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Abstract

Need for faster and faster computing neces-
sitates going down to quantum level – which
means involving quantum computing. One
of the important features of quantum com-
puting is that it is reversible. Reversibility
is also important as a way to decrease pro-
cessor heating and thus, enable us to place
more computing units in the same volume.
In this paper, we argue that from this view-
point, interval uncertainty is more appropri-
ate than the more general set uncertainty –
and, similarly, that fuzzy numbers (for which
all alpha-cuts are intervals) are more appro-
priate than more general fuzzy sets. We also
explain why intervals (and fuzzy numbers)
are indeed ubiquitous in applications.
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1 Need for Quantum and Reversible
Computing

Need for quantum computing. Our current com-
puters are very fast in comparison with what was avail-
able a few years ago. However, no matter how fast
the computers, there are always computational tasks
– from bioinformatics, from other disciplines – that
necessitate even faster computers.

To speed up computers, we need to be able to squeeze
in more and more memory cells and processing cells
into the same volume. For that, we need to make these
cells as small as possible. Already, the existing cells
contain a small number of molecules. If we decrease
them further, they will contain a few molecules and
therefore, we will need to take into account quantum
effects; see, e.g., [4, 23]. This is exactly the domain of

quantum computing – computations that take quan-
tum effects into account; see, e.g., [17].

Quantum computing: additional advantages.
Known good news about quantum computing is that,
in addition to a speed up caused by microminiaturiza-
tion of the processing units, we achieve an additional
speed up by using innovative algorithms specifically
designed for quantum computing.

For example, with quantum computers, we can de-
crease the time needed to find an element in an un-
sorted array of size n from n to

√
n computational

steps [6, 7, 17]. We can also reduce the time needed
to factor large integers of n digits – task needed to de-
code currently encoded messages – from exponential
to polynomial in n [17, 21, 22].

Need for reversible computing. One challenge in
designing quantum computers is that on the quantum
level, all equations are time-reversible [4, 17, 23].

Some elementary computer operations are reversible.
For example, if we know the original value x1 and we
know the result y = x1+x2 of adding another value x2

to x1, then we can uniquely reconstruct this another
value as x2 = y − x1.

Other elementary operations, however, are not re-
versible. For example, even when we know the value
x1 = 0 and we know the result y = x1 · x2 = 0 of
multiplying x1 by some other value x2, then, based on
this information, we cannot uniquely reconstruct x2.

Multiplying by zero may be not that common in com-
puter algorithms, but a similar phenomenon occurs
for a much more common “and”-operation a& b: even
when we know that a is false, and we know the result
(false) of computing c = a& b, we cannot uniquely re-
construct the value b. In this case, b could be both
true or false.

Similarly, for “or”-operation a∨b: when we know that
a is true, and we know the truth value of a ∨ b, we
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cannot uniquely reconstruct b.

Reversibility is also important because, according to
statistical physics, any irreversible process means in-
creasing entropy, and this leads to heat emission; see,
e.g., [4, 23]. Already overheating is one of the rea-
sons why we cannot pack too many processing units
into the same volume. So, to pack more, it is desir-
able to reduce this heat emission – e.g., by using only
reversible computations.

Comment. The heat-reducing need for reversible com-
puting was first described in [5]; in that paper, re-
versible computations are also called conservative.

2 When Are Algorithms for Data
Processing Under Uncertainty
Reversible

Need to take uncertainty into account. When
are algorithms reversible? We use computers mostly to
process data. When processing data, we need to take
into account that data comes from measurements, and
measurements are never absolutely accurate, the mea-
surement result x̃ is, in general, somewhat different
from the actual value x of the corresponding quantity.
It is therefore necessary to take this uncertainty into
account when processing data.

Need for interval uncertainty. In many real life sit-
uations, the only information that we have about the

measurement error ∆x
def
= x̃ − x is the upper bound

∆ on its absolute value: |∆x| ≤ ∆. Once we have a
measurement result x̃, then the only information that
we can conclude about the actual value x of the cor-
responding quantity is that this value is somewhere
in the interval [x̃ − ∆, x̃ + ∆]. Such interval uncer-
tainty indeed appears in many practical applications;
see, e.g., [8, 11, 12, 16, 19].

