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Abstract

In Hliněná et al. (2014) the authors, inspired
by Karaçal and Kesicioğlu (2011), introduced
a pre-order induced by uninorms. This con-
tribution is devoted to a classification of fam-
ilies of uninorms by means of types of pre-
orders (and orders) they induce. Philosoph-
ically, the paper follows the original idea of
Clifford (1954).

Keywords: Pre-order induced by uninorm,
Representable uninorm, Uninorm, Uninorm
with continuous underlying operations, Lo-
cally internal uninorm.

1 Introduction

In this paper we study pre-orders generated by uni-
norms. The main idea is based on that of Karaçal and
Kesicioğlu [19], and follows the original idea of Clifford
[4]. The main idea of authors is to show a relationship
between families of uninorms and families of pre-orders
(partial orders, in some cases) they induce (see [16]).
In some sense, the pre-order (see Definion 11) follows
the original idea by Clifford [4]. Another relation in-
duced by uninorms, that is always a partial order (see
Definition 12), was proposed by Erteğrul et al. [11].
Here, the main intention of authors was to get a par-
tial order. But this relation (partial order) does not
extend the relation introduced by Clifford [4].

2 Preliminaries

In this section we review some well-known types of
monotone commutative monoidal operations on [0, 1]
and provide an overview of, from the point of view
of this contribution, important steps in introducing
orders (and pre-orders) induced by semigroups.

2.1 Known types of monotone commutative
monoidal operations on [0, 1]

In this part we give just very brief review of well-known
types of monotone commutative monoidal operations
on [0, 1]. For more details we recommend monographs
[2, 20].

Definition 1 (see, e.g., [20]). A triangular norm T (t-
norm for short) is a commutative, associative, mono-
tone binary operation on the unit interval [0, 1], ful-
filling the boundary condition T (x, 1) = x, for all
x ∈ [0, 1].

Definition 2 (see, e.g., [20]). A triangular conorm
S (t-conorm for short) is a commutative, associative,
monotone binary operation on the unit interval [0, 1],
fulfilling the boundary condition S(x, 0) = x, for all
x ∈ [0, 1].

Remark 1. If T is a t-norm, then

S(x, y) = 1− T (1− x, 1− y)

is a t-conorm and vice versa. We obtain a dual pair
(T, S) of a t-norm and a t-conorm.

Example 1. Well-known examples of triangular
norms and their dual t-conorms are:

• TM (x, y) = min(x, y), SM (x, y) = max(x, y),

• TP (x, y) = x.y, SP (x, y) = x + y − x.y,

• TL(x, y) = max(x+y−1, 0), SL(x, y) = min(x+
y, 1).

Casasnovas, Mayor [3] introduced divisible t-norms.

Definition 3 ([3]). Let L be a bounded lattice and
T : L×L→ L be a t-norm. T is said to be divisible if
the following conditions are satisfied for all (x, y) ∈ L2

(x ≤ y) ⇒ (∃z ∈ L)(T (y, z) = x). (1)

Of course, a t-norm T : [0, 1]2 → [0, 1] is divisible if
and only if it is continuous.

11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Studies in Uncertainty Modelling, volume 1

595



Definition 4 (see, e.g., [2]). Let ∗ : [0, 1]2 → [0, 1] be
a binary commutative operation. Then

(i) element c is said to be idempotent if c ∗ c = c,

(ii) element e is said to be neutral if e ∗ x = x for all
x ∈ L,

(iii) element a is said to be annihilator if a ∗ x = a for
all x ∈ L.

Definition 5 ([26]). A uninorm U is a function U :
[0, 1]2 → [0, 1] that is increasing, commutative, asso-
ciative and has a neutral element e ∈ [0, 1].

Remark 2. For any uninorm with neutral element
equal to e we denote

A(e) = [0, e[× ]e, 1] ∪ ]e, 1]× [0, e[ .

