# Two theorems from extreme value theory for interval valued events 

Katarína Čunderlíková<br>Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49,<br>81473 Bratislava, Slovakia, cunderlikova.lendelova@gmail.com


#### Abstract

In papers [3, 4] we proved the Fisher-Tippett-Gnedenko theorem and the Pickands-Balkema-de Haan theorem on family of intuitionistic fuzzy events. Since between the intuitionistic fuzzy events and the interval valued events exist a connection, so we try to prove these basic theorems from extreme value theory for interval valued events. We define the notion of independence and convergence in distribution for interval valued observables, too.


Keywords: Interval valued event, Interval valued state, Interval valued observable, Joint interval valued observable, Independence, Convergence in distribution, Fisher-Tippett-Gnedenko theorem, Pickands-Balkema-de Haan theorem, Excess interval valued distribution, Maximum domain of attraction, Generalized Pareto distribution, Extreme value theory.

## 1 Introduction

In papers [3, 4] we proved the Fisher-TippettGnedenko theorem and the Pickands-Balkema-de Haan theorem on family of intuitionistic fuzzy events. These basic theorems are from part of statistic, which is called the extreme value theory. But between the intuitionistic fuzzy events introduced by K.T. Atanassov in $[1,2]$ and the interval valued events introduced by L.A. Zadeh in [14] exist a connection. In papers [7, 9] the authors studied a connection between the family of intuitionistic fuzzy events
$\mathcal{F}=\left\{\left(\mu_{A}, \nu_{A}\right) \quad ; \quad \mu_{A}+\nu_{A} \leq 1_{\Omega}, \mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]\right.$ are $\mathcal{S}$ - measurable functions $\}$
with the operations and relation

$$
\begin{aligned}
& \mathbf{A} \leq \mathbf{B} \Leftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B} \\
& \mathbf{A} \oplus \mathbf{B}=\left(\left(\mu_{A}+\mu_{B}\right) \wedge 1_{\Omega},\left(\nu_{A}+\nu_{B}-1_{\Omega}\right) \vee 0_{\Omega}\right) \\
& \left.\mathbf{A} \odot \mathbf{B}=\left(\left(\mu_{A}+\mu_{B}-1_{\Omega}\right) \vee 0_{\Omega},\left(\nu_{A}+\nu_{B}\right) \wedge 1_{\Omega}\right)\right)
\end{aligned}
$$

and the family of interval valued events

$$
\mathcal{K}=\left\{\left(\pi_{C}, \rho_{C}\right) \quad ; \quad \pi_{C} \leq \rho_{C}, \pi_{C}, \rho_{C}: \Omega \rightarrow[0,1]\right.
$$

$$
\text { are } \mathcal{S} \text { - measurable functions }\}
$$

with the operations and relation

$$
\begin{gathered}
\mathbf{C} \preceq \mathbf{D} \Leftrightarrow \pi_{C} \leq \pi_{D}, \rho_{C} \leq \rho_{D} \\
\mathbf{C} \widehat{\oplus}=\left(\left(\pi_{C}+\pi_{D}\right) \wedge 1_{\Omega},\left(\rho_{C}+\rho_{D}\right) \wedge 1_{\Omega}\right) \\
\mathbf{C} \widehat{\odot}=\left(\left(\pi_{C}+\pi_{D}-1_{\Omega}\right) \vee 0_{\Omega},\left(\rho_{C}+\rho_{D}-1_{\Omega}\right) \vee 0_{\Omega}\right) .
\end{gathered}
$$

They showed that these two systems are isomorphic by the mapping $\psi: \mathcal{F} \rightarrow \mathcal{K}$ given by

$$
\psi\left(\left(\mu_{A}, \nu_{A}\right)\right)=\left(\mu_{A}, 1_{\Omega}-\nu_{A}\right)
$$

for each $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$. Therefore the following relations hold

$$
\begin{align*}
\psi(\mathbf{A} \oplus \mathbf{B}) & =\psi(\mathbf{A}) \widehat{\oplus} \psi(\mathbf{B}),  \tag{1}\\
\psi(\mathbf{A} \odot \mathbf{B}) & =\psi(\mathbf{A}) \widehat{\odot} \psi(\mathbf{B}),  \tag{2}\\
\mathbf{A} \leq \mathbf{B} & \Leftrightarrow \psi(\mathbf{A}) \preceq \psi(\mathbf{B}),  \tag{3}\\
\mathbf{A}_{n} \nearrow \mathbf{A} & \Leftrightarrow \psi\left(\mathbf{A}_{n}\right) \nearrow \psi(\mathbf{A}), \tag{4}
\end{align*}
$$

for each $\mathbf{A}_{n}, \mathbf{A}, \mathbf{B} \in \mathcal{F}$. They illustrated the connection between intuitionistic fuzzy state $\mathbf{m}: \mathcal{F} \rightarrow[0,1]$ and interval valued state $k: \mathcal{K} \rightarrow[0,1]$ and that was $\mathbf{m}=k \circ \psi$.

Further in paper [5] we defined the notion of interval valued observable $z: \mathcal{B}(R) \rightarrow \mathcal{K}$ and we displayed the connection to the intuitionistic fuzzy observable $x: \mathcal{B}(R) \rightarrow \mathcal{F}$, which was $z=\psi \circ x$.

In paper [5] we defined the product operation and the notion of joint interval valued observable $\widehat{h}: \mathcal{B}\left(R^{2}\right) \rightarrow$
$\mathcal{K}$ and we showed the connection to the joint intuitionistic fuzzy observable $h: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$, which was $\widehat{h}=\psi \circ h$.

In this paper we try to prove the basic theorems from extreme value theory for interval valued events. We define the notion of independence and convergence in distribution for interval valued observables, too.

Remark that in a whole text we use a notation "IF" for short a phrase "intuitionistic fuzzy" and a notation "IV" for short a phrase "interval valued".

## 2 Interval valued events, interval valued state and interval valued observables

First we start with definitions of basic notions (see [7, 9]).

Definition 2.1 Let $\Omega$ be a nonempty set. An interval valued set (IV-set) $\mathbf{C}$ on $\Omega$ is a pair $\left(\pi_{C}, \rho_{C}\right)$ of mappings $\pi_{C}, \rho_{C}: \Omega \rightarrow[0,1]$ such that $\pi_{C} \leq \rho_{C}$.