Data processing under interval uncertainty. In
a data processing algorithm, we take several inputs
x1, . . . , xn, and we apply an appropriate algorithm to
generate the result y depending on these inputs. Let us
denote this dependence by f(x1, . . . , xn). In situations
when, for each input i, we only know the interval Xi =
[x̃i−∆i, x̃i+∆i] of possible values of xi, then the only
information that we can have about y is that y belongs
to the set

Y = f(X1, . . . , Xn)

def
= {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn}.

When the sets Xi are intervals and the function
f(x1, . . . , xn) is continuous, the resulting set Y is also
an interval.

In most practical situations, the measurement errors
are relatively small, so we can expand the function
f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn) in Taylor
series and retain only linear terms. Then, we get

f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn)

≈ ỹ −
n∑

i=1

ci ·∆xi,

where ỹ
def
= f(x̃1, . . . , x̃n) and ci

def
=

∂f

∂xi

∣∣∣∣
xi=x̃i

. In

other words, the function f(x1, . . . , xn) becomes a lin-
ear function of xi:

f(x1, . . . , xn) = ỹ −
n∑

i=1

ci · (x̃i − x0) = c0 +

n∑
i=1

ci · xi,

where c0
def
= ỹ −

n∑
i=1

ci · x̃i. In other words, data pro-

cessing can be, in effect, reduced to two operations:
multiplication by a constant ci and addition.

For intervals, both operations can be described ex-
plicitly. Indeed, if for the quantity x, we only know
that x belongs to the interval X = [x, x], then the set
Y = c ·X = {c · x : x ∈ X} takes the following form:

• for c > 0, Y = [c · x, c · x], and

• for c < 0, Y = [c · x, c · x].

For addition, if we know that

x1 ∈ [x1, x1] and x2 ∈ [x2, x2],

then:

• the smallest value of y = x1+x2 is attained when
both x1 and x2 are the smallest and is, thus, equal
to x1 + x2, and

• the largest value of y = x1 + x2 is attained when
both x1 and x2 are the largest and is, thus, equal
to x1 + x2.

Thus, in this case, the interval Y = [y, y] has the form

Y = [x1 + x2, x1 + x2].

When is this data processing reversible? Mul-
tiplication by a constant is always reversible: indeed,
if we know the interval Y = c · X, then, as one can
easily see, we can reconstruct the original interval X
as X = c−1 · Y , i.e., as the set of all the values c−1 · y,
where y ∈ Y = c ·X = {c · x : x ∈ X}.
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Similarly, addition of intervals is also reversible, in the
same sense in which addition of real numbers is re-
versible: if we know the interval X1 = [x1, x1] and we
know the sum Y = X1 + X2 = [y, y] of this interval
X1 with some other interval X2, then, from the for-
mulas y = x1+x2 and y = x1+x2, we can reconstruct
X2 = [x2, x2] as x2 = y − x1 and x2 = y − x1.

From interval uncertainty to a more general set
uncertainty. In some cases, in addition to knowing
that values of x are within a certain interval [x, x], we
also know that some values from this interval are not
possible. In this case, the set X of possible values of
x is different from an interval.

This set must be bounded. No matter how crude
the measurements are, there is always an upper bound
∆ on the measurement error. Thus, after each mea-
surement, based on the measurement result x̃, we
can conclude that the set of possible values of the
corresponding quantity is located within the interval
[x̃−∆, x̃+∆] and is, thus, bounded.

It makes sense to consider this set to be closed.
In general, we can safely assume that the set X is
closed. Indeed, suppose that x0 is a limit point of the
set, i.e., that for every ε > 0, there are elements x ∈ X
is any ε-neighborhood (x0 − ε, x0 + ε) of this value x0.

This means that no matter how accurately we measure
the corresponding value, we will not be able to dis-
tinguish between the limit value x0 and a sufficiently
close value x ∈ X. In other words, no matter how ac-
curately we measure, we will never be able to conclude
that the value x0 is not possible.

So, if we optimistically interpret each not-impossible
value as a possible one, it makes sense to conclude that
x0 is possible. Thus, we can conclude that the set of
possible values of each quantity x contains all its limit
points, i.e., is closed – since we cannot experimentally
distinguish the original set X from its closure.

