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Abstract

In papers [3, 4] we proved the Fisher-
Tippett-Gnedenko theorem and the
Pickands-Balkema-de Haan theorem on
family of intuitionistic fuzzy events. Since
between the intuitionistic fuzzy events and
the interval valued events exist a connection,
so we try to prove these basic theorems from
extreme value theory for interval valued
events. We define the notion of indepen-
dence and convergence in distribution for
interval valued observables, too.
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1 Introduction

In papers [3, 4] we proved the Fisher-Tippett-
Gnedenko theorem and the Pickands-Balkema-de
Haan theorem on family of intuitionistic fuzzy events.
These basic theorems are from part of statistic, which
is called the extreme value theory. But between the in-
tuitionistic fuzzy events introduced by K.T. Atanassov
in [1, 2] and the interval valued events introduced by
L.A. Zadeh in [14] exist a connection. In papers [7, 9]
the authors studied a connection between the family
of intuitionistic fuzzy events

F = {(µA, νA) ; µA + νA ≤ 1Ω, µA, νA : Ω → [0, 1]
are S −measurable functions}

with the operations and relation

A ≤ B ⇔ µA ≤ µB , νA ≥ νB ,

A⊕B =
(
(µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω

)
,

A¯B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)).

and the family of interval valued events

K = {(πC , ρC) ; πC ≤ ρC , πC , ρC : Ω → [0, 1]
are S −measurable functions}

with the operations and relation

C ¹ D ⇔ πC ≤ πD, ρC ≤ ρD

C⊕̂D =
(
(πC + πD) ∧ 1Ω, (ρC + ρD) ∧ 1Ω

)

C ̂̄D =
(
(πC + πD − 1Ω) ∨ 0Ω, (ρC + ρD − 1Ω) ∨ 0Ω

)
.

They showed that these two systems are isomorphic
by the mapping ψ : F → K given by

ψ
(
(µA, νA)

)
= (µA, 1Ω − νA)

for each A = (µA, νA) ∈ F . Therefore the following
relations hold

ψ(A⊕B) = ψ(A)⊕̂ψ(B), (1)
ψ(A¯B) = ψ(A) ̂̄ψ(B), (2)

A ≤ B ⇔ ψ(A) ¹ ψ(B), (3)
An ↗ A ⇔ ψ(An) ↗ ψ(A), (4)

for each An,A,B ∈ F . They illustrated the connec-
tion between intuitionistic fuzzy state m : F → [0, 1]
and interval valued state k : K → [0, 1] and that was
m = k ◦ ψ.

Further in paper [5] we defined the notion of interval
valued observable z : B(R) → K and we displayed
the connection to the intuitionistic fuzzy observable
x : B(R) → F , which was z = ψ ◦ x.

In paper [5] we defined the product operation and the
notion of joint interval valued observable ĥ : B(R2) →
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K and we showed the connection to the joint intu-
itionistic fuzzy observable h : B(R2) → F , which was
ĥ = ψ ◦ h.

In this paper we try to prove the basic theorems from
extreme value theory for interval valued events. We
define the notion of independence and convergence in
distribution for interval valued observables, too.

Remark that in a whole text we use a notation ”IF”
for short a phrase ”intuitionistic fuzzy” and a notation
”IV” for short a phrase ”interval valued”.

2 Interval valued events, interval
valued state and interval valued
observables

First we start with definitions of basic notions (see
[7, 9]).

Definition 2.1 Let Ω be a nonempty set. An inter-
val valued set (IV-set) C on Ω is a pair (πC , ρC) of
mappings πC , ρC : Ω → [0, 1] such that πC ≤ ρC .

Definition 2.2 Start with a measurable space (Ω,S).
Hence S is a σ-algebra of subsets of Ω. An interval val-
ued event (IV -event) is called an IV -set C = (πC , ρC)
such that πC , ρC : Ω → [0, 1] are S-measurable. The
family of all IV -events on (Ω,S) will be denoted by K.