Definition 2.2 Start with a measurable space $(\Omega, \mathcal{S})$. Hence $\mathcal{S}$ is a $\sigma$-algebra of subsets of $\Omega$. An interval valued event (IV-event) is called an IV-set $\mathbf{C}=\left(\pi_{C}, \rho_{C}\right)$ such that $\pi_{C}, \rho_{C}: \Omega \rightarrow[0,1]$ are $\mathcal{S}$-measurable. The family of all IV -events on $(\Omega, \mathcal{S})$ will be denoted by $\mathcal{K}$.

If $\mathbf{C}=\left(\pi_{C}, \rho_{C}\right) \in \mathcal{K}, \mathbf{D}=\left(\pi_{D}, \rho_{D}\right) \in \mathcal{K}$, then we define the Lukasiewicz binary operations $\widehat{\oplus}, \widehat{\bigodot}$ on $\mathcal{K}$ by

$$
\begin{gathered}
\mathbf{C} \widehat{\oplus} \mathbf{D}=\left(\left(\pi_{C}+\pi_{D}\right) \wedge 1_{\Omega},\left(\rho_{C}+\rho_{D}\right) \wedge 1_{\Omega}\right) \\
\mathbf{C} \widehat{\odot} \mathbf{D}=\left(\left(\pi_{C}+\pi_{D}-1_{\Omega}\right) \vee 0_{\Omega},\left(\rho_{C}+\rho_{D}-1_{\Omega}\right) \vee 0_{\Omega}\right)
\end{gathered}
$$ and the partial ordering is given by

$$
\mathbf{C} \preceq \mathbf{D} \Leftrightarrow \pi_{C} \leq \pi_{D}, \rho_{C} \leq \rho_{D}
$$

The continuity is given by

$$
\begin{aligned}
& \mathbf{C} \nearrow \mathbf{D} \Leftrightarrow \pi_{C} \nearrow \pi_{D}, \rho_{C} \nearrow \rho_{D}, \\
& \mathbf{C} \searrow \mathbf{D} \Leftrightarrow \pi_{C} \searrow \pi_{D}, \rho_{C} \searrow \rho_{D} .
\end{aligned}
$$

In the $I V$-probability theory instead of the notion of probability we use the notion of state (see [7, 9]).

Definition 2.3 Let $\mathcal{K}$ be the family of all IV-events in $\Omega$. A mapping $k: \mathcal{K} \rightarrow[0,1]$ is called an interval valued state (IV-state), if the following conditions are satisfied:
(i) $k\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, k\left(\left(0_{\Omega}, 0_{\Omega}\right)\right)=0$;
(ii) if $\mathbf{C} \widehat{\mathbf{D}}=\left(0_{\Omega}, 0_{\Omega}\right)$ and $\mathbf{C}, \mathbf{D} \in \mathcal{K}$, then $k(\mathbf{C} \oplus \mathbf{D})=k(\mathbf{C})+k(\mathbf{D}) ;$
(iii) if $\mathbf{C}_{n} \nearrow \mathbf{C}$ (i.e. $\left.\pi_{C_{n}} \nearrow \pi_{C}, \rho_{C_{n}} \nearrow \rho_{C}\right)$, then $k\left(\mathbf{C}_{n}\right) \nearrow k(\mathbf{C})$.

Probably the most useful result in the $I V$-state theory is the following representation theorem.

Theorem 2.4 To each $I V$-state $k: \mathcal{K} \rightarrow[0,1]$ there exists exactly one probability measure $P: \mathcal{S} \rightarrow[0,1]$ and exactly one $\alpha \in[0,1]$ such that

$$
k(\mathbf{C})=(1-\alpha) \int_{\Omega} \pi_{C} d P+\alpha \int_{\Omega} \rho_{C} d P
$$

for each $\mathbf{C}=\left(\pi_{C}, \rho_{C}\right) \in \mathcal{K}$.
Between $I V$-states and $I F$-states is one-one correspondence by the mapping $\psi: \mathcal{F} \rightarrow \mathcal{K}$ given by

$$
\psi\left(\left(\mu_{A}, \nu_{A}\right)\right)=\left(\mu_{A}, 1_{\Omega}-\nu_{A}\right)
$$

for each $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}$.
Proposition 2.1 If $k: \mathcal{K} \rightarrow[0,1]$ is an $I V$-state and $\mathbf{m}=k \circ \psi: \mathcal{F} \rightarrow[0,1]$, then $\mathbf{m}$ is an IF-state.

Recall that by an intuitionistic fuzzy state (IFstate) $\mathbf{m}$ we understand each mapping $\mathbf{m}: \mathcal{F} \rightarrow[0,1]$ which satisfies the following conditions (see [11]):
(i) $\mathbf{m}\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, \mathbf{m}\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0$;
(ii) if $\mathbf{A} \odot \mathbf{B}=\left(0_{\Omega}, 1_{\Omega}\right)$ and $\mathbf{A}, \mathbf{B} \in \mathcal{F}$, then $\mathbf{m}(\mathbf{A} \oplus$ $\mathbf{B})=\mathbf{m}(\mathbf{A})+\mathbf{m}(\mathbf{B})$;
(iii) if $\mathbf{A}_{n} \nearrow \mathbf{A}$ (i.e. $\mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}$ ), then $\mathbf{m}\left(\mathbf{A}_{n}\right) \nearrow \mathbf{m}(\mathbf{A})$.

The third basic notion in the probability theory is the notion of an observable. Let $\mathcal{J}$ be the family of all intervals in $R$ of the form

$$
[a, b)=\{x \in R: a \leq x<b\} .
$$

Then the $\sigma$-algebra $\sigma(\mathcal{J})$ is denoted $\mathcal{B}(R)$ and it is called the $\sigma$-algebra of Borel sets, its elements are called Borel sets. Now we start with definition of basic notions (see [5]).

Definition 2.5 By an interval valued observable (IVobservable) on $\mathcal{K}$ we understand each mapping $z$ : $\mathcal{B}(R) \rightarrow \mathcal{K}$ satisfying the following conditions:
(i) $z(R)=\left(1_{\Omega}, 1_{\Omega}\right), z(\emptyset)=\left(0_{\Omega}, 0_{\Omega}\right)$;
(ii) if $A \cap B=\emptyset$, then $z(A) \widehat{\odot} z(B)=\left(0_{\Omega}, 0_{\Omega}\right)$ and $z(A \cup B)=z(A) \widehat{\oplus} z(B) ;$
(iii) if $A_{n} \nearrow A$, then $z\left(A_{n}\right) \nearrow z(A)$.

