 Introduction

Chemical kinetic deals with chemistry experiments
and interprets them in terms of mathematical models.
In particular, chemical kinetics studies the chemical
reactions, as well as the factors that influence the fi-
nal result [7]. We focus on chemical reactions of the
type U + V → cW , where U and V are the consumed
reagents and W is the final product of this reaction,
with proportion c.

Some factors may influence the velocity of these re-
actions, for instance, concentration, activation energy,
temperature, pressure etc. The velocity (v) of a reac-
tion can be determined from v = k[U ]m[V ]n, where k
is the reaction rate, [U ] and [V ] are the concentration
of the reagents and m and n are the orders of the re-
actions, which are determined experimentally. Thus,
there may be imprecision (or uncertainty) in the pro-
cess of obtaining such parameters. The classic models
do not consider this fact [9]. On the other hand, fuzzy
sets theory can be used to describe these uncertainties.

In this manuscript we focus on Lotka-Volterra model

of oscillating chemical reactions, which is based on a
molecular mechanism where at each step the reagent
molecules combine to produce intermediate reagents
or final products. Fundamentally we have [13]:

A+X → 2X with reaction rate k1

X + Y → 2Y with reaction rate k2 (1.1)

Y → B with reaction rate k3

The effective rate laws for the reagent A, the prod-
uct B, and the intermediates reagents X and Y are
described by the initial value problem (IVP) [10]:

d[A]

dt
= −k1[A][X], [A(0)] = [A0]

d[X]

dt
= k1[A][X]− k2[X][Y ], [X(0)] = [X0]

d[Y ]

dt
= k2[X][Y ]− k3[Y ], [Y (0)] = [Y0]

d[B]

dt
= k3[Y ], [B(0)] = [B0]

.

(1.2)

Note that

[A(t)] + [X(t)] + [Y (t)] + [B(t)] = k, ∀t ∈ R (1.3)

for some k ∈ R, since

d[A]

dt
+
d[X]

dt
+
d[Y ]

dt
+
d[B]

dt
= 0.

In particular

[A0] + [X0] + [Y0] + [B0] = k. (1.4)

The initial conditions and/or parameters may be un-
certain [9]. In case where the initial conditions [A0],
[X0], [Y0] and [B0] are uncertain and modeled by fuzzy
numbers, we have that [A0], [X0], [Y0] and [B0] need to
be interactive [8] in order to guarantee that the total
quantity (k), given in (1.4), be a real number [2].

Interactivity is a relationship between fuzzy numbers
that resembles the concept of dependence in the case
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of random variables. In this paper we use this concept
to ensure that Equation (1.4) holds. Moreover, we use
interactivity to model the intrinsic dependence of the
reagents/products with its concentration [6].

The IVP whose initial conditions are given by fuzzy
numbers is called by fuzzy initial value problem
(FIVP).

In order to provide a numerical solution for this FIVP,
we use the method proposed in [16]. This method can
be used for any n-dimensional system of differential
equations and it consists in adapting the arithmetic
operations of the classical Runge-Kutta method of or-
der 1 (Euler), by means of sup-J extension principle,
for the arithmetic between interactive fuzzy numbers.

Finally in order to verify the dependence of the final
result with the concetration factors, we present some
examples to illustrate that different types of interac-
tivity result in different solutions for System (1.2).

2 Mathematical background

In this section we present the Euler’s method and some
basic concepts of fuzzy sets theory.

2.1 Euler’s method

Let yi : R → Rn, with i = 1, ..., n, be functions that
depend on time t. Consider the ordinary differential
equation (ODE) with initial value given by (2.5){

dyi
dt = fi(t, y1, y2, ..., yn)

y(t0) = y0 ∈ Rn
, i = 1, ..., n, (2.5)

where fi : Rn+1 → R depends on y1, y2, ..., yn and t.

Euler’s method consists in determining numerical so-
lutions for ODEs described by (2.5). The algorithm is
provided as follows

yk+1
i = yki + hfi(tk, y

k
1 , ..., y

k
n), (2.6)

with 0 ≤ k ≤ N − 1, where N is the number of par-
titions that the interval is divided, h is the size of the
interval [tk, tk+1] and (t0, y

0
i ) is the initial condition.

2.2 Fuzzy sets theory

A fuzzy subset A of a universe X is associated with a
function µA : X → [0, 1] called membership function,
where µA(x) represents the membership degree of x in
A for all x ∈ X. For notational convenience, we may
simply use the symbol A(x) instead of µA(x). The
class of fuzzy subsets of X is denoted by F(X). From
now on, we assume that X is a topological space.