Comment. In this paper, we consider the maximally
optimistic approach, that anything which is not proven
to be impossible is actually possible. At first glance,
it may also be possible to consider a maximally pes-
simistic approach – according to which we consider a
value to be possible only if we have proven it to be
possible, i.e., if we are absolutely sure that this value
is possible.

Unfortunately, this maximally pessimistic approach
does not lead to any meaningful selection. For ex-
ample, when the set of observed values is everywhere
dense on the interval [0, 1], with this maximally pes-
simistic approach, there is no value v ∈ [0, 1] which is
absolutely possible: we can always have the set of all

possible values to be equal [0, v) ∪ (v, 1]; this will be
consistent with all the measurement results.

Data processing under set uncertainty. If we
know the set X1 of possible values of a quantity x1,
and we know the setX2 of possible values of a quantity

x2, then the set Y
def
= X1+X2 of possible values of the

sum y = x1 + x2 is equal to

Y = {x1 + x2 : x1 ∈ X1 and x2 ∈ X2}.

When is this operation reversible? As we have
mentioned earlier, for numbers, addition is reversible
in the sense that if we know x1 and we know the sum
x1+x2, then we can uniquely reconstruct the value x2.
Similarly, addition is reversible for intervals. A natural
question is: when is addition reversible for sets? In
other words, when from the sets X1 and Y = X1+X2,
we can uniquely reconstruct the set X2?

Known result: addition is reversible only for in-
tervals. We have already mentioned that addition is
reversible for intervals. Interestingly (see, e.g., [2, 3]),
addition is reversible only for intervals: namely, if we
add any non-interval bounded closed set S to the class
of all intervals, additions stops being reversible.

The proof of this result is very straightforward: if we

take S
def
= inf{x : x ∈ S} and S

def
= sup{x : x ∈ S},

then we have

[S, S] + [S, S] = [S, S] + S (= [2S, 2S]),

but [S, S] ̸= S.

Case of fuzzy uncertainty. In many real-life situa-
tions, in addition to the guaranteed upper bound ∆ on
the absolute value of the measurement error, experts
usually know that most probably (or, to be precise,
with some high degree of certainty β) measurement
errors can be bounded by a smaller bound ∆(β) < ∆.
As a result, in addition to the interval [x̃ −∆, x̃+∆]
that is guaranteed to contain the actual value with
100% confidence, we have several narrower intervals
[x̃ − ∆(β), x̃ + ∆(β)] that contain the actual value x
with the corresponding confidences β. In other words,
we have a nested family of intervals corresponding to
different values β: the larger the β (i.e., the higher the
desired confidence), the wider the interval.

Such a family of nested interval is, in effect, an equiv-
alent way of representing a fuzzy number; see, e.g.,
[1, 9, 13, 14, 15, 18, 24]. If instead of intervals, we
have more general sets S(β), then we have a fuzzy set.
The corresponding sets S(β) (in particular, intervals)
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are known as α-cuts of the nested-family fuzzy set,

where α
def
= 1− β.

For such fuzzy sets, we can define operations layer-by-
layer: for each β (i.e., equivalently, for each α), we
process all the sets (or intervals) corresponding to this
value β. This is equivalent to what Zadeh proposed for
processing fuzzy numbers (and, more generally, fuzzy
sets) and what is now known as Zadeh’s extension
principle. This principle is still the most widely used
approach to processing fuzzy numbers and fuzzy sets.

Since fuzzy numbers correspond to intervals, and gen-
eral fuzzy sets to general sets, we arrive at the same
conclusion as for sets and intervals [2, 3]: addition is
reversible only for fuzzy numbers; if we add any fuzzy
set which is not a fuzzy number to the class of all fuzzy
numbers, additions stops being reversible.

3 Good News: Intervals and Fuzzy
Numbers Are Ubiquitous – An
Explanation

Intervals are ubiquitous. In the previous section,
we showed that intervals (and fuzzy numbers) are
preferable since they lead to reversible data process-
ing. Interestingly, intervals (and fuzzy numbers) are
indeed ubiquitous, they occur much much more fre-
quently in practice as descriptions of uncertainty than
any other sets; see, e.g., [19]. Why is that?