Remark 2.6 If we denote $z(A)=\left(z^{b}(A), z^{\sharp}(A)\right)$ for each $A \in \mathcal{B}(R)$, then $z^{b}, z^{\sharp}: \mathcal{B}(R) \rightarrow \mathcal{T}$ are observables, where $\mathcal{T}=\{f: \Omega \rightarrow[0,1] ; f$ is $\mathcal{S}$-measurable $\}$.

Remark 2.7 Sometimes we need to work with ndimensional IV-observable $z: \mathcal{B}\left(R^{n}\right) \rightarrow \mathcal{K}$ defined as a mapping with the following conditions:
(i) $z\left(R^{n}\right)=\left(1_{\Omega}, 1_{\Omega}\right), z(\emptyset)=\left(0_{\Omega}, 0_{\Omega}\right)$;
(ii) if $A \cap B=\emptyset, A, B \in \mathcal{B}\left(R^{n}\right)$, then $z(A) \widehat{\odot} z(B)=$ $\left(0_{\Omega}, 0_{\Omega}\right)$ and $z(A \cup B)=z(A) \widehat{\oplus} z(B) ;$
(iii) if $A_{n} \nearrow A$, then $z\left(A_{n}\right) \nearrow z(A)$ for each $A, A_{n} \in$ $\mathcal{B}\left(R^{n}\right)$.

If $n=1$ we simply say that $z$ is an IV-observable.
Between $I V$-observable and $I F$-observable is the connection (see [5]).

Proposition 2.2 Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=$ $\left(u, 1_{\Omega}-v\right)$. If $x: \mathcal{B}(R) \rightarrow \mathcal{F}$ is an IF-observable and $z=\psi \circ x: \mathcal{B}(R) \rightarrow \mathcal{K}$, then $z$ is an IV-observable.

Recall that by intuitionistic fuzzy observable (IFobservable) on $\mathcal{F}$ we understand each mapping $x$ : $\mathcal{B}(R) \rightarrow \mathcal{F}$ satisfying the following conditions (see [11]):
(i) $x(R)=\left(1_{\Omega}, 0_{\Omega}\right), x(\emptyset)=\left(0_{\Omega}, 1_{\Omega}\right)$;
(ii) if $A \cap B=\emptyset$, then $x(A) \odot x(B)=\left(0_{\Omega}, 1_{\Omega}\right)$ and $x(A \cup B)=x(A) \oplus x(B) ;$
(iii) if $A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$.

If we denote $x(A)=\left(x^{b}(A), 1-x^{\sharp}(A)\right)$ for each $A \in$ $\mathcal{B}(R)$, then $x^{b}, x^{\sharp}: \mathcal{B}(R) \rightarrow \mathcal{T}$ are observables, where $\mathcal{T}=\{f: \Omega \rightarrow[0,1] ; f$ is $\mathcal{S}-$ measurable $\}$.

Theorem 2.8 Let $z: \mathcal{B}(R) \rightarrow \mathcal{K}$ be an IV-observable, $k: \mathcal{K} \rightarrow[0,1]$ be an $I V$-state. Define the mapping $k_{z}: \mathcal{B}(R) \rightarrow[0,1]$ by the formula

$$
k_{z}(C)=k(z(C)),
$$

for each $C \in \mathcal{B}(R)$. Then $k_{z}: \mathcal{B}(R) \rightarrow[0,1]$ is a probability measure. Moreover

$$
k_{z}(C)=\mathbf{m}_{x}(C),
$$

where $\mathbf{m}_{x}=\mathbf{m} \circ x$ is a probability measure induced by IF-state $\mathbf{m}$ and IF-observable $x$.

Since $k_{z}$ is a probability measure, we call it the probability distribution of $I V$-observable. Now we can define the notion of distribution function of $I V$ observable (see [5]).

Definition 2.9 If $z: \mathcal{B}(R) \rightarrow \mathcal{K}$ is an IV-observable, and $k: \mathcal{K} \rightarrow[0,1]$ is an IV-state, then the interval valued distribution function (IV-distribution function) of $z$ is the function $\widehat{F}: R \rightarrow[0,1]$ defined by the formula

$$
\widehat{F}(t)=k(z((-\infty, t)))
$$

for each $t \in R$.
Of course the $I V$-distribution function fulfils the same properties as a classical distribution function (see [5]).

Theorem 2.10 Let $\widehat{F}: R \rightarrow[0,1]$ be the $I V$ distribution function of an $I V$-observable $z: \mathcal{B}(R) \rightarrow$ $\mathcal{K}$. Then $\widehat{F}$ is non-decreasing on $R$, left continuous in each point $t \in R$ and

$$
\lim _{t \rightarrow-\infty} \widehat{F}(t)=0, \lim _{t \rightarrow \infty} \widehat{F}(t)=1
$$

Moreover

$$
\widehat{F}(t)=\mathbf{F}(t)
$$

for each $t \in R$, where $\mathbf{F}$ is an IF-distribution function of an IF-observable $x: \mathcal{B}(R) \rightarrow \mathcal{F}$.

Recall that by intuitionistic fuzzy distribution function ( $I F$-distribution function) of an $I F$ observable $x: \mathcal{B}(R) \rightarrow \mathcal{F}$ we understand each function $\mathbf{F}: R \rightarrow[0,1]$ defined by the formula

$$
\mathbf{F}(t)=\mathbf{m}(x((-\infty, t)))
$$

for each $t \in R$, where $\mathbf{m}: \mathcal{F} \rightarrow[0,1]$ is an $I F$-state.
Now we can define the $I V$-mean value and $I V$ dispersion of an $I V$-observable.

Theorem 2.11 Let $\widehat{F}: R \longrightarrow[0,1]$ be the $I V$ distribution function of an $I V$-observable $z: \mathcal{B}(R) \rightarrow$ $\mathcal{K}$. Then

$$
\begin{aligned}
\widehat{E}(z) & =\int_{R} t d \widehat{F}(t) \\
\widehat{D}^{2}(z) & =\int_{R} t^{2} d \widehat{F}(t)-(\widehat{E}(z))^{2}= \\
& =\int_{R}(t-\widehat{E}(z))^{2} d \widehat{F}(t)
\end{aligned}
$$

## 3 Product and joint interval valued observable

In the paper we shall work with independent $I V$ observables. Of course first we must need the existence of the joint $I V$-observable. For this reason we shall define the product of $I V$-events ([6]).

