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Abstract

Edge detection is an important step for pre-
processing digital images before more ad-
vanced methods of image analysis such as
segmentation can be applied. There are an
infinite number of edge detectors that can be
derived from pairs of fuzzy dilation and ero-
sion operators. Usually, an edge detector is
based on the incorrect assumption that there
is no uncertainty regarding the pixel values
of the given digital image. The approaches
presented in this paper do not rely on this
assumption. Instead, the uncertainty regard-
ing the pixel values is modelled in terms of
an interval-valued image. After an applica-
tion of an interval-valued fuzzy dilation and
erosion, we are able to produce a binary edge
image after a number of steps including an
order-preserving transformation based on an
admissible order.

Keywords: Image edge detection, Interval-
valued fuzzy mathematical morphology, Mor-
phological gradient, Admissible order.

1 Introduction

One of the problems one naturally faces when process-
ing a digital image is the inherent uncertainty in the
pixel values of a digital image due to image capture
[13]. Even if the digital image is noiseless and if there
is only one take of the image, uncertainty in the pixel
values arises due to the following facts [11]

1. Quantization or Tonal Error: Any device will
round captured values up or down so as to ob-
tain one of the allowed values.

2. Discretization or Spatial Error: Since objects
and surfaces are continuous in nature, their two-

dimensional representation should be given by im-
ages whose point sets are continuous subsets of
R2. Since a two-dimensional digital image has in
practice a finite resolution, its point set can be
assumed to be a rectangular subset P of Z2. Due
to the difficulties in mapping pixel values on an
infinite grid to pixel values on a finite grid, the
values on P may be erroneously dislocated by one
position in any direction.

This uncertainty can be modelled by converting a
given digital image O to an interval-valued image A
[11]. Since an interval-valued image can be viewed as
an interval-valued fuzzy set, it can be processed using
techiques of interval-valued fuzzy mathematical mor-
phology (IV-FMM). For example, an interval-valued
morphological gradient of a given interval-valued im-
age can be computed in terms of a difference between
the result of an interval-valued fuzzy (IV-fuzzy) ero-
sion and an IV-fuzzy dilation [13, 15]. This difference
between interval-valued fuzzy sets should be based
on the difference between closed subintervals of r0, 1s.
The resulting interval-valued morphological gradient
generalizes the fuzzy morphological gradient and can
be mapped to a IV-fuzzy set or - in the language of
type-2 fuzzy set theory - to a closed interval type-2
fuzzy set.

Each pixel value of an interval-valued morphologi-
cal gradient contains useful information regarding the
strength of the edge and the uncertainty with respect
to this strength. However, our goal in this paper is
to produce binary edges that are one pixel wide [5].
A possible way to achieve this goal is to type reduce
the corresponding interval type-2 fuzzy set by using a
convex combination of the upper and lower bounds so
as to be able to apply techniques of thinning and bi-
narization such as non-maximum suppression and hys-
teresis.

In this paper, we also adopt a completely different ap-
proach: We first apply an order-preserving transfor-
mation given by an admissible order [4] to the IV-fuzzy
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dilation and erosion images. As a result, we obtain reg-
ular fuzzy images, corresponding to a dilation and an
erosion, whose difference can be computed as usual.
This difference image can be interpreted as a gray-
scale morphological gradient image and allows for the
application of conventional thinning and binarization
techniques. We compare the quality of the binary edge
images produced by using different admissible orders
with the ones produced by using different convex com-
binations of the upper and lower bounds of an IV-fuzzy
morphological gradient. Our comparison also includes
the well-known Canny edge detector and a fuzzy mor-
phological edge detector applied to the IV-fuzzy image
A after linearly ordering its pixel values.

The paper is organized as follows. Section 2 briefly
reviews some pertinent lattice-theoretical concepts in-
cluding admissible orders. Section 3 recalls some no-
tions of L-fuzzy set theory and L-fuzzy mathematical
morphology with an emphasis on IV-fuzzy set theory
and IV-FMM. Section 4 presents our approach towards
edge detection based on IV-FMM and admissible or-
ders. Section 5 provides some experimental results.

2 Some Concepts of Lattice Theory

In this paper, we propose an edge detector based on
IV-FMM and admissible orders, both of which draw
on lattice and order theory. Let us review some basic
concepts.

