11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)

## A Characterization of Uninorms by Means of a Pre-order they Induce

### Dana Hliněná<sup>a</sup> and Martin Kalina<sup>b</sup>

aDepartment of Mathematics

Faculty of Electrical Engineering and Communication, Brno University of Technology
Technická 8, Cz-616 00 Brno, Czech Republic
hlinena@feec.vutbr.cz

bDepartment of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, Slovak University of Technology
Radlinského 11, Sk-810 05 Bratislava, Slovakia
kalina@math.sk

#### **Abstract**

In Hliněná et al. (2014) the authors, inspired by Karaçal and Kesicioğlu (2011), introduced a pre-order induced by uninorms. This contribution is devoted to a classification of families of uninorms by means of types of pre-orders (and orders) they induce. Philosophically, the paper follows the original idea of Clifford (1954).

**Keywords:** Pre-order induced by uninorm, Representable uninorm, Uninorm, Uninorm with continuous underlying operations, Locally internal uninorm.

## 1 Introduction

In this paper we study pre-orders generated by uninorms. The main idea is based on that of Karaçal and Kesicioğlu [19], and follows the original idea of Clifford [4]. The main idea of authors is to show a relationship between families of uninorms and families of pre-orders (partial orders, in some cases) they induce (see [16]). In some sense, the pre-order (see Definion 11) follows the original idea by Clifford [4]. Another relation induced by uninorms, that is always a partial order (see Definition 12), was proposed by Erteğrul et al. [11]. Here, the main intention of authors was to get a partial order. But this relation (partial order) does not extend the relation introduced by Clifford [4].

### 2 Preliminaries

In this section we review some well-known types of monotone commutative monoidal operations on [0,1] and provide an overview of, from the point of view of this contribution, important steps in introducing orders (and pre-orders) induced by semigroups.

# 2.1 Known types of monotone commutative monoidal operations on [0,1]

In this part we give just very brief review of well-known types of monotone commutative monoidal operations on [0, 1]. For more details we recommend monographs [2, 20].

**Definition 1** (see, e.g., [20]). A triangular norm T (tnorm for short) is a commutative, associative, monotone binary operation on the unit interval [0,1], fulfilling the boundary condition T(x,1) = x, for all  $x \in [0,1]$ .

**Definition 2** (see, e.g., [20]). A triangular conorm S (t-conorm for short) is a commutative, associative, monotone binary operation on the unit interval [0,1], fulfilling the boundary condition S(x,0) = x, for all  $x \in [0,1]$ .

Remark 1. If T is a t-norm, then

$$S(x,y) = 1 - T(1 - x, 1 - y)$$

is a t-conorm and vice versa. We obtain a dual pair (T, S) of a t-norm and a t-conorm.

**Example 1.** Well-known examples of triangular norms and their dual t-conorms are:

- $T_M(x,y) = \min(x,y)$ ,  $S_M(x,y) = \max(x,y)$ ,
- $T_P(x,y) = x.y$ ,  $S_P(x,y) = x + y x.y$ ,
- $T_L(x,y) = \max(x+y-1,0), \quad S_L(x,y) = \min(x+y,1).$

Casasnovas, Mayor [3] introduced divisible t-norms.

**Definition 3** ([3]). Let L be a bounded lattice and  $T: L \times L \to L$  be a t-norm. T is said to be divisible if the following conditions are satisfied for all  $(x, y) \in L^2$ 

$$(x \le y) \Rightarrow (\exists z \in L)(T(y, z) = x).$$
 (1)

Of course, a t-norm  $T:[0,1]^2\to [0,1]$  is divisible if and only if it is continuous.



**Definition 4** (see, e.g., [2]). Let  $*: [0,1]^2 \to [0,1]$  be a binary commutative operation. Then

- (i) element c is said to be idempotent if c \* c = c,
- (ii) element e is said to be neutral if e \* x = x for all  $x \in L$ ,
- (iii) element a is said to be annihilator if a \* x = a for all  $x \in L$ .

**Definition 5** ([26]). A uninorm U is a function U:  $[0,1]^2 \rightarrow [0,1]$  that is increasing, commutative, associative and has a neutral element  $e \in [0,1]$ .