Theorem 3.1 The operation $\widehat{\cdot}$ defined by

$$
\left(\pi_{C}, \rho_{C}\right) \cdot \cdot\left(\pi_{D}, \rho_{D}\right)=\left(\pi_{C} \cdot \pi_{D}, \rho_{C} \cdot \rho_{D}\right)
$$

for each $\left(\pi_{C}, \rho_{C}\right),\left(\pi_{D}, \rho_{D}\right) \in \mathcal{K}$ is product operation on $\mathcal{K}$.

Now we explain the connection between product operations on the family of interval valued events $\mathcal{K}$ and the family of intuitionistic fuzzy events $\mathcal{F}$ and we define the joint interval valued observable (see [6]).

Theorem 3.2 If the operation $\bullet$ is a product on family of intuitionistic events $\mathcal{F}$ defined by

$$
\begin{array}{r}
\left(\mu_{A}, \nu_{A}\right) \bullet\left(\mu_{B}, \nu_{B}\right)=\left(\mu_{A} \cdot \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \cdot \nu_{B}\right)= \\
=\left(\mu_{A} \cdot \mu_{B}, 1_{\Omega}-\left(1_{\Omega}-\nu_{A}\right) \cdot\left(1_{\Omega}-\nu_{B}\right)\right)
\end{array}
$$

for each $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right), \mathbf{B}=\left(\mu_{B}, \nu_{B}\right) \in \mathcal{F}$ and $\uparrow$ is a product operation on a family of interval valued events $\mathcal{K}$ defined by

$$
\left(\pi_{C}, \rho_{C}\right) \cdot\left(\pi_{D}, \rho_{D}\right)=\left(\pi_{C} \cdot \pi_{D}, \rho_{C} \cdot \rho_{D}\right)
$$

for each $\mathbf{C}=\left(\pi_{C}, \rho_{C}\right), \mathbf{D}=\left(\pi_{D}, \rho_{D}\right) \in \mathcal{K}$ and $\psi$ : $\mathcal{F} \rightarrow \mathcal{K}$ is a function given by $\psi((u, v))=(u, 1-v)$, then

$$
\psi(\mathbf{A} \bullet \mathbf{B})=\psi(\mathbf{A}) \cdot \psi(\mathbf{B})
$$

for each $\mathbf{A}, \mathbf{B} \in \mathcal{F}$.
Definition 3.3 Let $z_{1}, z_{2}: \mathcal{B}(R) \rightarrow \mathcal{K}$ be two $I V$ observables. The joint interval valued observable (joint $I V$-observable) of the IV-observables $z_{1}, z_{2}$ is a mapping $\widehat{h}: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{K}$ satisfying the following conditions:
(i) $\widehat{h}\left(R^{2}\right)=\left(1_{\Omega}, 1_{\Omega}\right), \widehat{h}(\emptyset)=\left(0_{\Omega}, 0_{\Omega}\right)$;
(ii) if $A, B \in \mathcal{B}\left(R^{2}\right)$ and $A \cap B=\emptyset$, then $\widehat{h}(A \cup B)=$ $\widehat{h}(A) \widehat{\oplus} \widehat{h}(B)$ and $\widehat{h}(A) \widehat{\odot} \widehat{h}(B)=\left(0_{\Omega}, 0_{\Omega}\right)$;
(iii) if $A, A_{1}, \ldots \in \mathcal{B}\left(R^{2}\right)$ and $A_{n} \nearrow A$, then $\widehat{h}\left(A_{n}\right) \nearrow \widehat{h}(A)$;
(iv) $\widehat{h}(C \times D)=z_{1}(C) \cdot z_{2}(D)$ for each $C, D \in \mathcal{B}(R)$.

In the following proposition we show the connection between the joint interval valued observable and the intuitionistic fuzzy observable (see [6]).

Proposition 3.1 Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=$ $\left(u, 1_{\Omega}-v\right)$. If $h: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ is a joint IF-observable of IF-observables $x_{1}, x_{2}: \mathcal{B}(R) \rightarrow \mathcal{F}$ and $\widehat{h}=\psi \circ h$ : $\mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{K}$, then $\widehat{h}$ is the joint IV-observable of IVobservables $z_{1}, z_{2}: \mathcal{B}(R) \rightarrow \mathcal{K}$, where $z_{1}=\psi \circ x_{1}$, $z_{2}=\psi \circ x_{2}$.

Recall that by joint intuitionistic fuzzy observable (joint $I F$-observable) we understand each mapping $h: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ satisfying the following conditions (see $[8,11])$ :
(i) $h\left(R^{2}\right)=\left(1_{\Omega}, 0_{\Omega}\right), h(\emptyset)=\left(0_{\Omega}, 1_{\Omega}\right)$;
(ii) if $A, B \in \mathcal{B}\left(R^{2}\right)$ and $A \cap B=\emptyset$, then $h(A \cup B)=$ $h(A) \oplus h(B)$ and $h(A) \odot h(B)=\left(0_{\Omega}, 1_{\Omega}\right) ;$
(iii) if $A, A_{1}, \ldots \in \mathcal{B}\left(R^{2}\right)$ and $A_{n} \nearrow A$, then $h\left(A_{n}\right) \nearrow h(A)$;
(iv) $h(C \times D)=x(C) \cdot y(D)$ for each $C, D \in \mathcal{B}(R)$.

Theorem 3.4 To each two $I V$-observables $z_{1}, z_{2}$ : $\mathcal{B}(\mathbf{R}) \rightarrow \mathcal{K}$ there exists their joint $I V$-observable.

If we have several $I V$-observables and a Borel measurable function, we can define the $I V$-observable, which is the function of several $I V$-observables. About this says the following definition (see [6]).

