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Abstract

In Hlinénd et al. (2014) the authors, inspired
by Karacal and Kesicioglu (2011), introduced
a pre-order induced by uninorms. This con-
tribution is devoted to a classification of fam-
ilies of uninorms by means of types of pre-
orders (and orders) they induce. Philosoph-
ically, the paper follows the original idea of
Clifford (1954).
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1 Introduction

In this paper we study pre-orders generated by uni-
norms. The main idea is based on that of Karacal and
Kesicioglu [19], and follows the original idea of Clifford
[4]. The main idea of authors is to show a relationship
between families of uninorms and families of pre-orders
(partial orders, in some cases) they induce (see [16]).
In some sense, the pre-order (see Definion 11) follows
the original idea by Clifford [4]. Another relation in-
duced by uninorms, that is always a partial order (see
Definition 12), was proposed by Ertegrul et al. [11].
Here, the main intention of authors was to get a par-
tial order. But this relation (partial order) does not
extend the relation introduced by Clifford [4].

2 Preliminaries

In this section we review some well-known types of
monotone commutative monoidal operations on [0, 1]
and provide an overview of, from the point of view
of this contribution, important steps in introducing
orders (and pre-orders) induced by semigroups.

2.1 Known types of monotone commutative
monoidal operations on [0, 1]

In this part we give just very brief review of well-known
types of monotone commutative monoidal operations
on [0, 1]. For more details we recommend monographs
[2, 20].
Definition 1 (see, e.g., [20]). A triangular norm T (t-
norm for short) is a commutative, associative, mono-
tone binary operation on the unit interval [0,1], ful-
filling the boundary condition T(x,1) = =z, for all
x € [0,1].
Definition 2 (see, e.g., [20]). A triangular conorm
S (t-conorm for short) is a commutative, associative,
monotone binary operation on the unit interval [0, 1],
fulfilling the boundary condition S(x,0) = z, for all
x € [0,1].
Remark 1. If T is a t-norm, then

S(.T,y) = 17T(171’717y)
is a t-conorm and vice versa. We obtain a dual pair

(T, S) of a t-norm and a t-conorm.

Example 1. Well-known examples of triangular
norms and their dual t-conorms are:

L4 TZW(’I7y) = min(xa y)7 S]Vf(x7y) = maX(I7y)a

o Ip(x,y) =2y, Sp(z,y)=z+y—zy,
o Tr(z,y) =max(z+y—1,0), Sr(x,y)= min(x+
y, 1).

Casasnovas, Mayor [3] introduced divisible t-norms.

Definition 3 ([3]). Let L be a bounded lattice and
T:LxL— L beat-norm. T is said to be divisible if
the following conditions are satisfied for all (z,y) € L*

(z<y) = (FzeL)(T(y,2) = ). (1)

Of course, a t-norm T : [0,1]> —
and only if it is continuous.

[0,1] is divisible if
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Definition 4 (see, e.g., [2]). Let x : [0,1]> = [0, 1] be
a binary commutative operation. Then

(i) element c is said to be idempotent if cx ¢ = ¢,

(ii) element e is said to be neutral if e x x = = for all
x €L,

(iii) element a is said to be annihilator if a x x = a for
allz € L.

Definition 5 ([26]). A uninorm U is a function U :
[0,1]2 — [0,1] that is increasing, commutative, asso-
ciative and has a neutral element e € [0,1].

Remark 2. For any uninorm with neutral element
equal to e we denote

A(e) =[0,¢e[ x ]e,1] U Je, 1] x [0,¢].

1. If e ¢ {0,1} is the neutral element of U, we say
that U is a proper uninorm.

2. Every uninorm U has a distinguished element a
called annihilator, for which the following holds
U(a,z) = U(0,1) = a. A uninorm U is said to
be conjunctive if U(x,0) = 0, and U is said to be
disjunctive if U(1,z) = 1, for all z € [0,1].

Lemma 1 ([12]). Let U be a uninorm with the neutral
element e. Then, for (z,y) € [0,1]? the following holds

(i) T(a,y) = S

(i) S(z,y) =

18 a t-morm,

U((1—e)z+e,(1—e)y+e)—e

T-c 18 a t-conorm.

For all (z,y) € A(e) we have
min(z, y) < U(z,y) < max(z,y).