If C = (πC , ρC) ∈ K, D = (πD, ρD) ∈ K, then we
define the Lukasiewicz binary operations ⊕̂, ̂̄ on K
by

C⊕̂D =
(
(πC + πD) ∧ 1Ω, (ρC + ρD) ∧ 1Ω

)

C ̂̄D =
(
(πC + πD − 1Ω) ∨ 0Ω, (ρC + ρD − 1Ω) ∨ 0Ω

)

and the partial ordering is given by

C ¹ D ⇔ πC ≤ πD, ρC ≤ ρD.

The continuity is given by

C ↗ D ⇔ πC ↗ πD, ρC ↗ ρD,

C ↘ D ⇔ πC ↘ πD, ρC ↘ ρD.

In the IV -probability theory instead of the notion of
probability we use the notion of state (see [7, 9]).

Definition 2.3 Let K be the family of all IV-events
in Ω. A mapping k : K → [0, 1] is called an interval
valued state (IV-state), if the following conditions are
satisfied:

(i) k((1Ω, 0Ω)) = 1 , k((0Ω, 0Ω)) = 0;

(ii) if C ̂̄D = (0Ω, 0Ω) and C,D ∈ K, then
k(C⊕̂D) = k(C) + k(D);

(iii) if Cn ↗ C (i.e. πCn ↗ πC , ρCn ↗ ρC), then
k(Cn) ↗ k(C).

Probably the most useful result in the IV -state theory
is the following representation theorem.

Theorem 2.4 To each IV-state k : K → [0, 1] there
exists exactly one probability measure P : S → [0, 1]
and exactly one α ∈ [0, 1] such that

k(C) = (1− α)
∫

Ω

πC dP + α

∫

Ω

ρC dP

for each C = (πC , ρC) ∈ K.

Between IV -states and IF -states is one-one correspon-
dence by the mapping ψ : F → K given by

ψ
(
(µA, νA)

)
= (µA, 1Ω − νA)

for each A = (µA, νA) ∈ F .

Proposition 2.1 If k : K → [0, 1] is an IV-state and
m = k ◦ ψ : F → [0, 1], then m is an IF-state.

Recall that by an intuitionistic fuzzy state (IF -
state) m we understand each mapping m : F → [0, 1]
which satisfies the following conditions (see [11]):

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A ¯B = (0Ω, 1Ω) and A,B ∈ F , then m(A ⊕
B) = m(A) + m(B);

(iii) if An ↗ A (i.e. µAn ↗ µA, νAn ↘ νA), then
m(An) ↗ m(A).

The third basic notion in the probability theory is the
notion of an observable. Let J be the family of all
intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is
called the σ-algebra of Borel sets, its elements are
called Borel sets. Now we start with definition of basic
notions (see [5]).

Definition 2.5 By an interval valued observable (IV-
observable) on K we understand each mapping z :
B(R) → K satisfying the following conditions:

(i) z(R) = (1Ω, 1Ω), z(∅) = (0Ω, 0Ω);

(ii) if A ∩ B = ∅, then z(A) ̂̄z(B) = (0Ω, 0Ω) and
z(A ∪B) = z(A)⊕̂z(B);

(iii) if An ↗ A, then z(An) ↗ z(A).
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Remark 2.6 If we denote z(A) =
(
z[(A), z](A)

)
for

each A ∈ B(R), then z[, z] : B(R) → T are observ-
ables, where T = {f : Ω → [0, 1]; f is S−measurable}.

Remark 2.7 Sometimes we need to work with n-
dimensional IV-observable z : B(Rn) → K defined as
a mapping with the following conditions:

(i) z(Rn) = (1Ω, 1Ω), z(∅) = (0Ω, 0Ω);

(ii) if A ∩ B = ∅, A,B ∈ B(Rn), then z(A) ̂̄z(B) =
(0Ω, 0Ω) and z(A ∪B) = z(A)⊕̂z(B);

(iii) if An ↗ A, then z(An) ↗ z(A) for each A,An ∈
B(Rn).

If n = 1 we simply say that z is an IV-observable.

Between IV -observable and IF -observable is the con-
nection (see [5]).

Proposition 2.2 Let ψ : F → K, ψ((u, v)) =
(u, 1Ω − v). If x : B(R) → F is an IF-observable
and z = ψ ◦x : B(R) → K, then z is an IV-observable.