Definition 3.5 Let $z_{1}, \ldots, z_{n}: \mathcal{B}(R) \rightarrow \mathcal{K}$ be $I V$ observables, $\widehat{h}_{n}$ their joint IV-observable and $g_{n}$ : $R^{n} \rightarrow R$ a Borel measurable function. Then we define the IV-observable $\widehat{y}_{n}=g_{n}\left(z_{1}, \ldots, z_{n}\right): \mathcal{B}(R) \rightarrow \mathcal{K}$ by the formula

$$
\widehat{y}_{n}=g_{n}\left(z_{1}, \ldots, z_{n}\right)(A)=\widehat{h}_{n}\left(g_{n}^{-1}(A)\right) .
$$

for each $A \in \mathcal{B}(R)$.
Example 3.6 Let $z_{1}, \ldots, z_{n}: \mathcal{B}(R) \rightarrow \mathcal{K}$ be IVobservables and $\widehat{h}_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow \mathcal{K}$ be their joint IVobservable. Then the $I V$-observable

$$
\widehat{y}_{n}=\frac{1}{a_{n}}\left(\max \left(z_{1}, \ldots, z_{n}\right)-b_{n}\right)
$$

is defined by the equality

$$
\widehat{y}_{n}=\widehat{h}_{n} \circ g_{n}^{-1}
$$

where $g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{a_{n}}\left(\max \left(u_{1}, \ldots, u_{n}\right)-b_{n}\right)$.
Between a function of several $I V$-observables $\widehat{y}_{n}=$ $g_{n}\left(z_{1}, \ldots, z_{n}\right)$ and a function of several $I F$-observables $y_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right)$ exists a connection (see [6]).

Proposition 3.2 Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=$ $\left(u, 1_{\Omega}-v\right)$. If $y_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right): \mathcal{B}(R) \rightarrow \mathcal{F}$ is a function of several IF-observables $x_{1}, \ldots, x_{n}$ and $\widehat{y}_{n}=\psi \circ y_{n}: \mathcal{B}(R) \rightarrow \mathcal{K}$, then $\widehat{y}_{n}=g_{n}\left(z_{1}, \ldots, z_{n}\right)$ is a function of several $I V$-observables $z_{1}, \ldots, z_{n}$, where $z_{i}=\psi \circ x_{i}, i=1, \ldots, n$.

Recall that by a function of several intuitionistic fuzzy observables we understand the $I F$-observable defined by

$$
y_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right)(A)=h_{n}\left(g_{n}^{-1}(A)\right) .
$$

for each $A \in \mathcal{B}(R)$, where $h_{n}$ is a joint $I F$-oservable of $I F$-observables $x_{1}, \ldots, x_{n}$.

## 4 Independence and convergence in distribution

In this section we define the notion of independence of interval valued observables.

Definition 4.1 Let $k$ be an IV-state. The $I V$ observables $z_{1}, \ldots, z_{n}: \mathcal{B}(R) \rightarrow \mathcal{K}$ are independent if for n-dimensional IV-observable $\widehat{h}_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow \mathcal{K}$ there holds

$$
k\left(\widehat{h}_{n}\left(A_{1} \times \ldots \times A_{n}\right)\right)=k\left(z_{1}\left(A_{1}\right)\right) \cdot \ldots \cdot k\left(z_{n}\left(A_{n}\right)\right)
$$

for each $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$.
Now we explain the connection between independence of $I V$-observables and independence of $I F$ observables. Recall that IF-observables $x_{1}, \ldots, x_{n}$ : $\mathcal{B}(R) \rightarrow \mathcal{F}$ are independent if for $n$-dimensional $I F$ observable $h_{n}: \mathcal{B}\left(R^{n}\right) \rightarrow \mathcal{F}$ there holds
$\mathbf{m}\left(h_{n}\left(A_{1} \times \ldots \times A_{n}\right)\right)=\mathbf{m}\left(x_{1}\left(A_{1}\right)\right) \cdot \ldots \cdot \mathbf{m}\left(x_{n}\left(A_{n}\right)\right)$ for each $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$, where $\mathbf{m}$ is an $I F$-state.

Proposition 4.1 The $I V$-observables $z_{1}, \ldots, z_{n}$ : $\mathcal{B}(R) \rightarrow \mathcal{K}$ are independent if and only if the IFobservables $x_{1}, \ldots, x_{n}: \mathcal{B}(R) \rightarrow \mathcal{F}$ are independent. There $z_{i}=\psi \circ x_{i}, i=1, \ldots, n$.

Proof. " $\Rightarrow$ " Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=\left(u, 1_{\Omega}-v\right)$. If the $I V$-observables $z_{1}, \ldots, z_{n}$ are independent, then by Definition 4.1 for $n$-dimensional $I V$-observable $\widehat{h}_{n}$ there holds

$$
k\left(\widehat{h}_{n}\left(A_{1} \times \ldots \times A_{n}\right)\right)=k\left(z_{1}\left(A_{1}\right)\right) \cdot \ldots \cdot k\left(z_{n}\left(A_{n}\right)\right)
$$

for each $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$. But using Proposition 3.1, Proposition 2.2 and Proposition 2.1 we have

$$
\widehat{h}_{n}=\psi \circ h_{n}, z_{i}=\psi \circ x_{i}, \mathbf{m}=k \circ \psi
$$

where $h_{n}$ is $n$-dimensional $I F$-observable, $x_{i}, i=$ $1, \ldots, n$ are $I F$-observables and $\mathbf{m}$ is $I F$-state. Therefore
$\mathbf{m}\left(h_{n}\left(A_{1} \times \ldots \times A_{n}\right)\right)=\mathbf{m}\left(x_{1}\left(A_{1}\right)\right) \cdot \ldots \cdot \mathbf{m}\left(x_{n}\left(A_{n}\right)\right)$
for each $A_{1}, \ldots, A_{n} \in \mathcal{B}(R)$. Hence $I F$-observables $x_{1}, \ldots, x_{n}$ are independent.

The proof of " $\Leftarrow$ " is a analogue to the proof of " $\Rightarrow$ ".

We need the notion of convergence in distribution of $I V$-observables yet.