**Remark 2.** For any uninorm with neutral element equal to e we denote

$$A(e) = [0, e[ \times ]e, 1] \cup [e, 1] \times [0, e[.$$

- 1. If  $e \notin \{0,1\}$  is the neutral element of U, we say that U is a proper uninorm.
- 2. Every uninorm U has a distinguished element a called annihilator, for which the following holds U(a,x)=U(0,1)=a. A uninorm U is said to be conjunctive if U(x,0)=0, and U is said to be disjunctive if U(1,x)=1, for all  $x\in[0,1]$ .

**Lemma 1** ([12]). Let U be a uninorm with the neutral element e. Then, for  $(x, y) \in [0, 1]^2$  the following holds

(i) 
$$T(x,y) = \frac{U(ex,ey)}{e}$$
 is a t-norm,

(ii) 
$$S(x,y) = \frac{U((1-e)x+e,(1-e)y+e)-e}{1-e}$$
 is a t-conorm.

For all  $(x,y) \in A(e)$  we have

$$\min(x, y) \le U(x, y) \le \max(x, y).$$

**Definition 6.** Let U be a uninorm. We say that U is internal if  $U(x,y) \in \{x,y\}$  for all  $(x,y) \in [0,1]^2$ . A uninorm U is locally internal on a set  $G \subset [0,1]^2$  if  $U(x,y) \in \{x,y\}$  for all  $(x,y) \in G$ .

- **Remark 3.** (a) Particularly, a uninorm U is locally internal on the boundary if  $U(x,0) \in \{x,0\}$  and  $U(x,1) \in \{x,1\}$  holds for all  $x \in [0,1]$ . Some examples of uninorms which are not locally internal on the boundary can be found, e.g., in [14, 15, 16], see also Fig. 1.
- (b) An important family of uninorms is that of internal ones. From results by Drewniak and Drygaś [6] follows that the family of all internal uninorms is identical with that of idempotent uninorms. Some further study of locally internal uninorms can be found, e.g., in [8] and in literature referenced therein.

From results in [6, 21, 25] we have the following.

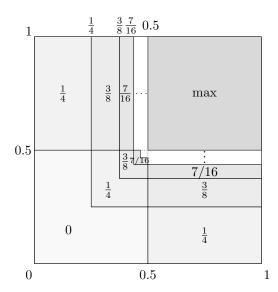


Figure 1: Example of a uninorm not locally internal on the boundary (the L-shaped areas of constantness being right-side closed)

**Lemma 2.** Let U be a uninorm. U is idempotent if and only if it is U internal.

**Proposition 1** (E.g., [10]). Let  $f : [-\infty, \infty] \to [0, 1]$  be an increasing bijection. Then

$$U(x,y) = f^{-1}(f(x) + f(y))$$
 (2)

is a uninorm that is continuous everywhere except at points (0,1) and (1,0), and is strictly increasing on  $]0,1[^2$ . U is conjunctive if we adopt the convention  $-\infty + \infty = -\infty$ , and U is disjunctive adopting the convention  $-\infty + \infty = \infty$ .

**Definition 7** (E.g., [10]). The uninorm U fulfilling formula (2) for an increasing bijection  $f: [-\infty, \infty] \to [0,1]$  adopting either of the conventions,  $-\infty + \infty = -\infty$  or  $-\infty + \infty = \infty$ , is said to be a representable uninorm.

**Remark 4.** Representable uninorms, under the name aggregative operators were studied already by Dombi [5].

Another important class of uninorms is that of continuous ones on  $]0,1[^2]$ . These uninorms were characterized by Hu and Li [17], and further studied by Drygaś [7]. From results in [17] we have the following characterization.