2.1 Complete Lattices and Order-Preserving
Mappings

A partially ordered set or poset is a non-empty set to-
gether with a reflexive, antisymmetric and transitive
binary relation “ď” [9]. If pL,ďq is a poset and x ď y
or y ď x for all x, y P L, then ď is called a total or
linear order and pL,ďq is called a totally ordered set
or a chain. A partial order ď on L ‰ H induces the
notions of supremum and infimum. Let X Ď L, where
pL,ďq is a poset. One refers to u, l P L as an upper
bound and a lower bound of X if x ď u @x P X and
l ď x @x P X, respectively. If u P L is the least upper
bound of X, then u is denoted

Ž

X and called the
supremum of X. If l P L is the greatest lower bound
of X, then l is denoted

Ź

X and called the infimum of
X. If X “ tx, yu, then

Ž

X and
Ź

X are respectively
denoted x_ y and x^ y. If X “ txj |j P Ju, then one
writes

Ž

jPJ xj and
Ź

jPJ xj instead of
Ž

X and
Ź

X,
respectively.

A poset pL,ďq such that x_ y and x^ y exist in L for
all x, y P L is called a lattice. For simplicity, we write L
instead of pL,ďq if the partial order ď is evident from
the context. Let us also clarify that the same symbol
ď is often used to denote different partial orders. A

lattice L is called complete, if for every X Ď L we
have that

Ž

X and
Ź

X exist in L. In this case, the
symbols 1L and 0L are used to denote

Ž

L and
Ź

L.
If L is a lattice and X ‰ H, then we have:

1. Ln “ L ˆ . . . ˆ L is a lattice with the following
partial order:

px1, . . . , xnq ď py1, . . . , ynq ô xi ď yi, (1)

@i “ 1, . . . , n.

2. Lmˆn is a lattice with the following partial order:

S ď T ô sij ď tij , (2)

@j “ 1, . . . ,m,@i “ 1, . . . , n. (3)

3. LX “ tf : X Ñ Lu is a a lattice with the following
partial order:

f ď g ô fpxq ď gpxq @x P X. (4)

4. The class of all graphs of functions in LX , denoted
using the symbol FLpXq, is lattice with the partial
order given as follows. If A “ tpx, µApxqq|x P Xu
and B “ tpx, µApxqq|x P Xu, then

A ď B ô µA ď µB . (5)

Recall that µA P LX is referred to as the mem-
bership function of A if A “ tpx, µApxqq|x P Xu.
An element of FLpXq is called an L-fuzzy set. For
simplicity, we write Apxq instead of µApxq.

If the lattice L is complete, then the lattices Ln, Lmˆn,
LX , and FLpXq are complete as well. Let us give some
concrete examples of complete lattices:

1. The unit interval r0, 1s with the usual linear order;

2. The set of all closed, non-empty subintervals of
r0, 1s, denoted I, with the partial ordering given
by

rx, xs ď ry, ys ô x ď y and x ď y. (6)

3. The power set of any X ‰ H with the partial
ordering of (crisp) set inclusion;

4. The class of fuzzy sets on X ‰ H, denoted FpXq,
with the partial ordering of inclusion of fuzzy sets.
Note that FpXq “ Fr0,1spXq.

5. The class of IV-fuzzy sets on X ‰ H, i.e., FIpXq,
with the partial order given by Equation 5 for the
special case where pL,ďq “ pI,ďq (cf. Equation
6).
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A mapping φ : L Ñ M, where pL,ďLq and pM,ďMq
are lattices, establishes a relationship between these
lattices. The mapping φ is said to be increasing or
order-preserving if for all x, y P L we have that x ďL
y implies φpxq ďM φpyq. Similarly, φ is said to be
decreasing or order-reversing if for all x, y P L we have
that x ďL y implies φpyq ďM φpxq.

Note that these notions not only depend on the values
φpxq P M but also on the partial order ďM. Even if
L “M and the mapping φ is the identity, i.e., φpxq “ x
for all x P L, φ may not be order-preserving. As an
example, consider pL,ďLq “ pr0, 1s,ďq and pM,ďMq “
pr0, 1s,ěq.

Consider pI,ďq, where ď is as in Equation 6, and
pI,ĺq, where ĺ is an arbitrary linear order. We say
that the linear order ĺ refines the partial order ď if
rx, xs ď ry, ys implies that rx, xs ĺ ry, ys. In other
words, ĺ refines ď if mapping pI,ďq to pI,ĺq by chang-
ing nothing but the order is order-preserving.