Definition 6. Let U be a uninorm. We say that U is
internal if U(x,y) € {z,y} for all (x,y) € [0, 1]>.

A uninorm U is locally internal on a set G C [0,1]? if
U(z,y) € {z,y} for all (z,y) € G.

Remark 3. (a) Particularly, a uninorm U is locally
internal on the boundary if U(z,0) € {z,0} and
U(z,1) € {z,1} holds for all z € [0,1]. Some ex-
amples of uninorms which are not locally internal
on the boundary can be found, e.g., in [14, 15, 16],
see also Fig. 1.

An important family of uninorms is that of inter-
nal ones. From results by Drewniak and Drygas
[6] follows that the family of all internal uninorms
is identical with that of idempotent uninorms.
Some further study of locally internal uninorms
can be found, e.g., in [8] and in literature refer-
enced therein.

From results in [6, 21, 25] we have the following.
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Figure 1: Example of a uninorm not locally internal
on the boundary (the L-shaped areas of constantness
being right-side closed)

Lemma 2. Let U be a uninorm. U is idempotent if
and only if it is U internal.

Proposition 1 (E.g., [10]). Let f : [—00,00] — [0, 1]
be an increasing bijection. Then

Uz,y) = (f(=) + f(v)) (2)

is a uninorm that is continuous everywhere except at
points (0,1) and (1,0), and is strictly increasing on
}0,1[2. U is conjunctive if we adopt the convention
—00 + 00 = —oo, and U s disjunctive adopting the
convention —oo + 00 = 00.

Definition 7 (E.g., [10]). The uninorm U fulfilling
formula (2) for an increasing bijection f : [—o0, 00] —
[0,1] adopting either of the conventions, —ooc + 0o =
—00 or —00 4+ 00 = 00, is said to be a representable
uninorm.

Remark 4. Representable uninorms, under the name
aggregative operators were studied already by Dombi

[5]-

Another important class of uninorms is that of contin-
uous ones on |0, 1[2. These uninorms were character-
ized by Hu and Li [17], and further studied by Dryga$
[7]. From results in [17] we have the following charac-
terization.

Proposition 2. A uninorm U with neutral element
e €10, 1[ is continuous on on ]0,1[* if and only if one
of the following conditions is satisfied:

(i) U is representable,

(ii) there exists 0 < a < e, a continuous t-norm T
a representable uninorm U, and an increasing bi-
jection ¢ : [a,1] — [0,1] such that
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ff(w], y) = o HUrle(x), 0(y))) for (z,y) €
a, 1]?

Ulz, y) =aT(%,Y) for (z,y) € [0,a]?,

]U(:c[y)[a rEmn{z ,y} for (x,y) € [0,a[N]a,1[ U

and U 1is locally internal on the boundary,

(iii) or there existse < b < 1 a continuous t-conorm S
and a representable uninorm U, and an increasing
bijection ¢ : [0,b] — [0,1] such that

Ulz,y) = ¢ (U (o(2), <y>>> for (z,y) € [0,4]%,
U(z,y) = b+(1-b)S(4=¢, ¥=3) for (w,y) € [b,1]2,
Uz, y) = max{z,y} for (r,y) € |b,1] N [0.b] U

[0,6[ )b, 1],

and U s locally internal on the boundary.

2.2 An overview of pre-orders induced by a
semigroup

The study of orders (pre-orders) induced by a semi-
group operation had started by Clifford [4]. Later,
Hartwig [13] and independently also Nambooripad
[23], defined a partial order on regular semigroups.
Their definition is the following.

Definition 8 ([13, 23]). Let (S, ®) be a semigroup and
Es the set of its idempotent elements. Then

a<gb & (Je,f€Eg)la=bde=fdb).

If the relation <g is a partial order on S, it is called
natural.

Definition 8 was generalized by Mitch [22].

Definition 9 ([22]). Let (S,®) be an arbitrary semi-
group. By <gq we denote the following relation

a<lgb & a=bDPz=28b adz=a
for some z1, 20 € Eg1, where

S if S has a neutral element,
St=<S8SU{el otherwise, where e plays
the role of the neutral element,

and Eg1 is the set of all idempotents of S*.

Lemma 3 ([22]). Let (S,®) be an arbitrary semi-
group. The relation <g is reflexive and antisymmetric

on S.