Recall that by intuitionistic fuzzy observable (IF -
observable) on F we understand each mapping x :
B(R) → F satisfying the following conditions (see
[11]):

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩ B = ∅, then x(A) ¯ x(B) = (0Ω, 1Ω) and
x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An) ↗ x(A).

If we denote x(A) =
(
x[(A), 1 − x](A)

)
for each A ∈

B(R), then x[, x] : B(R) → T are observables, where
T = {f : Ω → [0, 1]; f is S −measurable}.

Theorem 2.8 Let z : B(R) → K be an IV-observable,
k : K → [0, 1] be an IV-state. Define the mapping
kz : B(R) → [0, 1] by the formula

kz(C) = k
(
z(C)

)
,

for each C ∈ B(R). Then kz : B(R) → [0, 1] is a
probability measure. Moreover

kz(C) = mx(C),

where mx = m ◦ x is a probability measure induced by
IF-state m and IF-observable x.

Since kz is a probability measure, we call it the
probability distribution of IV -observable. Now we
can define the notion of distribution function of IV -
observable (see [5]).

Definition 2.9 If z : B(R) → K is an IV -observable,
and k : K → [0, 1] is an IV -state, then the interval val-
ued distribution function (IV-distribution function) of
z is the function F̂ : R → [0, 1] defined by the formula

F̂ (t) = k
(
z((−∞, t))

)

for each t ∈ R.

Of course the IV -distribution function fulfils the same
properties as a classical distribution function (see [5]).

Theorem 2.10 Let F̂ : R → [0, 1] be the IV-
distribution function of an IV-observable z : B(R) →
K. Then F̂ is non-decreasing on R, left continuous in
each point t ∈ R and

lim
t→−∞

F̂ (t) = 0, lim
t→∞

F̂ (t) = 1.

Moreover
F̂ (t) = F(t),

for each t ∈ R, where F is an IF-distribution function
of an IF-observable x : B(R) → F .

Recall that by intuitionistic fuzzy distribu-
tion function (IF -distribution function) of an IF -
observable x : B(R) → F we understand each function
F : R → [0, 1] defined by the formula

F(t) = m
(
x((−∞, t))

)

for each t ∈ R, where m : F → [0, 1] is an IF -state.

Now we can define the IV -mean value and IV -
dispersion of an IV -observable.

Theorem 2.11 Let F̂ : R −→ [0, 1] be the IV-
distribution function of an IV-observable z : B(R) →
K. Then

Ê(z) =
∫

R

t dF̂ (t),

D̂2(z) =
∫

R

t2 dF̂ (t)− (
Ê(z)

)2 =

=
∫

R

(t− Ê(z))2 dF̂ (t).

3 Product and joint interval valued
observable

In the paper we shall work with independent IV -
observables. Of course first we must need the exis-
tence of the joint IV -observable. For this reason we
shall define the product of IV -events ([6]).

Theorem 3.1 The operation ·̂ defined by

(πC , ρC )̂·(πD, ρD) = (πC · πD, ρC · ρD)

for each (πC , ρC), (πD, ρD) ∈ K is product operation
on K.
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Now we explain the connection between product oper-
ations on the family of interval valued events K and the
family of intuitionistic fuzzy events F and we define
the joint interval valued observable (see [6]).

Theorem 3.2 If the operation • is a product on fam-
ily of intuitionistic events F defined by

(µA, νA) • (µB , νB) = (µA · µB , νA + νB − νA · νB) =
=

(
µA · µB , 1Ω − (1Ω − νA) · (1Ω − νB)

)

for each A = (µA, νA),B = (µB , νB) ∈ F and ·̂ is a
product operation on a family of interval valued events
K defined by

(πC , ρC )̂·(πD, ρD) = (πC · πD, ρC · ρD)

for each C = (πC , ρC),D = (πD, ρD) ∈ K and ψ :
F → K is a function given by ψ

(
(u, v)

)
= (u, 1 − v),

then
ψ(A •B) = ψ(A)̂·ψ(B)

for each A,B ∈ F .