A possible explanation: main idea. To under-
stand why intervals are ubiquitous in non-probabilistic
uncertainty, let us recall why in probabilistic uncer-
tainty, the most frequently used distributions – nor-
mal (Gaussian) ones – are ubiquitous. The usual ex-
planation is that usually, there are many different in-
dependent sources of measurement error. As a result,
the measurement error is a sum of a large number of
small independent random variables each of which cor-
responds to one of these sources. It is known that in
the limit, when the number of terms in such a sum
increases, the distribution of the sum tends to normal;
this is known as the Central Limit Theorem; see, e.g.,
[20]. This limit result means that when the number
of components is large, the corresponding definition is
close to normal. Thus, from the practical viewpoint,
we can safely consider the distribution to be normal.

In non-probabilistic case too, the measurement error
is the sum of a large number n of small independent
error components:

∆x = ∆x(1) +∆x(2) + . . .+∆x(n).

So, if for each of the components ∆x(k), we know the
set X(k) of possible values, then the set S of possible

values of their sum is equal to the sum of these sets:

X = X(1) + . . .+X(n)

= {∆x(1) +∆x(2) + . . .+∆x(n) :

∆x(1) ∈ X(1), . . . ,∆x(n) ∈ X(n)}.

It can be shown that, under reasonable conditions,
when the number of components increases, the result-
ing set X also tends to an interval; see, e.g., [10].

Need for a more detailed explanation. The
asymptotic closeness is good, but for practical appli-
cations, it is desirable to know exactly how close is the
resulting set X to an interval. This is what we will
analyze in this section.

What does closeness of sets mean: a brief re-
minder. For every positive real number ε > 0, two
points a and b are ε-close is |a− b| ≤ ε. It is therefore
reasonable to say that the sets A and B are ε-close if:

• every point a ∈ A is ε-close to some point b ∈ B,
and

• every point b ∈ B is ε-close to some point a ∈ A.

The smallest value ε with this property is known as the
Hausdorff distance dH(A,B) between the two sets.

How to measure smallness of a closed set. The
size of a closed set A can be naturally measured by its
diameter diam(A), i.e., the largest possible distance
d(a, a′) between the two points a, a′ from this set. For
bounded closed subsets A of a real line, the diameter is
simply equal to the difference between its largest point
supA and inf A: diam(A) = supA− inf A.

Our main result. Now, we are ready to formulate
our main result.

Proposition 1. If diam(Ai) ≤ ε for all i = 1, . . . , n,
then for the sum A = A1 + . . . + An, its Hausdorff
distance from some interval I does not exceed ε/2:

dH(A, I) ≤ ε/2.

Comment. This bound cannot be improved, as shown
by the following result:

Proposition 2. For every n, there exist closed
bounded sets A1, . . . , An for which diam(Ai) ≤ ε for
all i, and for whose sum A = A1 + . . .+An, for every
interval I, we have dH(A, I) ≥ ε/2.

Proof of Proposition 1. Let us show that the de-
sired inequality holds for the interval [a, a], where:

644



• a
def
= a1 + . . .+ an, where ai

def
= inf Ai, and

• a
def
= a1 + . . .+ an, where ai

def
= supAi.

To prove the desired inequality, we need to show that:

• every point a ∈ A is (ε/2)-close to some point
from the interval I = [a, a], and

• vice versa, that every point b from the interval
I = [a, a] is (ε/2)-close to some point from the
sum set A.

Let us first prove that every point a ∈ A is (ε/2)-close
to some point from the interval I = [a, a]. Indeed, by
definition of the sum set A, every point a from this set
has the form a = a1 + . . .+ an, where ai ∈ Ai for all i.
Every point ai ∈ Ai is bounded by this set’s inf and
sup:

ai = inf Ai ≤ ai ≤ supAi ≤ ai.

By adding up n such inequalities, and taking into ac-
count that:

• a = a1 + . . .+ an,

• a = a1 + . . .+ an, and

• a = a1 + . . .+ an,

we conclude that a ≤ a ≤ a, i.e., that the value a
actually itself belongs to the interval I. So, in this
case, we can take b = a, and get |a− b| = 0 ≤ ε/2.