1. If e /∈ {0, 1} is the neutral element of U , we say
that U is a proper uninorm.

2. Every uninorm U has a distinguished element a
called annihilator, for which the following holds
U(a, x) = U(0, 1) = a. A uninorm U is said to
be conjunctive if U(x, 0) = 0, and U is said to be
disjunctive if U(1, x) = 1, for all x ∈ [0, 1].

Lemma 1 ([12]). Let U be a uninorm with the neutral
element e. Then, for (x, y) ∈ [0, 1]2 the following holds

(i) T (x, y) = U(ex,ey)
e is a t-norm,

(ii) S(x, y) = U((1−e)x+e,(1−e)y+e)−e
1−e is a t-conorm.

For all (x, y) ∈ A(e) we have

min(x, y) ≤ U(x, y) ≤ max(x, y).

Definition 6. Let U be a uninorm. We say that U is
internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2.
A uninorm U is locally internal on a set G ⊂ [0, 1]2 if
U(x, y) ∈ {x, y} for all (x, y) ∈ G.

Remark 3. (a) Particularly, a uninorm U is locally
internal on the boundary if U(x, 0) ∈ {x, 0} and
U(x, 1) ∈ {x, 1} holds for all x ∈ [0, 1]. Some ex-
amples of uninorms which are not locally internal
on the boundary can be found, e.g., in [14, 15, 16],
see also Fig. 1.

(b) An important family of uninorms is that of inter-
nal ones. From results by Drewniak and Drygaś
[6] follows that the family of all internal uninorms
is identical with that of idempotent uninorms.
Some further study of locally internal uninorms
can be found, e.g., in [8] and in literature refer-
enced therein.

From results in [6, 21, 25] we have the following.
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Figure 1: Example of a uninorm not locally internal
on the boundary (the L-shaped areas of constantness
being right-side closed)

Lemma 2. Let U be a uninorm. U is idempotent if
and only if it is U internal.

Proposition 1 (E.g., [10]). Let f : [−∞,∞] → [0, 1]
be an increasing bijection. Then

U(x, y) = f−1
(
f(x) + f(y)

)
(2)

is a uninorm that is continuous everywhere except at
points (0, 1) and (1, 0), and is strictly increasing on

]0, 1[
2
. U is conjunctive if we adopt the convention

−∞ +∞ = −∞, and U is disjunctive adopting the
convention −∞+∞ =∞.

Definition 7 (E.g., [10]). The uninorm U fulfilling
formula (2) for an increasing bijection f : [−∞,∞]→
[0, 1] adopting either of the conventions, −∞ +∞ =
−∞ or −∞ +∞ = ∞, is said to be a representable
uninorm.

Remark 4. Representable uninorms, under the name
aggregative operators were studied already by Dombi
[5].

Another important class of uninorms is that of contin-
uous ones on ]0, 1[2. These uninorms were character-
ized by Hu and Li [17], and further studied by Drygaś
[7]. From results in [17] we have the following charac-
terization.

Proposition 2. A uninorm U with neutral element
e ∈ ]0, 1[ is continuous on on ]0, 1[2 if and only if one
of the following conditions is satisfied:

(i) U is representable,

(ii) there exists 0 < a < e, a continuous t-norm T
a representable uninorm Ur and an increasing bi-
jection ϕ : [a, 1]→ [0, 1] such that
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U(x, y) = ϕ−1
(
Ur(ϕ(x), ϕ(y))

)
for (x, y) ∈

[a, 1]2,
U(x, y) = aT (xa ,

y
a ) for (x, y) ∈ [0, a]2,

U(x, y) = min{x, y} for (x, y) ∈ [0, a[ ∩ ]a, 1[ ∪
]a, 1[ ∩ [0, a[,
and U is locally internal on the boundary,

(iii) or there exists e < b < 1 a continuous t-conorm S
and a representable uninorm Ur and an increasing
bijection ϕ : [0, b]→ [0, 1] such that
U(x, y) = ϕ−1

(
Ur(ϕ(x), ϕ(y))

)
for (x, y) ∈ [0, b]2,

U(x, y) = b+(1−b)S(x−b1−b ,
y−b
1−b ) for (x, y) ∈ [b, 1]2,

U(x, y) = max{x, y} for (x, y) ∈ ]b, 1] ∩ [0.b[ ∪
[0, b[ ∩ ]b, 1],
and U is locally internal on the boundary.