Definition 3.3 Let z1, z2 : B(R) → K be two IV-
observables. The joint interval valued observable (joint
IV-observable) of the IV-observables z1, z2 is a map-
ping ĥ : B(R2) → K satisfying the following condi-
tions:

(i) ĥ(R2) = (1Ω, 1Ω), ĥ(∅) = (0Ω, 0Ω);

(ii) if A, B ∈ B(R2) and A∩B = ∅, then ĥ(A∪B) =
ĥ(A)⊕̂ĥ(B) and ĥ(A) ̂̄ ĥ(B) = (0Ω, 0Ω);

(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then
ĥ(An) ↗ ĥ(A);

(iv) ĥ(C ×D) = z1(C )̂·z2(D) for each C, D ∈ B(R).

In the following proposition we show the connection
between the joint interval valued observable and the
intuitionistic fuzzy observable (see [6]).

Proposition 3.1 Let ψ : F → K, ψ((u, v)) =
(u, 1Ω − v). If h : B(R2) → F is a joint IF-observable
of IF-observables x1, x2 : B(R) → F and ĥ = ψ ◦ h :
B(R2) → K, then ĥ is the joint IV-observable of IV-
observables z1, z2 : B(R) → K, where z1 = ψ ◦ x1,
z2 = ψ ◦ x2.

Recall that by joint intuitionistic fuzzy observ-
able (joint IF -observable) we understand each map-
ping h : B(R2) → F satisfying the following conditions
(see [8, 11]):

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) if A, B ∈ B(R2) and A ∩B = ∅, then h(A ∪B) =
h(A)⊕ h(B) and h(A)¯ h(B) = (0Ω, 1Ω);

(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then
h(An) ↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C, D ∈ B(R).

Theorem 3.4 To each two IV-observables z1, z2 :
B(R) → K there exists their joint IV-observable.

If we have several IV -observables and a Borel measur-
able function, we can define the IV -observable, which
is the function of several IV -observables. About this
says the following definition (see [6]).

Definition 3.5 Let z1, . . . , zn : B(R) → K be IV-
observables, ĥn their joint IV-observable and gn :
Rn → R a Borel measurable function. Then we de-
fine the IV-observable ŷn = gn(z1, . . . , zn) : B(R) → K
by the formula

ŷn = gn(z1, . . . , zn)(A) = ĥn

(
g−1

n (A)
)
.

for each A ∈ B(R).

Example 3.6 Let z1, . . . , zn : B(R) → K be IV-
observables and ĥn : B(Rn) → K be their joint IV-
observable. Then the IV-observable

ŷn =
1
an

(
max(z1, . . . , zn)− bn

)

is defined by the equality

ŷn = ĥn ◦ g−1
n ,

where gn(u1, . . . , un) = 1
an

(max(u1, . . . , un)− bn).

Between a function of several IV -observables ŷn =
gn(z1, . . . , zn) and a function of several IF -observables
yn = gn(x1, . . . , xn) exists a connection (see [6]).

Proposition 3.2 Let ψ : F → K, ψ((u, v)) =
(u, 1Ω − v). If yn = gn(x1, . . . , xn) : B(R) → F
is a function of several IF-observables x1, . . . , xn and
ŷn = ψ ◦ yn : B(R) → K, then ŷn = gn(z1, . . . , zn) is
a function of several IV-observables z1, . . . , zn, where
zi = ψ ◦ xi, i = 1, . . . , n.

Recall that by a function of several intuitionistic
fuzzy observables we understand the IF -observable
defined by

yn = gn(x1, . . . , xn)(A) = hn

(
g−1

n (A)
)
.

for each A ∈ B(R), where hn is a joint IF -oservable of
IF -observables x1, . . . , xn.
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4 Independence and convergence in
distribution

In this section we define the notion of independence of
interval valued observables.

Definition 4.1 Let k be an IV-state. The IV -
observables z1, . . . , zn : B(R) → K are independent
if for n-dimensional IV-observable ĥn : B(Rn) → K
there holds

k
(
ĥn(A1 × . . .×An)

)
= k

(
z1(A1)

) · . . . · k(
zn(An)

)

for each A1, . . . , An ∈ B(R).

Now we explain the connection between indepen-
dence of IV -observables and independence of IF -
observables. Recall that IF-observables x1, . . . , xn :
B(R) → F are independent if for n-dimensional IF -
observable hn : B(Rn) → F there holds

m
(
hn(A1 × . . .×An)

)
= m

(
x1(A1)

) · . . . ·m(
xn(An)

)

for each A1, . . . , An ∈ B(R), where m is an IF -state.