Let us prove that, vice versa, every point b from the
interval I is (ε/2)-close to some point a ∈ A. Indeed,
since all Ai are closed sets, they contain their limit
points ai = inf Ai ∈ Ai. Thus, a = a1 + . . .+ an ∈ A.

Since b ∈ I, we have b ≥ a, so b is greater than or
equal to some point a ∈ A. Let us define

a0 = sup{a ∈ A : a ≤ b}.

Since all Ai are closed sets, the sum A of these sets is
also closed, so a0, as a limit of elements from A, also
belongs to A. Of course, in the limit, from a ≤ b, we
conclude that a0 ≤ b.

If a0 = a, then, from the fact that a0 ≤ b ≤ a, we
conclude that b = a0 = a and thus, |a0 − b| = 0 ≤ ε/2.

Let us now consider the remaining case when

a0 < a = a1 + . . .+ an.

Since the point a0 is in A, it means that

a0 = a1 + . . .+ an

for some values ai ∈ Ai. For each i, we have ai ≤
supAi = ai. The inequality a0 < a implies that we
cannot have ai = ai for all i: otherwise, we would
have

a0 = a1 + . . .+ an = a1 + . . .+ an = a.

Thus, there exists an i for which ai < ai. Let us denote
one such index by i0; then ai0 < ai0 .

Let us now consider a new point a0 ∈ A in forming
which we replace ai0 with ai0 :

a0 = a1 + . . .+ ai0−1 + ai0 + ai0+1 + . . .+ an.

Here, we have a0 − a0 = ai0 − ai0 and thus, by the
definition of the diameter, this difference is smaller
than or equal to the diameter diam(Ai0), which is, in
turn, smaller than or equal to ε. Thus,

|a0 − a0| ≤ ε.

Since a0 is the largest point from the set A which is
smaller than or equal to b, and a0 > a0, we thus con-
clude that a0 ̸≤ b, i.e., that b < a0. So, we have
a0 ≤ b < a0. Here, the sum of the distances |b − a0|
and |b − a0| is equal to |a0 − a0| and is, thus, smaller
than or equal to ε: |b − a0| + |b − a0| ≤ ε. Thus, at
least one of these two distances must be smaller than
or equal to ε/2 (since otherwise, if they were both
greater than ε/2, their sum would be greater than ε).

In each of these two cases, we have a point from the
set A (either a0 or a0) which is (ε/2)-close to the given
point b ∈ I. The proposition is proven.

Proof of Proposition 2. Let us take

A1 = . . . = An = {0, ε}.

Then, as one can easily see,

A = A1 + . . .+An = {0, ε, 2ε, . . . , n · ε}.

Let us show, by reduction to a contradiction, that we
cannot have dH(A, I) < ε/2 for any interval I.

Indeed, suppose that such an interval exists. Then,
by definition of the Hausdorff distance, for the point
0 ∈ A, there exists a point b1 ∈ I for which

|b1 − 0| = |b1| ≤ dH(A, I).

Then, since b1 ≤ |b1|, we have b1 ≤ dH(A, I). Since
dH(A, I) < ε/2, we thus have b1 < ε/2.

Similarly, for the point ε ∈ A, there exists a point
b2 ∈ I for which |ε− b2| ≤ dH(A, I) and thus, ε− b2 ≤
dH(A, I) and ε−dH(A, I) ≤ b2. Since dH(A, I) < ε/2,
we thus have b2 > ε− ε/2 = ε/2.
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Since the interval I contains two points b1 < ε/2 and
b2 > ε/2, it contains all the points in between, includ-
ing the point b = ε/2. However, for this point b ∈ I,
the closest points from A are the points 0 and ε for
both of which the distance to b = ε/2 is equal to ε/2
and is, thus, greater than dH(A, I) – which contra-
dicts to the definition of Hausdorff distance, according
to which every point b ∈ I must be dH(A, I)-close to
some point from the set A.

This contradiction proves that the inequality
dH(A, I) < ε/2 is impossible and thus, indeed, always
dH(A, I) ≥ ε/2. The proposition is proven.
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