2.2 An overview of pre-orders induced by a
semigroup

The study of orders (pre-orders) induced by a semi-
group operation had started by Clifford [4]. Later,
Hartwig [13] and independently also Nambooripad
[23], defined a partial order on regular semigroups.
Their definition is the following.

Definition 8 ([13, 23]). Let (S,⊕) be a semigroup and
ES the set of its idempotent elements. Then

a ≤⊕ b ⇔ (∃e, f ∈ ES)(a = b⊕ e = f ⊕ b).

If the relation ≤⊕ is a partial order on S, it is called
natural.

Definition 8 was generalized by Mitch [22].

Definition 9 ([22]). Let (S,⊕) be an arbitrary semi-
group. By ≤⊕ we denote the following relation

a ≤⊕ b ⇔ a = b⊕ z1 = z2 ⊕ b, a⊕ z1 = a

for some z1, z2 ∈ ES1 , where

S1 =


S if S has a neutral element,

S ∪ {e} otherwise, where e plays

the role of the neutral element,

and ES1 is the set of all idempotents of S1.

Lemma 3 ([22]). Let (S,⊕) be an arbitrary semi-
group. The relation ≤⊕ is reflexive and antisymmetric
on S.

Proposition 3 ([22]). Let (S,⊕) be an arbitrary semi-
group. The relation

a .⊕ b ⇔ a = x⊕ b = b⊕ y (3)

for some x, y ∈ S1, is a partial order on S.

From now on, we restrict our attention to commutative
semigroups. Lemma 3 and Proposition 3 immediately
imply the following.

Lemma 4. Let (S,⊕) be a commutative semigroup.
By a.⊕ we denote the set

a.⊕ = {z ∈ S; z .⊕ a},

where a ∈ S. Then for all a, b ∈ S it holds that a .⊕ b
if and only if a.⊕ ⊆ b.⊕ .

Directly by Definition 9 we get

Proposition 4. Let (S,⊕) be a commutative semi-
group. Then the set a.⊕ is an ideal in (S,⊕).

Lemma 5. Let (S,⊕) be a commutative semigroup.
Let IS be an ideal of (S,⊕). Then (IS ,⊕IS ) is a sub-
semigrup of (S,⊕), where ⊕IS = ⊕ � I2S.

Karaçal and Kesicioğlu [19] defined a partial order on
bounded lattices L by means of t-norms.

Definition 10 ([19]). Let L be a bounded lattice and
T : L × L → L a t-norm. We write x �T y for
arbitrary x, y ∈ L, if there exists z ∈ L such that x =
T (y, z).

Proposition 5 ([19]). Let L be a bounded lattice and
T : L × L → L a t-norm. Then the relation �T is a
partial order on L.

Remark 5. For arbitrary t-norm T , the partial order
�T from Definition 10 extends the partial order .T
from Definition 9 in the following sense:
let L be arbitrary bounded lattice and T a commuta-
tive semigroup-operation on L with a neutral element
such that (L,�T ) is a partially ordered set. Then

a .T b ⇒ a �T b

for all a, b ∈ L.

Remark 6. Concerning a correspondence between
properties of binary aggregation function A : L2 → L
and relation �A (changing a t-norm T for A in Defi-
nition 10), the following can be said:

• if A has a neutral element, or A is idempotent,
then �A is reflexive,

• if A is associative, then �A is transitive,

• the anti-symmetry of �A fails if there exist ele-
ments x 6= z and y1, y2 such that z = A(x, y1)
and x = A(z, y2). Hence, if one of the following

x �A z ⇒ x ≤L z,

x �A z ⇒ z ≤L x

holds then �A is anti-symmetric.

Hliněná et al. [16] introduced the following relation
�U .
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Definition 11 ([16]). Let U : [0, 1]2 → [0, 1] be an
arbitrary uninorm. By �U we denote the following
relation

x �U y if there exists ` ∈ [0, 1] such that U(y, `) = x.