Proposition 4.1 The IV-observables z1, . . . , zn :
B(R) → K are independent if and only if the IF-
observables x1, . . . , xn : B(R) → F are independent.
There zi = ψ ◦ xi, i = 1, . . . , n.

Proof. ”⇒” Let ψ : F → K, ψ((u, v)) = (u, 1Ω − v).
If the IV -observables z1, . . . , zn are independent, then
by Definition 4.1 for n-dimensional IV -observable ĥn

there holds

k
(
ĥn(A1 × . . .×An)

)
= k

(
z1(A1)

) · . . . · k(
zn(An)

)

for each A1, . . . , An ∈ B(R). But using Proposition
3.1, Proposition 2.2 and Proposition 2.1 we have

ĥn = ψ ◦ hn, zi = ψ ◦ xi, m = k ◦ ψ

where hn is n-dimensional IF -observable, xi, i =
1, . . . , n are IF -observables and m is IF -state. There-
fore

m
(
hn(A1 × . . .×An)

)
= m

(
x1(A1)

) · . . . ·m(
xn(An)

)

for each A1, . . . , An ∈ B(R). Hence IF -observables
x1, . . . , xn are independent.

The proof of ”⇐” is a analogue to the proof of ”⇒”.
2

We need the notion of convergence in distribution of
IV -observables yet.

Definition 4.2 Let (ŷn)n be a sequence of IV-
observables and k be a IV -state. We say that (ŷn)n

converges in distribution to a function Ψ : R → [0, 1],
if for each t ∈ R

lim
n→∞

k
(
ŷn((−∞, t))

)
= Ψ(t).

5 Extreme value theory for interval
valued observables

The extreme value theory is a part of statistics, which
deals with examination of probability of extreme and
rare events with a large impact. The extreme value
theory search endpoints of the distributions. In this
Section we show the modification of Fisher-Tippet-
Gnedenko theorem and the modification of Pickands-
Balkema-de Hann theorem for interval valued observ-
ables.

Let z1, z2, . . . be an independent, equally distributed
IV -observables on K. Denote M̂n maximum of n IV -
observables

M̂1 = z1, M̂n = max(z1, . . . , zn),

for n ≥ 2.

Theorem 5.1 (Fisher-Tippett-Gnedenko) Let
z1, z2, . . . be a sequence of independent, equally
distributed IV-observables such that D̂2(zn) = σ2,
Ê(zn) = a, (n = 1, 2, . . .). If there exists the sequences
of real constant an > 0, bn and a non-degenerate dis-
tribution function H, such that for ŷn = 1

an

(
M̂n− bn

)
holds

lim
n→∞

k
(
ŷn

(
(−∞, t)

))
= H(t),

then H is the distribution function one of the following
three types of distributions:

1. Gumbel

Hµ,σ(t) = exp
(
−e−( t−µ

σ )
)

, t ∈ R,

2. Fréchet

Hµ,σ,α(t) =

{
0, for t ≤ µ

exp
(
− (

t−µ
σ

)−α
)

, for t > µ, α > 0

3. Weibull

Hµ,σ,α(t) =

{
exp

(
− (− t−µ

σ

)α
)

, for t ≤ µ, α > 0
1, for t > µ.

There a parameter µ ∈ R is the location parameter and
a parameter σ > 0 is the scale parameter.

Proof. Let ψ : F → K, ψ((u, v)) = (u, 1Ω − v).
Let z1, z2, . . . be a sequence of independent, equally
distributed IV -observables such that D̂2(zn) = σ2,
Ê(zn) = a, (n = 1, 2, . . .). Then by Proposition 4.1
x1, x2, . . . is a sequence of independent IF -observables,
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where xn = ψ−1 ◦ zn (i.e. zn = ψ ◦ xn), n = 1, . . ..
Moreover using Theorem 2.10 we have

a = Ê(zn) =
∫

R

t dF̂ (t) =
∫

R

t dF(t) = E(xn),

σ2 = D̂2(zn) =
∫

R

(t− Ê(zn))2 dF̂ (t) =

=
∫

R

(t−E(xn))2 dF(t) = D2(xn).