The α−cut of a fuzzy set A ⊆ X, denoted by [A]α, is
defined by [A]α = {x ∈ X : A(x) ≥ α}, ∀α ∈ (0, 1]
and [A]0 = cl{x ∈ X : A(x) > 0}, where cl Y, Y ⊆ X,
denotes the closure of Y [1].

A fuzzy set A of R is called a fuzzy number if all
α−cuts are bounded, closed and non-empty nested in-
tervals for all α ∈ [0, 1]. Thus the α−cuts of the fuzzy
number A are denoted by [A]α = [a−α , a

+
α ]. The class

of fuzzy numbers, denoted by RF , represents a spe-
cial class of fuzzy sets of R that includes the sets of
the real numbers as well as the set of the bounded
closed intervals of R. In addition, we define the sub-
class RFC by the set of all fuzzy numbers such that
the endpoints of its α-cuts are continuous with re-
spect to α. The triangular fuzzy number is an ex-
ample of element in RFC . Recall that a triangular
fuzzy number A is denoted by the triple (a; b; c) for
some a ≤ b ≤ c. By means of α−cuts we have
[A]α = [a+ α(b− a), c− α(c− b)], ∀α ∈ [0, 1].

The width of a fuzzy number is defined by

width(A) = a+0 − a
−
0 , ∀A ∈ RF

and it is associated with the uncertainty that the fuzzy
number A models.

A fuzzy relation J ∈ F(Rn) is said to be a joint pos-
sibility distribution (JPD) among the fuzzy numbers
A1, ..., An ∈ RF , if

Ai(y) = sup
(x1,...,xn):xi=y

J(x1, . . . , xn), ∀y ∈ R, (2.7)

for all i = 1, ..., n.

For the special case that J is given by

J∧(x1, ..., xn) = A1(x1) ∧ ... ∧ An(xn), (2.8)

where ∧ represents the minimum operator, the fuzzy
numbers A1, ..., An are said to be non-interactive.
Otherwise, that is when J 6= J∧, the fuzzy numbers
A1, ..., An are called J-interactive or simply interac-
tive. Thus, the interactivity of the fuzzy numbers
A1, ..., An arises from a given joint possibility distri-
bution and this definition resembles the concept of de-
pendence in the case of random variables.

One example of interactivity is the one based on the
concept of linear interactivity (or complete correla-
tion). This concept was introduced by Fullér et al. [3,8]
for two fuzzy numbers. Subsequently, the authors
of [11, 15] proposed an extension of this notion for n
fuzzy numbers, n > 2. The fuzzy numbers A1, . . . , An
are said to be linearly interactive if there exist a joint
possibility distribution J = JL given by

JL(x1, . . . , xn) = Ai(xi)χL(x1, . . . , xn), (2.9)
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for all (x1, . . . , xn) ∈ Rn and i = 1, . . . , n, where χL
stands for the characteristic function of the set L =
{(u, q2u+ r2, . . . , qnu+ rn) : ∀u ∈ R}.

The JPD JL can be used in several problems, for ex-
ample, in fuzzy differential equations [2, 11, 15] and
least squared methods [12]. However this JPD can
only be applied to fuzzy numbers that have a co-linear
relationship among their membership functions, which
means that it can not be used for fuzzy numbers that
do not have the same shape.

Next we present a more general joint possibility dis-
tribution that can be applied to every pair of fuzzy
numbers.

Given A1, A2 ∈ RFC , for each z ∈ R and α ∈ [0, 1]
consider the auxiliary functions gi∧, gi∨ and vi defined
by [5]

gi∧(z, α) =
∧

w∈[A3−i]α

|w + z|,

gi∨(z, α) =
∨

w∈[A3−i]α

|w + z|

and

vi(z, α, γ) = (1− γ)gi∧(z, α) + γgi∨(z, α),

for all z ∈ R, α ∈ [0, 1], γ ∈ [0, 1] and i ∈ {1, 2}.

Consider the sets Riα and Li(z, α, γ) given by

Riα =

{
{a−iα , a

+
iα
} if α ∈ [0, 1)

[Ai]
1 if α = 1

and
Li(z, α, γ) = [A3−i]

α ∩ [l, r]

where l = −vi(z, α, γ)− z and r = vi(z, α, γ)− z.