Immediately by Definition 11 we get the next lemma.

Lemma 6. Let U be an arbitrary uninorm. Then �U
is transitive and reflexive. If a and e are the annihila-
tor and the neutral elements of U , respectively, then

a �U x �U e

holds for all x ∈ [0, 1].

Remark 7. In Definition 11 we have used the same
notation �U for the pre-order defined from a uninorm
U , as in Definition 10 for the corresponding partial
order �T defined from a t-norm T . These two relations
really coincide if U = T , i.e., the notation should not
cause any problems.

The pre-order �U extends the partial order .U from
Definition 9 in the following sense.

Proposition 6. Let U be an arbitrary uninorm. Then

x .U y ⇒ x �U y (4)

for all (x, y) ∈ [0, 1]2.

A different type of partial order induced by uninorms
has been defined by Ertuğrul et al. [11].

Definition 12 ([11]). Let U be a uninorm and e ∈
]0, 1[ its neutral element. For (x, y) ∈ [0, 1]2 denote
x�U y if one of the following properties is satisfied:

1. there exists ` ∈ [0, e] such that x = U(y, `) and
(x, y) ∈ [0, e]2,

2. there exists ` ∈ [e, 1] such that y = U(x, `) and
(x, y) ∈ [e, 1]2,

3. 0 ≤ x ≤ e ≤ y ≤ 1.

Proposition 7 ([11]). For an arbitrary uninorm U ,
the relation �U from Definition 12 is a partial order.

Example 2. Consider the following uninorm U

U(x, y) =

{
min(x, y) if (x, y) ∈ [0, 1

2 ]2,

max(x, y) otherwise.

Then �U coincides with the usual order of [0, 1], while
x .U y if one of the following possibilities is satisfied

• y ≤ x for x > 0.5,

• x ≤ y for (x, y) ∈ [0, 0.5[
2
,

• y = 0.5.

Remark 8. Let U be a uninorm. To compare the re-
lation �U from Definition 11 with �U from Definition
12, the following should be remarked.

(i) The relation �U , given in Definition 11 is a pre-
order, but not necessarily a partial order. Unlike this,
the relation �U defined by Definition 12, is always a
partial order.

(ii) As illustrated by Example 2, the partial order �U
does not necessarily extends the partial order .U on
the semigroup ([0, 1], U), i.e.,

x .U y 6⇒ x�U y.

As shown by Proposition 6, the pre-order �U always
extends the partial order .U on ([0, 1], U), see formula
(4).

Further in the text, we will consider only the pre-order
�U to distinguish several families of uninorms.

Definition 13. Let U be an arbitrary uninorm.

(i) For (x, y) ∈ [0, 1]2 we denote x ∼U y if x �U y
and y �U x.

(ii) For (x, y) ∈ [0, 1]2 we denote x ‖U y if neither
x �U y nor y �U x holds,
and dx ∦U y if x �U y or y �U x.

(iii) For arbitrary x ∈ [0, 1] we denote x∼U
= {z ∈

[0, 1]; z ∼U x}.

3 Some distinguished families of
uninorms and properties of the
corresponding pre-orders

We are going to study a relationship between some
distinguished families U of uninorms on the one hand
and properties of the corresponding pre-orders �U for
U ∈ U on the other hand.

A direct consequence to Lemma 6 is the following.

Corollary 1. Let U be a uninorm. The following
holds for all x ∈ [0, 1]:

(i) 0 �U x if and only if U is conjunctive,

(ii) 1 �U x if and only if U is disjunctive.

3.1 Locally internal uninorms

In this part we distinguish three types of locally inter-
nal uninorms:
– on the boundary,
– on A(e),
– on [0, e]2 ∪ [e, 1]2.
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Proposition 8. Let U be a uninorm. It is locally in-
ternal on the boundary if and only if for every element
x ∈ [0, 1]

0 ∦U x and 1 ∦U x.