Hence by the Fisher-Tippett-Gnedenko theorem for
IF -case (see Theorem 7 in [3]) there exists the se-
quences of real constant an > 0, bn and a non-
degenerate distribution function H, such that

lim
n→∞

m
(

1
an

(
Mn − bn

)(
(−∞, t)

))
= H(t), (5)

where Mn is a maximum of n IF -observables
x1, . . . , xn given by

M1 = x1, Mn = max(x1, ..., xn),

for n ≥ 2. Put

ŷn =
1
an

(
M̂n − bn

)
= ĥn ◦ g−1

n ,

yn =
1
an

(
Mn − bn

)
= hn ◦ g−1

n ,

where gn(u1, . . . , un) = 1
an

(max(u1, . . . , un) − bn), ĥn

is joint IV -observable of IV -observables z1, . . . , zn and
hn is joint IF -observable of IF -observables x1, . . . , xn.

Therefore using Proposition 3.2, Proposition 2.1 and
(5) we obtain

lim
n→∞

k
(
ŷn((−∞, t))

)
= lim

n→∞
k ◦ ψ ◦ yn((−∞, t)) =

= lim
n→∞

m ◦ yn((−∞, t)) =

= lim
n→∞

m
(

1
an

(
Mn − bn

)(
(−∞, t)

))
= H(t).

2

Gumbel, Frechet and Weibull distribution from The-
orem 5.1 can be described with using a generalized
distribution of extreme values - GEV:

Hµ,σ,ε (t) =





exp
[
− (

1 + ε
(

t−µ
σ

))− 1
ε

]
, ε 6= 0,

1 + ε
(

t−µ
σ

)
> 0,

exp
(− exp

(− t−µ
σ

))
, t ∈ R, ε = 0.

A parameter ε is called the shape parameter.

The Fisher-Tippet-Gnedenko theorem says about con-
vergence in distribution of maximums of independent,
equally distributed IV -observables. An alternative to
the maximal observation method is the method that

models all observations that exceed any predefined
boundary (ie. threshold).

Such the extremes occur ”near” the upper end of dis-
tribution support, hence intuitively asymptotic behav-
ior of M̂n must be related to the distribution function
F̂ in its right tail near the right endpoint.

Let z be an IV -observable on K and F̂ be an IV -
distribution function of z. We denote by

tF̂ = sup{t ∈ R : F̂ (t) < 1}

the right endpoint of IV -distribution function F̂ .

Definition 5.2 (Maximum domain of attraction
for IV-case) We say that the IV -distribution func-
tion F̂ of IV -observable z belongs to the maximum
domain of attraction of the extreme value distributions
H if there exists constants an > 0, bn ∈ R such that

lim
n→∞

k

(
1
an

(
M̂n − bn

)(
(−∞, t)

))
= H(t),

holds. We write F̂ ∈ M̂DA(H).

Definition 5.3 (Excess interval valued distribu-
tion function) Let F̂ be an interval valued distribu-
tion function with right endpoint tF̂ . For fixed u < tF̂ ,
u > 0,

F̂u(t) =
F̂ (t + u)− F̂ (u)

1− F̂ (u)
, 0 ≤ t ≤ tF̂ − u

is the excess interval valued distribution function of
the interval valued observable z (of the IV -distribution
function F̂ ) over the threshold u.

Definition 5.4 (Generalized Pareto distribu-
tion - GPD) Define the distribution function Gε,β

by

Gε,β (t) =





1−
(
1 + ε · t

β

)− 1
ε

, if ε 6= 0,

1− e−
t
β , if ε = 0,

where

t ≥ 0 if ε ≥ 0,

0 ≤ t ≤ −β

ε
if ε < 0

and β > 0 is the scale parameter. Gε,β is called the
generalised Pareto distribution. We can extend the
family by adding a location parameter ν ∈ R. Then
we get the function Gε,ν,β by replacing the argument t
above by t− ν in Gε,β. The support has to be adjusted
accordingly.
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Remark 5.5 The GPD transforms into a number of
other distributions depending on the value of ε. When
ε > 0, it takes the form of the ordinary Pareto distri-
bution. This case would be most relevant for financial
time series data as it has a heavy tail. If ε = 0, the
GPD corresponds to exponential distribution, and it
is called a short-tailed, Pareto II type distribution for
ε < 0.