Finally, we define Jγ by

Jγ(x1, x2) =

{
A1(x1) ∧A2(x2), if (x1, x2) ∈ P (γ)

0 , otherwise

(2.10)

with

P (γ) =
2⋃
i=1

⋃
α∈[0,1]

Wi,α.

where Wi,α = {(x1, x2) : xi ∈ Riα, x3−i ∈ Li(xi, α, γ)}.

Esmi et al. [5] proved that Jγ , given by (2.10), is a
joint possibility distribution of A1 and A2 for all γ ∈
[0, 1]. Intrinsically the parameter γ models the “level”
of interactivity between the fuzzy numbers A1 and A2,
in the following sense, the closer of 0 the value of γ,
the higher is the interactivity.

Recall that for γ = 1 we have J1 = J∧ (see (2.8)).
This means that if the chosen JPD is J1, then we are
dealing with non-interactive fuzzy numbers [5]. On
the other hand for γ = 0 we have that J0 resembles
JL (see (2.9)) [16].

The following definition is a generalization of the
Zadeh’s extension principle [17], which is used to ex-
tend classical functions to functions with fuzzy num-
bers as arguments.

Definition 1. [8] Let J ∈ F(Rn) be a joint possibility
distribution of (A1, ..., An) ∈ RnF and f : Rn → R. The
sup-J extension of f at (A1, ..., An) ∈ RnF , denoted by
fJ(A1, ..., An), is the fuzzy set given by:

fJ(A1, ..., An)(y) = sup
(x1,...,xn)∈f−1(y)

J(x1, ..., xn),

(2.11)

where f−1(y) = {(x1, ..., xn) ∈ Rn : f(x1, ..., xn) = y}
is the inverse image of the function f at y.

From Definition 1 is possible to establish an arithmetic
on interactive fuzzy numbers. For example, the inter-
active sum between A1 and A2 is defined by:

(A1 +J A2)(y) = sup
x1+x2=y

J(x1, x2),

where f(x1, x2) = x1 + x2 and J is an arbitrary JPD
of A1 and A2.

The method proposed in [16] considers the joint possi-
bility distributions Jγ between translated fuzzy num-
bers, in order to control the width of the numerical
solutions [14]. Here we use the same approach. For
simplicity of notation we denote the arithmetic opera-
tions A1 ⊗Jγ A2 by A1 ⊗γ A2, where ⊗ ∈ {+,−, ·,÷}.

In order to illustrate these arithmetic operations, let
us provide an example of the interactive addition +γ

between fuzzy numbers.

Example 1. Let A1 = A2 = (−1; 0; 1) ∈ RFC . For
γ ∈ {0, 0.5, 0.75, 1}, we have

A1 +0 A2 = 0

A1 +0.5 A2 = (−1; 0; 1)

A1 +0.75 A2 = (−1.5; 0; 1.5)

A1 +1 A2 = (−2; 0; 2).

Note that in Example 1 we obtain A1+0A2 = 0, where
0 stands for the fuzzy number 0 whose membership
function is given by the characteristic function χ{0}.
This result arises from the fact that A2 = −A1.

In addition, for γ = 1 we have A1 +1A2 = (−2; 0; 2) =
A1+A2, where the symbol “+” represents the standard
sum on fuzzy numbers, corroborating the previous ob-
servation.
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Observe that

width(A1 +0 A2) ⊆ width(A1 +0.5 A2)

⊆ width(A1 +0.75 A2)

⊆ width(A1 +1 A2).

This statement holds true, since the width of the in-
teractive sum via Jγ is increasing with respect to the
parameter γ ∈ [0, 1] [5, 14].

In the next section we provide the numerical solutions
for (1.2), based on this methodology.

3 Fuzzy numerical solution

In this paper we consider that the initial conditions
[A0], [X0], [Y0] and [B0] are given by interactive fuzzy
numbers. Hence the sum given by Equations (1.3) and
(1.4) must be adapted for these type of fuzzy numbers.

We use the sum obtained via sup-J extension principle,
with J = Jγ (see (2.7)) defined in the previous section.
Consequently the sum operation depends on the values
of γ ∈ [0, 1]. Thus Equations (1.3) and (1.4) become

[A(t)] +γ [X(t)] +γ [Y (t)] +γ [B(t)] = k, (3.12)

and

[A0] +γ [X0] +γ [Y0] +γ [B0] = k. (3.13)

Since [B] represents the concentration of the final
product B, we have [B0] = 0. The combination of
(3.14) and (3.13) leads us to the following

[B] = [A0]−γ [A(t)]+γ [X0]−γ [X(t)]+γ [Y0]−γ [Y (t)].
(3.14)

Therefore it is only necessary to solve the first three
equations of (1.2).