**Proposition 2.** A uninorm U with neutral element  $e \in ]0,1[$  is continuous on on  $]0,1[^2$  if and only if one of the following conditions is satisfied:

- (i) U is representable,
- (ii) there exists 0 < a < e, a continuous t-norm T a representable uninorm  $U_r$  and an increasing bijection  $\varphi : [a, 1] \to [0, 1]$  such that



$$U(x,y) = \varphi^{-1}(U_r(\varphi(x),\varphi(y)))$$
 for  $(x,y) \in [a,1]^2$ ,  
 $U(x,y) = aT(\frac{x}{a},\frac{y}{a})$  for  $(x,y) \in [0,a]^2$ ,  
 $U(x,y) = \min\{x,y\}$  for  $(x,y) \in [0,a[\cap]a,1[\cup]a,1[\cap[0,a[,$   
and  $U$  is locally internal on the boundary,

(iii) or there exists e < b < 1 a continuous t-conorm S and a representable uninorm  $U_r$  and an increasing bijection  $\varphi : [0,b] \to [0,1]$  such that  $U(x,y) = \varphi^{-1} \left( U_r(\varphi(x),\varphi(y)) \right)$  for  $(x,y) \in [0,b]^2$ ,  $U(x,y) = b + (1-b)S(\frac{x-b}{1-b},\frac{y-b}{1-b})$  for  $(x,y) \in [b,1]^2$ ,  $U(x,y) = \max\{x,y\}$  for  $(x,y) \in [b,1] \cap [0.b[ \cup [0,b[\cap]b,1],$  and U is locally internal on the boundary.

## 2.2 An overview of pre-orders induced by a semigroup

The study of orders (pre-orders) induced by a semi-group operation had started by Clifford [4]. Later, Hartwig [13] and independently also Nambooripad [23], defined a partial order on regular semigroups. Their definition is the following.

**Definition 8** ([13, 23]). Let  $(S, \oplus)$  be a semigroup and  $E_S$  the set of its idempotent elements. Then

$$a \leq_{\oplus} b \iff (\exists e, f \in E_S)(a = b \oplus e = f \oplus b).$$

If the relation  $\leq_{\oplus}$  is a partial order on S, it is called natural.

Definition 8 was generalized by Mitch [22].

**Definition 9** ([22]). Let  $(S, \oplus)$  be an arbitrary semigroup. By  $\leq_{\oplus}$  we denote the following relation

$$a \leq_{\oplus} b \quad \Leftrightarrow \quad a = b \oplus z_1 = z_2 \oplus b, \ a \oplus z_1 = a$$

for some  $z_1, z_2 \in E_{S^1}$ , where

$$S^1 = \begin{cases} S & \text{if $S$ has a neutral element,} \\ S \cup \{e\} & \text{otherwise, where $e$ plays} \\ & \text{the role of the neutral element,} \end{cases}$$

and  $E_{S^1}$  is the set of all idempotents of  $S^1$ .

**Lemma 3** ([22]). Let  $(S, \oplus)$  be an arbitrary semigroup. The relation  $\leq_{\oplus}$  is reflexive and antisymmetric on S.

**Proposition 3** ([22]). Let  $(S, \oplus)$  be an arbitrary semigroup. The relation

$$a \lesssim_{\oplus} b \Leftrightarrow a = x \oplus b = b \oplus y$$
 (3)

for some  $x, y \in S^1$ , is a partial order on S.

From now on, we restrict our attention to commutative semigroups. Lemma 3 and Proposition 3 immediately imply the following.

**Lemma 4.** Let  $(S, \oplus)$  be a commutative semigroup. By  $a_{\lesssim_{\oplus}}$  we denote the set

$$a_{\leq_{\oplus}} = \{ z \in S; z \lesssim_{\oplus} a \},$$

where  $a \in S$ . Then for all  $a, b \in S$  it holds that  $a \lesssim_{\oplus} b$  if and only if  $a_{\leq_{\oplus}} \subseteq b_{\leq_{\oplus}}$ .

Directly by Definition 9 we get

**Proposition 4.** Let  $(S, \oplus)$  be a commutative semi-group. Then the set  $a_{\lesssim_{\oplus}}$  is an ideal in  $(S, \oplus)$ .

**Lemma 5.** Let  $(S, \oplus)$  be a commutative semigroup. Let  $I_S$  be an ideal of  $(S, \oplus)$ . Then  $(I_S, \oplus_{I_S})$  is a subsemigrup of  $(S, \oplus)$ , where  $\oplus_{I_S} = \oplus \upharpoonright I_S^2$ .

Karaçal and Kesicioğlu [19] defined a partial order on bounded lattices L by means of t-norms.

**Definition 10** ([19]). Let L be a bounded lattice and  $T: L \times L \to L$  a t-norm. We write  $x \preceq_T y$  for arbitrary  $x, y \in L$ , if there exists  $z \in L$  such that x = T(y, z).