Proposition 3 ([22]). Let (S,®) be an arbitrary semi-
group. The relation

a<egb & a=xPb=0by (3)
for some x,y € S, is a partial order on S.

From now on, we restrict our attention to commutative
semigroups. Lemma 3 and Proposition 3 immediately
imply the following.

Lemma 4. Let (S,®) be a commutative semigroup.
By a<, we denote the set

ag, ={z €552 Sg a},

where a € S. Then for all a,b € S it holds that a Sg b
if and only if a< C b<, .

Directly by Definition 9 we get

Proposition 4. Let (S,®) be a commutative semi-
group. Then the set a< is an ideal in (S, ®).

Lemma 5. Let (S,®) be a commutative semigroup.
Let Is be an ideal of (S,®). Then (Is, @) is a sub-
semigrup of (S,®), where &1y = & | I2.

Karagal and Kesicioglu [19] defined a partial order on
bounded lattices L by means of t-norms.

Definition 10 ([19]). Let L be a bounded lattice and
T:LxL — L atnorm. We writex <p y for
arbitrary x,y € L, if there exists z € L such that © =
T(y,z).

Proposition 5 ([19]). Let L be a bounded lattice and
T:LxL — L atnorm. Then the relation <1 is a
partial order on L.

Remark 5. For arbitrary t-norm 7', the partial order
<7 from Definition 10 extends the partial order <
from Definition 9 in the following sense:

let L be arbitrary bounded lattice and T" a commuta-
tive semigroup-operation on L with a neutral element
such that (L, <7) is a partially ordered set. Then

a,STb = a=7b

for all a,b € L.

Remark 6. Concerning a correspondence between
properties of binary aggregation function A : L? — L
and relation <4 (changing a t-norm 7" for A in Defi-
nition 10), the following can be said:

e if A has a neutral element, or A is idempotent,
then <4 is reflexive,

e if A is associative, then <4 is transitive,

e the anti-symmetry of <4 fails if there exist ele-
ments © # z and y;,y2 such that z = A(z,y)
and x = A(z,y2). Hence, if one of the following

r=a2 = <Lz
r=a2z = z<p=x

holds then <4 is anti-symmetric.

Hlinénd et al. [16] introduced the following relation
=v-
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Definition 11 ([16]). Let U : [0,1]> — [0,1] be an
arbitrary uninorm. By <y we denote the following
relation

x <y y if there exists £ € [0, 1] such that U(y, ) = .

Immediately by Definition 11 we get the next lemma.

Lemma 6. Let U be an arbitrary uninorm. Then <y
1s transitive and reflexive. If a and e are the annihila-
tor and the neutral elements of U, respectively, then

a=yr3pe

holds for all x € [0, 1].

Remark 7. In Definition 11 we have used the same
notation <y for the pre-order defined from a uninorm
U, as in Definition 10 for the corresponding partial
order <7 defined from a t-norm 7. These two relations
really coincide if U = T, i.e., the notation should not
cause any problems.

The pre-order <y extends the partial order <y from
Definition 9 in the following sense.

Proposition 6. Let U be an arbitrary uninorm. Then

rSvy = x=Xuy (4)

for all (z,y) € [0,1]2.
A different type of partial order induced by uninorms

has been defined by Ertugrul et al. [11].

Definition 12 ([11]). Let U be a uninorm and e €
10,1 its neutral element. For (z,y) € [0,1]? denote
x <y y if one of the following properties is satisfied:

1. there exists { € [0,¢e] such that x = U(y,¢) and
(z,y) € [0, €],
2. there exists ¢ € [e,1] such that y = U(x, ) and

(z,9) € [e,1]?,
3. 0<zrz<e<Ly<l1.

Proposition 7 ([11]). For an arbitrary uninorm U,
the relation <y from Definition 12 is a partial order.

Example 2. Consider the following uninorm U

Ux,y) = {min(w,y) if (z,%) € [0, %]27

max(x,y) otherwise.

Then <y coincides with the usual order of [0, 1], while
x <y y if one of the following possibilities is satisfied

o y <z for x> 0.5,

o x <yfor (z,y) € [0,0.5[2,

e y=0.5.

Remark 8. Let U be a uninorm. To compare the re-
lation <y from Definition 11 with <y from Definition
12, the following should be remarked.