The numerical solution for this problem is based on the
classical Euler’s method extending the arithmetic op-
erations to arithmetic operations for interactive fuzzy
numbers, as described in Subsection 2.2. Hence the
fuzzy numerical solution is given by
[A]k+1 = [A]k −γ hk1([A]k ·γ [X]k)

[X]k+1 = [X]k +γ h(k1[A]k ·γ [X]k −γ k2[X]k ·γ [Y ]k)

[Y ]k+1 = [Y ]k +γ h((k2[X]k ·γ [Y ]k)−γ (k3[Y ]k))

[B]k+1 = [A0]−γ [A]k +γ [X0]−γ [X]k +γ [Y0]−γ [Y ]k

(3.15)

with initial conditions [A0], [X0], [Y0] ∈ RF .

Figures 1, 2 and 3 depict the simulations for three
different “levels” of interactivity, that is, γ = 0, γ =
0.5 and γ = 0.75. The parameters used were h =

Figure 1: Numerical solution for γ = 0. The gray lines
represent the α-cuts of the fuzzy solutions, where their
endpoints for α varying from 0 to 1 are represented re-
spectively from the gray-scale lines varying from white
to black.

Figure 2: Numerical solution for γ = 0.5. The gray
lines represent the α-cuts of the fuzzy solutions, where
their endpoints for α varying from 0 to 1 are repre-
sented respectively from the gray-scale lines varying
from white to black.

0.125, k1 = 0.03, k2 = 0.09, k3 = 0.06 and [A0] =
[X0] = [Y0] = (0; 1; 2).

Note that for different values of γ we obtain different
final products. This fact is associated with the inter-
active arithmetic that is based on the family of the
joint possibility distribution Jγ [16].

In Figure 1 we observe that for the highest level of
interactivity (γ = 0) we obtain decreasing width for
the reagents A, X and Y over time. However the width
of the final product increases initially and thereafter
has few variations.
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Figure 3: Numerical solution for γ = 0.75. The gray
lines represent the α-cuts of the fuzzy solutions, where
their endpoints for α varying from 0 to 1 are repre-
sented respectively from the gray-scale lines varying
from white to black.

Figure 2 reveals that for γ = 0.5 (medium level of
interactivity) the width of A, X and Y has few varia-
tions. The width of the product also has few variations
but always with width smaller than width of the fuzzy
solution provided by γ = 0.

Even though for γ = 0.5 the reagents have a greater
uncertainty than for γ = 0, we have that the uncer-
tainty in the final product is smaller. Thus, in this
sense, the solution via J0.5 may describe this final
product in a more precisely way.

For γ = 0.75 we expect that the uncertainty increases
over time, since the value of γ is closer to 1 [16]. This
fact is corroborated in Figure 3.

Figure 4 illustrates the deterministic solution of the
system (1.2) with initial values [a0] = [x0] = [y0] = 1.

From the chemical point of view, the joint possibil-
ity distributions J0 and J0.5 produce solutions which
are qualitatively similar to the deterministic case (see
Figures 1, 2 and 4). On the other hand, the joint possi-
bility distribution J0.75 produces a numerical solution
with uncertainty so high that the final result does not
resemble (qualitatively) the deterministic case.

Hence we verify that, in the context of fuzzy sets the-
ory, the relationship of interactivity (as well as the
level of interactivity given by γ) influences in the final
product. This means that from the chemical point of
view, different quantities and/or concentration of the
reagents produce products with different uncertainties.

Figure 4: The deterministic numerical solution.

4 Final remarks

In this work we studied the Lotka-Volterra model of
oscillating chemical reactions from the point of view of
fuzzy sets theory. More precisely, in order to take into
account possible uncertainties in the concentration of
the reagents, we provided a numerical solution for this
model considering that the initial conditions are given
by interactive fuzzy numbers.

The relationship of interactivity models the depen-
dence of the final product with the concentration of
the initial and intermediary reagents. We verified that
the interactivity interferes in the width of the fuzzy
numerical solution, which describes the uncertainty of
concentration of the reagents and the final product.

Differently of a fuzzy initial value problem where the
derivative is obtained by a fuzzy process [2,4], here we
only used numerical methods for FIVPs provided in
the literature, to observe how the relationship of inter-
activity acts in the chemical reagents when the initial
conditions were given by interactive fuzzy numbers.
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