Definition 4.2 Let $\left(\widehat{y}_{n}\right)_{n}$ be a sequence of $I V$ observables and $k$ be a IV-state. We say that $\left(\widehat{y}_{n}\right)_{n}$ converges in distribution to a function $\Psi: R \rightarrow[0,1]$, if for each $t \in R$

$$
\lim _{n \rightarrow \infty} k\left(\widehat{y}_{n}((-\infty, t))\right)=\Psi(t)
$$

## 5 Extreme value theory for interval valued observables

The extreme value theory is a part of statistics, which deals with examination of probability of extreme and rare events with a large impact. The extreme value theory search endpoints of the distributions. In this Section we show the modification of Fisher-TippetGnedenko theorem and the modification of Pickands-Balkema-de Hann theorem for interval valued observables.
Let $z_{1}, z_{2}, \ldots$ be an independent, equally distributed $I V$-observables on $\mathcal{K}$. Denote $\widehat{M}_{n}$ maximum of $n I V$ observables

$$
\widehat{M}_{1}=z_{1}, \widehat{M}_{n}=\max \left(z_{1}, \ldots, z_{n}\right)
$$

for $n \geq 2$.
Theorem 5.1 (Fisher-Tippett-Gnedenko) Let $z_{1}, z_{2}, \ldots$ be a sequence of independent, equally distributed $I V$-observables such that $\widehat{D}^{2}\left(z_{n}\right)=\sigma^{2}$, $\widehat{E}\left(z_{n}\right)=a,(n=1,2, \ldots)$. If there exists the sequences of real constant $a_{n}>0, b_{n}$ and a non-degenerate distribution function $H$, such that for $\widehat{y}_{n}=\frac{1}{a_{n}}\left(\widehat{M}_{n}-b_{n}\right)$ holds

$$
\lim _{n \rightarrow \infty} k\left(\widehat{y}_{n}((-\infty, t))\right)=H(t)
$$

then $H$ is the distribution function one of the following three types of distributions:

## 1. Gumbel

$$
H_{\mu, \sigma}(t)=\exp \left(-e^{-\left(\frac{t-\mu}{\sigma}\right)}\right), t \in R
$$

2. Fréchet

$$
H_{\mu, \sigma, \alpha}(t)= \begin{cases}0, & \text { for } t \leq \mu \\ \exp \left(-\left(\frac{t-\mu}{\sigma}\right)^{-\alpha}\right), & \text { for } t>\mu, \alpha>0\end{cases}
$$

## 3. Weibull

$$
H_{\mu, \sigma, \alpha}(t)= \begin{cases}\exp \left(-\left(-\frac{t-\mu}{\sigma}\right)^{\alpha}\right), & \text { for } t \leq \mu, \alpha>0 \\ 1, & \text { for } t>\mu\end{cases}
$$

There a parameter $\mu \in R$ is the location parameter and a parameter $\sigma>0$ is the scale parameter.

Proof. Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=\left(u, 1_{\Omega}-v\right)$. Let $z_{1}, z_{2}, \ldots$ be a sequence of independent, equally distributed $I V$-observables such that $\widehat{D}^{2}\left(z_{n}\right)=\sigma^{2}$, $\widehat{E}\left(z_{n}\right)=a,(n=1,2, \ldots)$. Then by Proposition 4.1 $x_{1}, x_{2}, \ldots$ is a sequence of independent $I F$-observables,
where $x_{n}=\psi^{-1} \circ z_{n}\left(\right.$ i.e. $\left.z_{n}=\psi \circ x_{n}\right), n=1, \ldots$ Moreover using Theorem 2.10 we have

$$
\begin{aligned}
a & =\widehat{E}\left(z_{n}\right)=\int_{R} t d \widehat{F}(t)=\int_{R} t d \mathbf{F}(t)=\mathbf{E}\left(x_{n}\right), \\
\sigma^{2} & =\widehat{D}^{2}\left(z_{n}\right)=\int_{R}\left(t-\widehat{E}\left(z_{n}\right)\right)^{2} d \widehat{F}(t)= \\
& =\int_{R}\left(t-\mathbf{E}\left(x_{n}\right)\right)^{2} d \mathbf{F}(t)=\mathbf{D}^{2}\left(x_{n}\right)
\end{aligned}
$$

Hence by the Fisher-Tippett-Gnedenko theorem for $I F$-case (see Theorem 7 in [3]) there exists the sequences of real constant $a_{n}>0, b_{n}$ and a nondegenerate distribution function $H$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{m}\left(\frac{1}{a_{n}}\left(\mathbf{M}_{n}-b_{n}\right)((-\infty, t))\right)=H(t) \tag{5}
\end{equation*}
$$

where $\mathbf{M}_{n}$ is a maximum of $n \quad I F$-observables $x_{1}, \ldots, x_{n}$ given by

$$
\mathbf{M}_{1}=x_{1}, \mathbf{M}_{n}=\max \left(x_{1}, \ldots, x_{n}\right)
$$

for $n \geq 2$. Put

$$
\begin{aligned}
& \widehat{y}_{n}=\frac{1}{a_{n}}\left(\widehat{M}_{n}-b_{n}\right)=\widehat{h}_{n} \circ g_{n}^{-1} \\
& y_{n}=\frac{1}{a_{n}}\left(\mathbf{M}_{n}-b_{n}\right)=h_{n} \circ g_{n}^{-1},
\end{aligned}
$$

where $g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{a_{n}}\left(\max \left(u_{1}, \ldots, u_{n}\right)-b_{n}\right), \widehat{h}_{n}$ is joint $I V$-observable of $I V$-observables $z_{1}, \ldots, z_{n}$ and $h_{n}$ is joint $I F$-observable of $I F$-observables $x_{1}, \ldots, x_{n}$.
Therefore using Proposition 3.2, Proposition 2.1 and (5) we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} k\left(\widehat{y}_{n}((-\infty, t))\right)=\lim _{n \rightarrow \infty} k \circ \psi \circ y_{n}((-\infty, t))= \\
& =\lim _{n \rightarrow \infty} \mathbf{m} \circ y_{n}((-\infty, t))= \\
& =\lim _{n \rightarrow \infty} \mathbf{m}\left(\frac{1}{a_{n}}\left(\mathbf{M}_{n}-b_{n}\right)((-\infty, t))\right)=H(t) .
\end{aligned}
$$