**Proposition 5** ([19]). Let L be a bounded lattice and  $T: L \times L \to L$  a t-norm. Then the relation  $\preceq_T$  is a partial order on L.

**Remark 5.** For arbitrary t-norm T, the partial order  $\leq_T$  from Definition 10 extends the partial order  $\lesssim_T$  from Definition 9 in the following sense:

let L be arbitrary bounded lattice and T a commutative semigroup-operation on L with a neutral element such that  $(L, \leq_T)$  is a partially ordered set. Then

$$a \lesssim_T b \implies a \preceq_T b$$

for all  $a, b \in L$ .

**Remark 6.** Concerning a correspondence between properties of binary aggregation function  $A: L^2 \to L$  and relation  $\leq_A$  (changing a t-norm T for A in Definition 10), the following can be said:

- if A has a neutral element, or A is idempotent, then  $\leq_A$  is reflexive,
- if A is associative, then  $\leq_A$  is transitive,
- the anti-symmetry of  $\leq_A$  fails if there exist elements  $x \neq z$  and  $y_1, y_2$  such that  $z = A(x, y_1)$  and  $x = A(z, y_2)$ . Hence, if one of the following

$$x \preceq_A z \Rightarrow x \leq_L z,$$
  
 $x \preceq_A z \Rightarrow z \leq_L x$ 

holds then  $\leq_A$  is anti-symmetric.

Hliněná et al. [16] introduced the following relation  $\preceq_U$ .



**Definition 11** ([16]). Let  $U : [0,1]^2 \to [0,1]$  be an arbitrary uninorm. By  $\leq_U$  we denote the following relation

 $x \leq_U y$  if there exists  $\ell \in [0,1]$  such that  $U(y,\ell) = x$ .

Immediately by Definition 11 we get the next lemma.

**Lemma 6.** Let U be an arbitrary uninorm. Then  $\leq_U$  is transitive and reflexive. If a and e are the annihilator and the neutral elements of U, respectively, then

$$a \leq_U x \leq_U e$$

holds for all  $x \in [0, 1]$ .

**Remark 7.** In Definition 11 we have used the same notation  $\preceq_U$  for the pre-order defined from a uninorm U, as in Definition 10 for the corresponding partial order  $\preceq_T$  defined from a t-norm T. These two relations really coincide if U = T, i.e., the notation should not cause any problems.

The pre-order  $\leq_U$  extends the partial order  $\lesssim_U$  from Definition 9 in the following sense.

**Proposition 6.** Let U be an arbitrary uninorm. Then

$$x \lesssim_U y \quad \Rightarrow \quad x \preceq_U y \tag{4}$$

for all  $(x, y) \in [0, 1]^2$ .

A different type of partial order induced by uninorms has been defined by Ertuğrul et al. [11].

**Definition 12** ([11]). Let U be a uninorm and  $e \in ]0,1[$  its neutral element. For  $(x,y) \in [0,1]^2$  denote  $x \leq_U y$  if one of the following properties is satisfied:

- 1. there exists  $\ell \in [0, e]$  such that  $x = U(y, \ell)$  and  $(x, y) \in [0, e]^2$ ,
- 2. there exists  $\ell \in [e,1]$  such that  $y = U(x,\ell)$  and  $(x,y) \in [e,1]^2$ ,
- 3.  $0 \le x \le e \le y \le 1$ .

**Proposition 7** ([11]). For an arbitrary uninorm U, the relation  $\leq_U$  from Definition 12 is a partial order.

**Example 2.** Consider the following uninorm U

$$U(x,y) = \begin{cases} \min(x,y) & \text{if } (x,y) \in [0,\frac{1}{2}]^2, \\ \max(x,y) & \text{otherwise.} \end{cases}$$

Then  $\trianglelefteq_U$  coincides with the usual order of [0,1], while  $x \lesssim_U y$  if one of the following possibilities is satisfied

- $y \le x$  for x > 0.5,
- $x \le y$  for  $(x, y) \in [0, 0.5]^2$ ,

• y = 0.5.

**Remark 8.** Let U be a uninorm. To compare the relation  $\preceq_U$  from Definition 11 with  $\trianglelefteq_U$  from Definition 12, the following should be remarked.