(i) The relation =<y, given in Definition 11 is a pre-
order, but not necessarily a partial order. Unlike this,
the relation <y defined by Definition 12, is always a
partial order.

(ii) As illustrated by Example 2, the partial order <
does not necessarily extends the partial order <y on
the semigroup ([0, 1],U), i.e.,

rSuy#Ardyy.

As shown by Proposition 6, the pre-order <y always
extends the partial order <y on ([0, 1], U), see formula

(4).

Further in the text, we will consider only the pre-order
=<y to distinguish several families of uninorms.

Definition 13. Let U be an arbitrary uninorm.

(i) For (z,y) € [0,1]*> we denote x ~y y if x <y y
and y Sy x.

(ii) For (z,y) € [0,1]*> we denote x ||y y if neither
x 2y y nory 3y x holds,
and de ffy y if x [y y ory Sp .

(iii) For arbitrary x € [0,1] we denote x., = {z €
[0,1]; 2 ~y z}.

3 Some distinguished families of
uninorms and properties of the
corresponding pre-orders

We are going to study a relationship between some
distinguished families &/ of uninorms on the one hand
and properties of the corresponding pre-orders <y for
U € U on the other hand.

A direct consequence to Lemma 6 is the following.

Corollary 1. Let U be a uninorm. The following
holds for all x € [0, 1]:

(i) 0 Xy z if and only if U is conjunctive,

(ii) 1 <y z if and only if U is disjunctive.
3.1 Locally internal uninorms

In this part we distinguish three types of locally inter-
nal uninorms:

— on the boundary,

—on Ae),

—on [0,e]? U e, 1]2.
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Proposition 8. Let U be a uninorm. It is locally in-
ternal on the boundary if and only if for every element
x € [0,1]

Ofvz and 1l z.
Proposition 9. Let U be a uninorm with neutral el-
ement e. It is locally internal on A(e) if and only if

=u 1s a partial order and for every element x € [0, €]
and y € le, 1] we have

T fu y.

Remark 9. For an arbitrary uninorm U and for a
pair (z,y) € [0, 1]?, we have

U(xay) =T = X jU Y,

Results in [8] imply that if a uninorm U is locally in-
ternal on A(e), there are three possibilities:

(a) U(z,y) = min{z,y} for all (z,y) € A(e),
(b) U(z,y) = max{z,y} for all (x,y) € A(e),

(c) there exists a (not necessarily strictly) decreasing
function f : [0,e[ — ]e, 1] such that, for (z,y) €
[0, €[ x ]e, 1], we have

= ity < f(x),
Ulz,y){ =y if y > f(x),
€{z,y} ify=f(z).

Proposition 10. Let U be a uninorm. If U is locally
internal on [0,¢e]? U [e,1]2, then =y is a linear order.

Example 3. Let U : [0,1]? — [0, 1] be defined by

Ty if max{z,y} < 0.6,
U(z,y) = ¢ min{l,z +y} if min{z,y} > 0.6, (5)
min{z, y} otherwise.

Then U is a uniform with its neutral element e = 0.6
and annihilator a = 0. U generates the following rela-
tion <y

z <y andz <0.6,

r = =4
=uy {x>y and z, y > 0.6.

The uninorm U is just locally internal on A(e) and not
internal, but <y is a linear order.

3.2 Uninorms with continuous underlying
t-norm and t-conorm

Results in [19] imply the following.

Proposition 11. Let U be a proper uninorm with a
neutral element e. Then U has continuous underlying
t-norm and t-conorm if and only if the following hold

x<y = z=3yy for(x,y) €0,
y<z = z=py for(z,y) € le,1]%

)

Propositions 9 and 11 have the following corollary.

Corollary 2. Let U be a proper uninorm. Then U is
locally internal on A(e) and with continuous underly-
ing t-norm and t-conorm if and only if <y is a linear
order.

Applying Proposition 2 to the pre-order <y we get the
following characterization of representable uninorms.

Proposition 12. A uninorm U is representable if and
only if for all (z,y) €10,1[° we have z ~y y.
Proposition 2 implies the following characterization of
uninorms continuous on J0, 1[%.

Proposition 13. Let U be a proper uninorm with neu-
tral element e, which is not representable. Then it is
continuous on |0, 1[2 if and only if one of the following
1s valid.