Gumbel, Frechet and Weibull distribution from Theorem 5.1 can be described with using a generalized distribution of extreme values - GEV:
$H_{\mu, \sigma, \varepsilon}(t)=\left\{\begin{aligned} \exp \left[-\left(1+\varepsilon\left(\frac{t-\mu}{\sigma}\right)\right)^{-\frac{1}{\varepsilon}}\right], & , \varepsilon \neq 0, \\ 1 & +\varepsilon\left(\frac{t-\mu}{\sigma}\right)>0, \\ \exp \left(-\exp \left(-\frac{t-\mu}{\sigma}\right)\right), & t \in R, \varepsilon=0 .\end{aligned}\right.$
A parameter $\varepsilon$ is called the shape parameter.
The Fisher-Tippet-Gnedenko theorem says about convergence in distribution of maximums of independent, equally distributed $I V$-observables. An alternative to the maximal observation method is the method that
models all observations that exceed any predefined boundary (ie. threshold).
Such the extremes occur "near" the upper end of distribution support, hence intuitively asymptotic behavior of $\widehat{M}_{n}$ must be related to the distribution function $\widehat{F}$ in its right tail near the right endpoint.
Let $z$ be an $I V$-observable on $\mathcal{K}$ and $\widehat{F}$ be an $I V$ distribution function of $z$. We denote by

$$
t_{\widehat{F}}=\sup \{t \in R: \widehat{F}(t)<1\}
$$

the right endpoint of $I V$-distribution function $\widehat{F}$.
Definition 5.2 (Maximum domain of attraction for IV-case) We say that the IV-distribution function $\widehat{F}$ of IV-observable $z$ belongs to the maximum domain of attraction of the extreme value distributions $H$ if there exists constants $a_{n}>0, b_{n} \in R$ such that

$$
\lim _{n \rightarrow \infty} k\left(\frac{1}{a_{n}}\left(\widehat{M}_{n}-b_{n}\right)((-\infty, t))\right)=H(t),
$$

holds. We write $\widehat{F} \in \widehat{M D} A(H)$.
Definition 5.3 (Excess interval valued distribution function) Let $\widehat{F}$ be an interval valued distribution function with right endpoint $t_{\widehat{F}}$. For fixed $u<t_{\widehat{F}}$, $u>0$,

$$
\widehat{F}_{u}(t)=\frac{\widehat{F}(t+u)-\widehat{F}(u)}{1-\widehat{F}(u)}, \quad 0 \leq t \leq t_{\widehat{F}}-u
$$

is the excess interval valued distribution function of the interval valued observable $z$ (of the IV-distribution function $\widehat{F}$ ) over the threshold $u$.

Definition 5.4 (Generalized Pareto distribution - GPD) Define the distribution function $G_{\varepsilon, \beta}$ by

$$
G_{\varepsilon, \beta}(t)= \begin{cases}1-\left(1+\varepsilon \cdot \frac{t}{\beta}\right)^{-\frac{1}{\varepsilon}}, & \text { if } \varepsilon \neq 0 \\ 1-e^{-\frac{t}{\beta}}, & \text { if } \varepsilon=0\end{cases}
$$

where

$$
\begin{array}{rlr}
t \geq 0 & \text { if } \varepsilon \geq 0 \\
0 \leq t \leq-\frac{\beta}{\varepsilon} & \text { if } \varepsilon<0
\end{array}
$$

and $\beta>0$ is the scale parameter. $G_{\varepsilon, \beta}$ is called the generalised Pareto distribution. We can extend the family by adding a location parameter $\nu \in R$. Then we get the function $G_{\varepsilon, \nu, \beta}$ by replacing the argument $t$ above by $t-\nu$ in $G_{\varepsilon, \beta}$. The support has to be adjusted accordingly.

Remark 5.5 The GPD transforms into a number of other distributions depending on the value of $\varepsilon$. When $\varepsilon>0$, it takes the form of the ordinary Pareto distribution. This case would be most relevant for financial time series data as it has a heavy tail. If $\varepsilon=0$, the $G P D$ corresponds to exponential distribution, and it is called a short-tailed, Pareto II type distribution for $\varepsilon<0$.

Theorem 5.6 (Pickands-Balkema-de Haan) For every $\varepsilon \in R$,

$$
\begin{aligned}
& \widehat{F} \in \widehat{M D} A\left(H_{\varepsilon}\right) \Leftrightarrow \\
& \Leftrightarrow \lim _{u \rightarrow t_{\widehat{F}}} \sup _{0<t<t_{\widehat{F}}-u}\left|\widehat{F}_{u}(t)-G_{\varepsilon, \beta(u)}(t)\right|=0
\end{aligned}
$$

for some positive function $\beta$.
Proof. Let $\psi: \mathcal{F} \rightarrow \mathcal{K}, \psi((u, v))=\left(u, 1_{\Omega}-v\right)$. Let $k$ be an $I V$-state and $\left(z_{n}\right)_{n}$ be a sequence of independent $I V$-observables in $\mathcal{K}$ with the same $I V$-distribution $\widehat{F}$. Then by Proposition $4.1 x_{1}, x_{2}, \ldots$ is a sequence of independent $I F$-observables, where $x_{n}=\psi^{-1} \circ z_{n}$ (i.e. $\left.z_{n}=\psi \circ x_{n}\right), n=1, \ldots$. Moreover by Theorem 2.10 we have $\widehat{F}=\mathbf{F}$. Hence $t_{\widehat{F}}=t_{\mathbf{F}}, \widehat{F}_{u}=\mathbf{F}_{u}$ and

$$
\begin{aligned}
& \lim _{u \rightarrow t_{\hat{F}}} \sup _{0<t<t_{\widehat{F}}-u}\left|\widehat{F}_{u}(t)-G_{\varepsilon, \beta(u)}(t)\right|= \\
& =\lim _{u \rightarrow t_{\mathbf{F}}} \sup _{0<t<t_{\mathbf{F}}-u}\left|\mathbf{F}_{u}(t)-G_{\varepsilon, \beta(u)}(t)\right|
\end{aligned}
$$

for some positive function $\beta$. There $\mathbf{F}$ is an $I F$ distribution function of $I F$-observables $x_{1}, x_{2}, \ldots$. Put

$$
\begin{aligned}
& \widehat{y}_{n}=\frac{1}{a_{n}}\left(\max \left(z_{1}, \ldots, z_{n}\right)-b_{n}\right)=\widehat{h}_{n} \circ g_{n}^{-1} \\
& y_{n}=\frac{1}{a_{n}}\left(\max \left(x_{1}, \ldots, x_{n}\right)-b_{n}\right)=h_{n} \circ g_{n}^{-1}
\end{aligned}
$$