- (i) The relation  $\preceq_U$ , given in Definition 11 is a preorder, but not necessarily a partial order. Unlike this, the relation  $\trianglelefteq_U$  defined by Definition 12, is always a partial order.
- (ii) As illustrated by Example 2, the partial order  $\leq_U$  does not necessarily extends the partial order  $\lesssim_U$  on the semigroup ([0,1],U), i.e.,

$$x \lesssim_U y \not\Rightarrow x \trianglelefteq_U y$$
.

As shown by Proposition 6, the pre-order  $\leq_U$  always extends the partial order  $\lesssim_U$  on ([0,1], U), see formula (4).

Further in the text, we will consider only the pre-order  $\preceq_U$  to distinguish several families of uninorms.

**Definition 13.** Let U be an arbitrary uninorm.

- (i) For  $(x,y) \in [0,1]^2$  we denote  $x \sim_U y$  if  $x \preceq_U y$  and  $y \preceq_U x$ .
- (ii) For  $(x,y) \in [0,1]^2$  we denote  $x \parallel_U y$  if neither  $x \preceq_U y$  nor  $y \preceq_U x$  holds, and  $dx \not\models_U y$  if  $x \preceq_U y$  or  $y \preceq_U x$ .
- (iii) For arbitrary  $x \in [0,1]$  we denote  $x_{\sim U} = \{z \in [0,1]; z \sim_U x\}$ .

## 3 Some distinguished families of uninorms and properties of the corresponding pre-orders

We are going to study a relationship between some distinguished families  $\mathcal{U}$  of uninorms on the one hand and properties of the corresponding pre-orders  $\leq_U$  for  $U \in \mathcal{U}$  on the other hand.

A direct consequence to Lemma 6 is the following.

**Corollary 1.** Let U be a uninorm. The following holds for all  $x \in [0,1]$ :

- (i)  $0 \leq_U x$  if and only if U is conjunctive,
- (ii)  $1 \leq_U x$  if and only if U is disjunctive.

### 3.1 Locally internal uninorms

In this part we distinguish three types of locally internal uninorms:

- on the boundary,
- on A(e),
- on  $[0, e]^2 \cup [e, 1]^2$ .



**Proposition 8.** Let U be a uninorm. It is locally internal on the boundary if and only if for every element  $x \in [0,1]$ 

$$0 \not|_U x$$
 and  $1 \not|_U x$ .

**Proposition 9.** Let U be a uninorm with neutral element e. It is locally internal on A(e) if and only if  $\preceq_U$  is a partial order and for every element  $x \in [0, e]$  and  $y \in [e, 1]$  we have

$$x \not \downarrow_U y$$
.

**Remark 9.** For an arbitrary uninorm U and for a pair  $(x,y) \in [0,1]^2$ , we have

$$U(x,y) = x \Rightarrow x \leq_U y,$$
  
 $U(x,y) = y \Rightarrow y \leq_U x.$ 

Results in [8] imply that if a uninorm U is locally internal on A(e), there are three possibilities:

- (a)  $U(x,y) = \min\{x,y\}$  for all  $(x,y) \in A(e)$ ,
- **(b)**  $U(x,y) = \max\{x,y\}$  for all  $(x,y) \in A(e)$ ,
- (c) there exists a (not necessarily strictly) decreasing function  $f:[0,e[\to]e,1]$  such that, for  $(x,y)\in[0,e[\times]e,1]$ , we have

$$U(x,y) \begin{cases} = x & \text{if } y < f(x), \\ = y & \text{if } y > f(x), \\ \in \{x,y\} & \text{if } y = f(x). \end{cases}$$

**Proposition 10.** Let U be a uninorm. If U is locally internal on  $[0, e]^2 \cup [e, 1]^2$ , then  $\leq_U$  is a linear order.

**Example 3.** Let  $U:[0,1]^2 \to [0,1]$  be defined by

$$U(x,y) = \begin{cases} xy & \text{if } \max\{x,y\} \le 0.6, \\ \min\{1,x+y\} & \text{if } \min\{x,y\} \ge 0.6, \\ \min\{x,y\} & \text{otherwise.} \end{cases}$$
 (5)

Then U is a uniform with its neutral element e=0.6 and annihilator a=0. U generates the following relation  $\leq_U$ 

$$x \preceq_U y \Leftrightarrow \begin{cases} x \leq y & \text{and } x < 0.6, \\ x \geq y & \text{and } x, y \geq 0.6. \end{cases}$$

The uninorm U is just locally internal on A(e) and not internal, but  $\leq_U$  is a linear order.