Theorem 5.6 (Pickands-Balkema-de Haan) For
every ε ∈ R,

F̂ ∈ M̂DA(Hε) ⇔
⇔ lim

u→tF̂

sup
0<t<tF̂−u

|F̂u(t)−Gε,β(u)(t)| = 0

for some positive function β.

Proof. Let ψ : F → K, ψ((u, v)) = (u, 1Ω−v). Let k be
an IV -state and (zn)n be a sequence of independent
IV -observables in K with the same IV -distribution
F̂ . Then by Proposition 4.1 x1, x2, . . . is a sequence of
independent IF -observables, where xn = ψ−1 ◦zn (i.e.
zn = ψ ◦ xn), n = 1, . . .. Moreover by Theorem 2.10
we have F̂ = F. Hence tF̂ = tF, F̂u = Fu and

lim
u→tF̂

sup
0<t<tF̂−u

|F̂u(t)−Gε,β(u)(t)| =

= lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)|

for some positive function β. There F is an IF -
distribution function of IF -observables x1, x2, . . .. Put

ŷn =
1
an

(
max(z1, . . . , zn)− bn

)
= ĥn ◦ g−1

n ,

yn =
1
an

(
max(x1, . . . , xn)− bn

)
= hn ◦ g−1

n ,

where gn(u1, . . . , un) = 1
an

(max(u1, . . . , un) − bn), ĥn

is joint IV -observable of IV -observables z1, . . . , zn and
hn is joint IF -observable of IF -observables x1, . . . , xn.
Therefore using Proposition 3.2 and Proposition 2.1 we
obtain

k

(
1
an

(
M̂n − bn

)(
(−∞, t)

))
= k

(
ŷn((−∞, t))

)
=

= k ◦ ψ ◦ yn((−∞, t)) = m ◦ yn((−∞, t)) =

= m
(

1
an

(
Mn − bn

)(
(−∞, t)

))
.

Thus we have for every ε ∈ R,

F̂ ∈ M̂DA(Hε) ⇔ F ∈ MDA(Hε).

Recall that F ∈ MDA(H) if there exists constants
an > 0, bn ∈ R such that

lim
n→∞

m
(

1
an

(
Mn − bn

)(
(−∞, t)

))
= H(t),

holds (see Definition 5.2 in [4]). Finally from the
Pickands-Balkema-de Haan theorem for IF -case (see
Theorem 5.7 in [4]) we obtain

F ∈ MDA(Hε) ⇔

⇔ lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)| = 0.

Therefore for every ε ∈ R,

F̂ ∈ M̂DA(Hε) ⇔

⇔ lim
u→tF̂

sup
0<t<tF̂−u

|F̂u(t)−Gε,β(u)(t)| = 0

for some positive function β. 2

Remark 5.7 Theorem 5.6 say that for some function
β to be estimated from the data, the excess interval val-
ued distribution F̂u converges to the generalized Pareto
distribution Gε,β for large u.

Remark 5.8 The Generalized distribution of extreme
values describes the limit distribution of normalized
maxima.
The Generalized Pareto distribution appears as the
limit distribution of scaled excesses over high thresh-
olds.

6 Conclusion

The classical theory of extreme values is based on the
practical needs of astronomers, hydrologists and tech-
nicians. It is used in rainfall modelling, air pollution
modelling, flood forecasting and so on. In recent years
it is used in the economic field to model risk in the
financial sector.

In some cases we need to consider the imprecise values.
Therefore we can used the interval valued sets. In this
paper we have proved a very important assertion of
mathematical statistics for interval valued events.

The results can be applied in areas like catastrophe
bonds and insurance or a malfunctions of the pipeline
(see [10, 12, 13]).
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Tippett-Gnedenko theorem for intuitionistic
fuzzy events, in: J. Kacprzyk (Ed.), Advances in

666



Fuzzy Logic and Technology 2017, Proc. IWIF-
SGN 2017, EUSFLAT 2017. Advances in Intelli-
gent Systems and Computing, Vol. 641, Springer,
Cham, 2018, pp. 125–135.
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