where $g_{n}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{a_{n}}\left(\max \left(u_{1}, \ldots, u_{n}\right)-b_{n}\right), \widehat{h}_{n}$ is joint $I V$-observable of $I V$-observables $z_{1}, \ldots, z_{n}$ and $h_{n}$ is joint $I F$-observable of $I F$-observables $x_{1}, \ldots, x_{n}$. Therefore using Proposition 3.2 and Proposition 2.1 we obtain

$$
\begin{aligned}
& k\left(\frac{1}{a_{n}}\left(\widehat{M}_{n}-b_{n}\right)((-\infty, t))\right)=k\left(\widehat{y}_{n}((-\infty, t))\right)= \\
& =k \circ \psi \circ y_{n}((-\infty, t))=\mathbf{m} \circ y_{n}((-\infty, t))= \\
& =\mathbf{m}\left(\frac{1}{a_{n}}\left(\mathbf{M}_{n}-b_{n}\right)((-\infty, t))\right) .
\end{aligned}
$$

Thus we have for every $\varepsilon \in R$,

$$
\widehat{F} \in \widehat{M D} A\left(H_{\varepsilon}\right) \Leftrightarrow \mathbf{F} \in \operatorname{MDA}\left(H_{\varepsilon}\right)
$$

Recall that $\mathbf{F} \in \mathbf{M D A}(H)$ if there exists constants $a_{n}>0, b_{n} \in R$ such that

$$
\lim _{n \rightarrow \infty} \mathbf{m}\left(\frac{1}{a_{n}}\left(\mathbf{M}_{n}-b_{n}\right)((-\infty, t))\right)=H(t)
$$

holds (see Definition 5.2 in [4]). Finally from the Pickands-Balkema-de Haan theorem for IF-case (see Theorem 5.7 in [4]) we obtain

$$
\begin{gathered}
\mathbf{F} \in \operatorname{MDA}\left(H_{\varepsilon}\right) \Leftrightarrow \\
\Leftrightarrow \lim _{u \rightarrow t_{\mathbf{F}}} \sup _{0<t<t_{\mathbf{F}}-u}\left|\mathbf{F}_{u}(t)-G_{\varepsilon, \beta(u)}(t)\right|=0 .
\end{gathered}
$$

Therefore for every $\varepsilon \in R$,

$$
\begin{gathered}
\widehat{F} \in \widehat{M D} A\left(H_{\varepsilon}\right) \Leftrightarrow \\
\Leftrightarrow \lim _{u \rightarrow t_{\widehat{F}}} \sup _{0<t<t_{\widehat{F}}-u}\left|\widehat{F}_{u}(t)-G_{\varepsilon, \beta(u)}(t)\right|=0
\end{gathered}
$$

for some positive function $\beta$.
Remark 5.7 Theorem 5.6 say that for some function $\beta$ to be estimated from the data, the excess interval valued distribution $\widehat{F}_{u}$ converges to the generalized Pareto distribution $G_{\varepsilon, \beta}$ for large $u$.

Remark 5.8 The Generalized distribution of extreme values describes the limit distribution of normalized maxima.
The Generalized Pareto distribution appears as the limit distribution of scaled excesses over high thresholds.

## 6 Conclusion

The classical theory of extreme values is based on the practical needs of astronomers, hydrologists and technicians. It is used in rainfall modelling, air pollution modelling, flood forecasting and so on. In recent years it is used in the economic field to model risk in the financial sector.

In some cases we need to consider the imprecise values. Therefore we can used the interval valued sets. In this paper we have proved a very important assertion of mathematical statistics for interval valued events.
The results can be applied in areas like catastrophe bonds and insurance or a malfunctions of the pipeline (see $[10,12,13]$ ).

## References

[1] K. T. Atannasov, Intuitionistic Fuzzy sets : Theory and Applications, Physica Verlag, New York, 1999.
[2] K. T. Atannasov, On Intuitionistic Fuzzy Sets, Springer, Berlin, 2012.
[3] R. Bartková, K. Čunderlíková, About Fisher-Tippett-Gnedenko theorem for intuitionistic fuzzy events, in: J. Kacprzyk (Ed.), Advances in

Fuzzy Logic and Technology 2017, Proc. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 641, Springer, Cham, 2018, pp. 125-135.
[4] R. Bartková, K. Čunderlíková, The Pickands-Balkema-de Haan theorem for intuitionistic fuzzy events, Notes on Intuitionistic Fuzzy Sets 24 (2) (2018) 63-75.
[5] K. Čunderlíková, Connection between interval valued observables and intuitionistic fuzzy observables, Notes on Intuitionistic Fuzzy Sets 25 (1) (2019) 31-42.
[6] K. Čunderlíková, Product operation and joint interval valued observable, Iranian Journal of Fuzzy Systems (2019) submitted.
[7] P. Král, B. Riečan, Probabilty on interval valued events, in: Proc. 11th Int. Workshop on GNs and 2nd Int. Workshop on GNs, IFSs, KE, London, 2010, pp. 43-47.
[8] K. Lendelová, Conditional IF-probability, in: Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 2006, pp. 275-283.
[9] A. Michalíková, B. Riečan, On some methods of study of states on interval valued fuzzy sets, Notes on Intuitionistic Fuzzy Sets 24 (4) (2018) 2-12.
[10] P. Nowak, M. Romaniuk, Catastrophe bond pricing for the two-factor Vasicek interest rate model with automatized fuzzy decision making, Soft Computing 21 (10) (2017) 2575-2597.
[11] B. Riečan, On the probability and random variables on IF events, in: D. Ruan (Ed.), Applied Artifical Intelligence, Proc. 7th FLINS Conf. Genova, 2006, pp. 138-145.
[12] M. Romaniuk, Insurance Portfolio Containing a Catastrophe Bond and an External Help with Imprecise Level - A Numerical Analysis, in: J. Kacprzyk (Ed.), Advances in Fuzzy Logic and Technology 2017, Proc. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 643, Springer, Cham, 2018, pp. 256-267.
[13] M. Romaniuk, Optimization of maintenance costs of a pipeline for a V-sharped hazard rate of malfunction intensites, Eksploatacja i Niezawodnosc Maintenance and Reliability 20 (1) (2018) 46-56.
[14] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Information Sciences 8 (3) (1975) 199-250.