## 3.2 Uninorms with continuous underlying t-norm and t-conorm

Results in [19] imply the following.

**Proposition 11.** Let U be a proper uninorm with a neutral element e. Then U has continuous underlying t-norm and t-conorm if and only if the following hold

$$x \le y \implies x \le_U y \quad for (x, y) \in [0, e]^2,$$
  
 $y \le x \implies x \le_U y \quad for (x, y) \in [e, 1]^2.$ 

Propositions 9 and 11 have the following corollary.

**Corollary 2.** Let U be a proper uninorm. Then U is locally internal on A(e) and with continuous underlying t-norm and t-conorm if and only if  $\leq_U$  is a linear order.

Applying Proposition 2 to the pre-order  $\leq_U$  we get the following characterization of representable uninorms.

**Proposition 12.** A uninorm U is representable if and only if for all  $(x, y) \in [0, 1]^2$  we have  $x \sim_U y$ .

Proposition 2 implies the following characterization of uninorms continuous on  $]0,1[^2]$ .

**Proposition 13.** Let U be a proper uninorm with neutral element e, which is not representable. Then it is continuous on  $]0,1[^2$  if and only if one of the following is valid.

(i) There exists 0 < a < e such that

1. 
$$x \sim_U y \text{ for all } (x,y) \in ]a,1[^2,$$
  
2.  $x \leq_U y \Leftrightarrow x \leq y \text{ for all } (x,y) \in [0,a]^2.$ 

(ii) There exists e < b < 1 such that

1. 
$$x \sim_U y$$
 for all  $(x,y) \in ]0, b[^2,$   
2.  $x \preceq_U y \Leftrightarrow x \geq y$  for all  $(x,y) \in [b,1]^2$ .

### 3.3 Some other classes of uninorms on [0,1]

First, we provide some results on uninorms with an area of constantness in  $[0, e]^2$  or  $[e, 1]^2$ .

**Proposition 14** ([14]). Let U be a proper uninorm having e as neutral element. Let y > e be an idempotent element of U. If there exists x < e such that  $U(x,y) = \tilde{x} \in ]x,e[$  then

$$U(z,y) = \tilde{x} \text{ and } U(z,x) = U(\tilde{x},x) \text{ for all } z \in [x,\tilde{x}].$$

Dually to Proposition 14 we get

**Proposition 15.** Let U be a proper uninorm having e as neutral element. Let y < e be an idempotent element of U. If there exists x > e such that  $U(x,y) = \tilde{x} \in ]e, x[$  then

$$U(z,y) = \tilde{x} \text{ and } U(z,x) = U(\tilde{x},x) \text{ for all } z \in [\tilde{x},x].$$

Propositions 14 and 15 have the following corollary.



**Corollary 3.** Let U be a proper uninorm having e as neutral element.

- (i) Assume x < e is an idempotent element of U. Then either  $x \not|_U y$  for all  $y \in [e,1]$  or there exists an interval  $[a,b] \subset [e,1]$  such that  $x \mid_U z$  for all  $z \in [a,b]$ .
- (ii) Assume x > e is an idempotent element of U. Then either  $x \not|_U y$  for all  $y \in [0, e]$  or there exists an interval  $[a, b[ \subset [0, e] \text{ such that } x \mid|_U z \text{ for all } z \in [a, b[.]]$

Kalina and Král' [18] introduced uninorms which are strictly increasing on  $]0,1[^2,$  but not continuous. The construction method was further studied in [1, 27]. Since we are not able to distinguish among continuous t-norms T (t-conorms S) by means of the relation  $\preceq_T (\preceq_S)$ , we are not able to characterize unambiguously uninorms which are strictly increasing on  $]0,1[^2$ . We present the main idea of the construction method, paving, in case the basic 'brick' is the product t-norm  $T_{\pi}$ :

- (a) we split the interval ]0,1[ into infinitely countably many disjoint right-closed subintervals  $\{I_j; j \in \mathcal{J}\}$ , where  $\mathcal{J}$  is an index set and  $(\mathcal{J}, \circledast, j_0)$  is a commutative increasing monoid and  $j_0$  is its neutral element,
- (b)  $\vartheta_j: I_j \to ]0,1]$  is an increasing bijection.