(1) There exists 0 < a < e such that
1.z ~y y for all (z,y) €la, 172,
2. x 2y & x <y foral (x,y) €[0,a]?

(ii) There exists e < b < 1 such that

1. z ~y y for all (z,y) € ]O’b[zy
2. x2py & x>y foral (z,y) € b1

3.3 Some other classes of uninorms on [0, 1]
First, we provide some results on uninorms with an
area of constantness in [0, €]? or [e, 1]2.

Proposition 14 ([14]). Let U be a proper uninorm
having e as neutral element. Let y > e be an idem-
potent element of U. If there exists x < e such that
Ux,y) = € ]z, e[ then

U(z,y) =% and U(z,x2) =U(z,x) for all z € [z,Z].

Dually to Proposition 14 we get

Proposition 15. Let U be a proper uninorm having
e as neutral element. Let y < e be an idempotent
element of U. If there exists x > e such that U(x,y) =
Z € le, x| then

U(z,y) =% and U(z,x) =U(z,x) for all z € [Z,x].

Propositions 14 and 15 have the following corollary.
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Corollary 3. Let U be a proper uninorm having e as
neutral element.

(i) Assume x < e is an idempotent element of U.
Then either x Yy y for ally € [e, 1] or there exists
an interval |a,b] C [e, 1] such that = |y z for all
z € la,b].

(ii) Assume x > e is an idempotent element of U.

Then either x Yy y for ally € [0, €] or there exists

an interval [a,b] C [0, €] such that = ||y z for all

z € [a,b].

Kalina and Kral’ [18] introduced uninorms which are
strictly increasing on ]0, 1[*, but not continuous. The
construction method was further studied in [1, 27].
Since we are not able to distinguish among continu-
ous t-norms 7' (t-conorms S) by means of the relation
=r (=Xs), we are not able to characterize unambigu-
ously uninorms which are strictly increasing on 0, 1[2.
We present the main idea of the construction method,
paving, in case the basic ‘brick’ is the product t-norm
T:

(a) we split the interval ]0, 1] into infinitely countably
many disjoint right-closed subintervals {I;;j €
J}, where J is an index set and (J,®,jo) is a
commutative increasing monoid and jg is its neu-
tral element,

(b) 9, : I; —1]0,1] is an increasing bijection.

The resulting uninorm is defined by:

Up(z,y) :191-_®1j (Tﬂ(ﬁi(m),ﬁj(y))) for x € J;, y € Jj,
0 if min{z,y} =0, (6)

1 otherwise.

Concerning the properties of <y, there are two pos-
sibilities depending whether (7, ®,jo) is a group or
not.

Proposition 16. Let U, be a uninorm defined by (6),
(J,®,j0) be a commutative group and {I;;j € J} be
a system of disjoint right-closed intervals whose union
is]0,1[. Then:

(i) for every j € J and all (x,y) € I} we have

r3y,y & <y,
(ii) foralli,j e J,i# j, allz € J; and y € J; we
have

T~y Y 54
z 2 ly,y <

Proposition 17. Let U, be a uninorm defined by (6),
(T, ®,jo) be a commutative monoid without inverse el-
ements, with the neutral element jo and {I;;j € J} be
a system of disjoint right-closed intervals whose union

is]0,1[. Then:

(i) for every j € J and all (x,y) € I} we have

szpy < <y,

(ii) foralli,je J,i# j, allz € J; and y € J; we
have
=2y, y & Ui(r) <I;(y) and Gk e T)(j®k =
i),
x ||y, y if and only if one of the following holds
(BkeT)(j®k=i V i®k=j),
FkeT)j®k=1) and 9;(z) > V;(y),
FkeT)i®k=j) and 9;(x) < V;(y).

We could formulate dual theorems to Propositions 16
and 17 for the case when the basic ‘brick’ is the prob-
abilistic sum t-conorm.

4 Conclusion

The results presented in this paper are aimed to char-
acterize classes of uninorms by means of a pre-order
the induce. We have succeeded in getting full charac-
terization for uninorms which are continuous on )0, 1[%,
as well as for uninorms with continuous underlying t-
norm and t-conorm, and for those which are locally
internal on the boundary and on A(e). Further, it is
possible to distinguish whether a uninorm is conjunc-
tive or disjunctive. In some other cases we have partial
results.
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