Proposition 9. Let U be a uninorm with neutral el-
ement e. It is locally internal on A(e) if and only if
�U is a partial order and for every element x ∈ [0, e]
and y ∈ [e, 1] we have

x ∦U y.

Remark 9. For an arbitrary uninorm U and for a
pair (x, y) ∈ [0, 1]2, we have

U(x, y) = x ⇒ x �U y,

U(x, y) = y ⇒ y �U x.

Results in [8] imply that if a uninorm U is locally in-
ternal on A(e), there are three possibilities:

(a) U(x, y) = min{x, y} for all (x, y) ∈ A(e),

(b) U(x, y) = max{x, y} for all (x, y) ∈ A(e),

(c) there exists a (not necessarily strictly) decreasing
function f : [0, e[ → ]e, 1] such that, for (x, y) ∈
[0, e[× ]e, 1], we have

U(x, y)


= x if y < f(x),

= y if y > f(x),

∈ {x, y} if y = f(x).

Proposition 10. Let U be a uninorm. If U is locally
internal on [0, e]2 ∪ [e, 1]2, then �U is a linear order.

Example 3. Let U : [0, 1]2 → [0, 1] be defined by

U(x, y) =


xy if max{x, y} ≤ 0.6,

min{1, x + y} if min{x, y} ≥ 0.6,

min{x, y} otherwise.

(5)

Then U is a uniform with its neutral element e = 0.6
and annihilator a = 0. U generates the following rela-
tion �U

x �U y ⇔

{
x ≤ y and x < 0.6,

x ≥ y and x, y ≥ 0.6.

The uninorm U is just locally internal on A(e) and not
internal, but �U is a linear order.

3.2 Uninorms with continuous underlying
t-norm and t-conorm

Results in [19] imply the following.

Proposition 11. Let U be a proper uninorm with a
neutral element e. Then U has continuous underlying
t-norm and t-conorm if and only if the following hold

x ≤ y ⇒ x �U y for (x, y) ∈ [0, e]2,

y ≤ x ⇒ x �U y for (x, y) ∈ [e, 1]2.

Propositions 9 and 11 have the following corollary.

Corollary 2. Let U be a proper uninorm. Then U is
locally internal on A(e) and with continuous underly-
ing t-norm and t-conorm if and only if �U is a linear
order.

Applying Proposition 2 to the pre-order �U we get the
following characterization of representable uninorms.

Proposition 12. A uninorm U is representable if and
only if for all (x, y) ∈ ]0, 1[

2
we have x ∼U y.

Proposition 2 implies the following characterization of
uninorms continuous on ]0, 1[

2
.

Proposition 13. Let U be a proper uninorm with neu-
tral element e, which is not representable. Then it is
continuous on ]0, 1[

2
if and only if one of the following

is valid.

(i) There exists 0 < a < e such that

1. x ∼U y for all (x, y) ∈ ]a, 1[
2
,

2. x �U y ⇔ x ≤ y for all (x, y) ∈ [0, a]2.

(ii) There exists e < b < 1 such that

1. x ∼U y for all (x, y) ∈ ]0, b[
2
,

2. x �U y ⇔ x ≥ y for all (x, y) ∈ [b, 1]2.

3.3 Some other classes of uninorms on [0, 1]

First, we provide some results on uninorms with an
area of constantness in [0, e]2 or [e, 1]2.

Proposition 14 ([14]). Let U be a proper uninorm
having e as neutral element. Let y > e be an idem-
potent element of U . If there exists x < e such that
U(x, y) = x̃ ∈ ]x, e[ then

U(z, y) = x̃ and U(z, x) = U(x̃, x) for all z ∈ [x, x̃].

Dually to Proposition 14 we get

Proposition 15. Let U be a proper uninorm having
e as neutral element. Let y < e be an idempotent
element of U . If there exists x > e such that U(x, y) =
x̃ ∈ ]e, x[ then

U(z, y) = x̃ and U(z, x) = U(x̃, x) for all z ∈ [x̃, x].

Propositions 14 and 15 have the following corollary.
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Corollary 3. Let U be a proper uninorm having e as
neutral element.