The resulting uninorm is defined by:

$$U_p(x,y) = \vartheta_{i\circledast j}^{-1} \left( T_{\pi}(\vartheta_i(x), \vartheta_j(y)) \right) \text{ for } x \in J_i, y \in J_j,$$

$$0 \quad \text{if } \min\{x, y\} = 0,$$

$$1 \quad \text{otherwise.}$$
(6)

Concerning the properties of  $\leq_{U_p}$  there are two possibilities depending whether  $(\mathcal{J}, \circledast, j_0)$  is a group or not.

**Proposition 16.** Let  $U_p$  be a uninorm defined by (6),  $(\mathcal{J}, \circledast, j_0)$  be a commutative group and  $\{I_j; j \in \mathcal{J}\}$  be a system of disjoint right-closed intervals whose union is ]0,1[. Then:

(i) for every  $j \in \mathcal{J}$  and all  $(x,y) \in I_j^2$  we have

$$x \preceq_{U_p} y \Leftrightarrow x \leq y,$$

(ii) for all  $i, j \in \mathcal{J}$ ,  $i \neq j$ , all  $x \in J_i$  and  $y \in J_j$  we have

$$\begin{array}{cccc} x \sim_{U_p} y & \Leftrightarrow & \vartheta_j(y) = \vartheta_i(x), \\ x \preceq l_{U_p} y & \Leftrightarrow & \vartheta_i(x) \leq \vartheta_j(y). \end{array}$$

**Proposition 17.** Let  $U_p$  be a uninorm defined by (6),  $(\mathcal{J}, \circledast, j_0)$  be a commutative monoid without inverse elements, with the neutral element  $j_0$  and  $\{I_j; j \in \mathcal{J}\}$  be a system of disjoint right-closed intervals whose union is ]0, 1[. Then:

(i) for every  $j \in \mathcal{J}$  and all  $(x, y) \in I_i^2$  we have

$$x \preceq_{U_p} y \Leftrightarrow x \leq y,$$

(ii) for all  $i, j \in \mathcal{J}$ ,  $i \neq j$ , all  $x \in J_i$  and  $y \in J_j$  we have

$$x \preceq_{U_p} y \Leftrightarrow \vartheta_i(x) \leq \vartheta_j(y) \text{ and } (\exists k \in \mathcal{J})(j \circledast k = i).$$

 $x \parallel_{U_p} y$  if and only if one of the following holds  $(\not\exists k \in \mathcal{J})(j \circledast k = i \lor i \circledast k = j),$ 

$$(\exists k \in \mathcal{J})(j \circledast k = i) \text{ and } \vartheta_i(x) > \vartheta_j(y),$$

$$(\exists k \in \mathcal{J})(i \circledast k = j) \text{ and } \vartheta_i(x) < \vartheta_j(y).$$

We could formulate dual theorems to Propositions 16 and 17 for the case when the basic 'brick' is the probabilistic sum t-conorm.

## 4 Conclusion

The results presented in this paper are aimed to characterize classes of uninorms by means of a pre-order the induce. We have succeeded in getting full characterization for uninorms which are continuous on  $]0,1[^2,$  as well as for uninorms with continuous underlying tnorm and t-conorm, and for those which are locally internal on the boundary and on A(e). Further, it is possible to distinguish whether a uninorm is conjunctive or disjunctive. In some other cases we have partial results.

## Acknowledgement

The work of Martin Kalina was supported from the Science and Technology Assistance Agency under contract No. APVV-18-0052, and from the VEGA grant agency, grant No. 2/0069/16 and 1/0006/19.

## References

- [1] S. Bodjanova, M. Kalina, Block-wise construction of commutative increasing monoids. Fuzzy Sets and Systems 324 (2017) 91–99.
- [2] T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators: Properties, classes and construction methods. In: T. Calvo, G. Mayor, R. Mesiar (Eds.) Aggregation operators, Physica-Verlag Heidelberg, 2002, pp. 3–104.
- [3] J. Casasnovas, G. Mayor, Discrete t-norms and operations on extended multisets. Fuzzy Sets and Systems 1599 (2008) 1165–1177.



- [4] A. H. Clifford, Naturally totally ordered commutative semigroups. Amer. J. Math, 76 (1954) 631–646.
- [5] J. Dombi, Basic concepts for a theory of evaluation: The aggregative operator. European Journal of Operational Research 10 (3) (1982) 282– 293.
- [6] J. Drewniak, P. Drygaś, On a class of uninorms. international Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, Suppl. (2002) 5–10.
- [7] P. Drygaś, On the structure of continuous uninorms. Kybernetika 43, 2 (2007) 183–196.
- [8] P. Drygaś, On monotonic operations which are locally internal on some subset of their domain. In: Štepnička et al. (Eds.) New Dimensions in Fuzzy Logic and Related Technologies, Proceedings of the 5 th EUSFLAT Conference 2007, Universitas Ostraviensis, vol. II, Ostrava, 2007, 185–191.
- [9] P. Drygaś, D. Ruiz-Aguilera, J. Torrens, A characterization of a class of uninorms with continuous underlying operators, Fuzzy Sets and Systems 287 (2016) 137–153.
- [10] J. Fodor, B. De Baets, A single-point characterization of representable uninorms. Fuzzy Sets and Systems 202 (2012) 89–99.
- [11] Ü. Ertuğrul, M. N. Kesicouğlu, F. Karaşl, Ordering based on uninorms. Information Sciences 330 (2016) 315–327.
- [12] J. Fodor, R. R. Yager, A. Rybalov, Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997) 411–422.
- [13] R. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980) 1–13.
- [14] D. Hliněná, M. Kalina, P. Kráľ, Non-representable uninorms. In: EUROFUSE 2013, Uncertainty and Imprecision Modelling in Decision Making. Servicio de Publicaciones de la Universidad de Oviedo, Oviedo, 2013, 131–138.
- [15] D. Hliněná, M. Kalina, P. Kráľ, A class of implications related to Yager's f-implications, Information Sciences 260 (2014) 171–184.
- [16] D. Hliněná, M. Kalina, P. Král', Pre-orders and orders generated by uninorms. In: 15th Int. Conference IPMU 2014, Proceedings, Part III, Montpellier, France, Springer, Heidelberg, 2014, 307--316.

- [17] S. Hu, Z. Li, The structure of continuous uninorms. Fuzzy Sets and Systems, 124 (2001) 43–52.
- [18] M. Kalina, P. Král, Construction of commutative associative operations by paving. In: J. M. Alonso, H. Bustince, Reformat (eds.) IFSA-EUSFLAT 2015, Atlantis Press, Gijón, 2015, 1201–1207.
- [19] F. Karaçal, M. N. Kesicioğlu, A t-partial order obtained from t-norms. Kybernetika 47, No. 2 (2011) 300–314.
- [20] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms. Springer, Berlin, Heidelberg, 2000
- [21] J. Martín, G. Mayor, J. Torrens, on locally internal monotonic operations, Fuzzy Sets and Systems 137 (2003), 27–42.
- [22] H. Mitsch, A natural partial order for semigroups. Proc. AMS 97,3 (1986) 384–388.
- [23] K. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980) 249–260.
- [24] M. Petrík, R. Mesiar, On the structure of special classes of uninorms. Fuzzy sets and Systems, 240 (2014) 22–38.
- [25] D. Ruiz-Aguilera, J. Torrens, B. De Baets, J. Fodor, Some remarks on the characterization of idempotent uninoms. In: E. Hüllermeier, R. Kruse, F. Hoffmann (Eds.), Proc. 13th IPMU 2010 Conference on Computational Intelligence for Knowledge-Based Systems Design, LNAI, vol. 6178, Springer, Berlin, Heidelberg, 2010, pp. 425–434.
- [26] R. R. Yager, A. Rybalov, Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996) 111– 120.
- [27] W. Zong, Y. Su, H. W. Liu, B. De Baets, On the Construction of Associative, Commutative and Increasing Operations by Paving. In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, vol 581. Springer, Cham, 229–240.