(i) Assume x < e is an idempotent element of U .
Then either x ∦U y for all y ∈ [e, 1] or there exists
an interval ]a, b] ⊂ [e, 1] such that x ‖U z for all
z ∈ ]a, b].

(ii) Assume x > e is an idempotent element of U .
Then either x ∦U y for all y ∈ [0, e] or there exists
an interval [a, b[ ⊂ [0, e] such that x ‖U z for all
z ∈ [a, b[.

Kalina and Král’ [18] introduced uninorms which are

strictly increasing on ]0, 1[
2
, but not continuous. The

construction method was further studied in [1, 27].
Since we are not able to distinguish among continu-
ous t-norms T (t-conorms S) by means of the relation
�T (�S), we are not able to characterize unambigu-

ously uninorms which are strictly increasing on ]0, 1[
2
.

We present the main idea of the construction method,
paving, in case the basic ‘brick’ is the product t-norm
Tπ:

(a) we split the interval ]0, 1[ into infinitely countably
many disjoint right-closed subintervals {Ij ; j ∈
J }, where J is an index set and (J ,~, j0) is a
commutative increasing monoid and j0 is its neu-
tral element,

(b) ϑj : Ij → ]0, 1] is an increasing bijection.

The resulting uninorm is defined by:

Up(x, y) =ϑ−1
i~j

(
Tπ(ϑi(x), ϑj(y))

)
for x ∈ Ji, y ∈ Jj ,

0 if min{x, y} = 0, (6)

1 otherwise.

Concerning the properties of �Up there are two pos-
sibilities depending whether (J ,~, j0) is a group or
not.

Proposition 16. Let Up be a uninorm defined by (6),
(J ,~, j0) be a commutative group and {Ij ; j ∈ J } be
a system of disjoint right-closed intervals whose union
is ]0, 1[. Then:

(i) for every j ∈ J and all (x, y) ∈ I2j we have

x �Up
y ⇔ x ≤ y,

(ii) for all i, j ∈ J , i 6= j, all x ∈ Ji and y ∈ Jj we
have

x ∼Up
y ⇔ ϑj(y) = ϑi(x),

x � lUp
y ⇔ ϑi(x) ≤ ϑj(y).

Proposition 17. Let Up be a uninorm defined by (6),
(J ,~, j0) be a commutative monoid without inverse el-
ements, with the neutral element j0 and {Ij ; j ∈ J } be
a system of disjoint right-closed intervals whose union
is ]0, 1[. Then:

(i) for every j ∈ J and all (x, y) ∈ I2j we have

x �Up
y ⇔ x ≤ y,

(ii) for all i, j ∈ J , i 6= j, all x ∈ Ji and y ∈ Jj we
have
x �Up y ⇔ ϑi(x) ≤ ϑj(y) and (∃k ∈ J )(j ~ k =
i),
x ‖Up

y if and only if one of the following holds
(6 ∃k ∈ J )(j ~ k = i ∨ i~ k = j),
(∃k ∈ J )(j ~ k = i) and ϑi(x) > ϑj(y),
(∃k ∈ J )(i~ k = j) and ϑi(x) < ϑj(y).

We could formulate dual theorems to Propositions 16
and 17 for the case when the basic ‘brick’ is the prob-
abilistic sum t-conorm.

4 Conclusion

The results presented in this paper are aimed to char-
acterize classes of uninorms by means of a pre-order
the induce. We have succeeded in getting full charac-
terization for uninorms which are continuous on ]0, 1[

2
,

as well as for uninorms with continuous underlying t-
norm and t-conorm, and for those which are locally
internal on the boundary and on A(e). Further, it is
possible to distinguish whether a uninorm is conjunc-
tive or disjunctive. In some other cases we have partial
results.
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[14] D. Hliněná, M. Kalina, P. Král’, Non-
representable uninorms. In: EUROFUSE
2013, Uncertainty and Imprecision Modelling in
Decision Making. Servicio de Publicaciones de la
Universidad de Oviedo, Oviedo, 2013, 131–138.
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