Definition 2.1. An order ĺ on I is said to be admis-
sible if

1. ĺ is a linear order,

2. ĺ refines the partial order ď of Equation 6.

The following are examples of admissible orders:

1. rx, xs ĺlex1 ry, ys if only if x ă y or x “ y and x ď
y (lexicographic-1 order),

2. rx, xs ĺlex2 ry, ys if only if x ă y or x “ y and x ď
y (lexicographic-2 order).

Other examples of admissible orders can be generated
by means of Proposition 3.2 of [4] that we can rephrase
as follows:

Proposition 2.1. Let f, g : r0, 1s2 Ñ r0, 1s be contin-
uous aggregation functions that satisfy the property
below:

fpx1, x2q “ fpy1, y2q and gpx1, x2q “ gpy1, y2q

ñ px1, x2q “ py1, y2q. (7)

The functions f and g give rise to the following admis-
sible order on I:

rx, xs ĺf,g ry, ys ô

pfpx, xq, gpx, xqq ďlex1 pfpy, yq, gpy, yqq
(8)

Recall that f : r0, 1s2 Ñ r0, 1s is an aggregation func-
tion if and only if f is order-preserving, fp0, 0q “ 0,
and fp1, 1q “ 1. A particular type of continuous ag-
gregation functions r0, 1s2 Ñ r0, 1s is given by the fol-
lowing function Kα that is defined as follows for every

α P r0, 1s [3]:

Kαpx1, x2q “ x1 ` αpx2 ´ x1q, @px1, x2q P r0, 1s
2. (9)

Note that Kα and Kβ , where α ‰ β P r0, 1s, satisfy
Equation 7. For every pair pα, βq P r0, 1s2 such that
α ‰ β, one can generate the following admissible order
ĺα,β :

rx1, x2s ĺα,β ry1, y2s ô

pKαpx1, x2q,Kβpx1, x2qq ĺlex1 pKαpy1, y2q,Kβpy1, y2qq

(10)

Given an arbitrary α P r0, 1s, all admissible orders
ĺα,β on I such that β ą α and all admissible orders
ĺα,β on I such that β ă α coincide [4]. Consequently,
we obtain the following properties:

1. ĺα,β equals ĺα,1 for every β ą α P r0, 1r.

2. ĺα,β equals ĺα,0 for every β ă α Ps0, 1s.

For α P r0, 1r, the symbol ĺα` denotes ĺα,1 and, for
α Ps0, 1s, the symbol ĺα´ denotes ĺα,0.

If L is a lattice (complete lattice) then the product of
n copies of poset L denoted by Ln with the partial
order ď given by

px1, . . . , xnq ď2 py1, . . . , ynq ô xi ď yi @i “ 1, . . . , n.
(11)

is a lattice (complete lattice).

The following types of order-preserving mappings are
defined in mathematical morphology:

Definition 2.2. Let ε, δ : L Ñ M, where L,M are
complete lattices.

1. The mapping ε is called a(n algebraic) erosion if
the following equation is satisfied for every index
set J and for every set txj |j P Ju Ď L:

εp
ľ

jPJ

xjq “
ľ

jPJ

εpxjq. (12)

2. The mapping δ is a(n algebraic) dilation if the
following equation is satisfied for every index set
J and for every set txj |j P Ju Ď L:

δp
ł

jPJ

xjq “
ł

jPJ

δpxjq. (13)

Definition 2.3. Let δ : L Ñ M and ε : M Ñ L. One
refers to the pair pε, δq as an adjunction or says that ε
and δ are adjoint if only if

x ď εpyq ô δpxq ď y @x P L, y PM. (14)

If ε and δ are adjoint, then ε is an algebraic erosion
and δ is an algebraic dilation.
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An order-preserving mapping φ from a lattice L to a
lattice M is called an order-embedding if the following
property is satisfied for all x, y P L:

x ď y ô φpxq ď φpyq. (15)

Suppose that the lattices L and M are complete. If
φ : LÑM is both a bijection and an order-emdedding,
then φ is called a complete lattice isomorphism. If
there is a complete lattice isomorphism from L to M,
then L and M are said to be isomorphic and one writes
L »M. Assuming that L is a complete lattice, we have

1. FLpXq » LX , if X ‰ H;

2. FLpXq » Ln, if X “ t1, . . . , nu;

3. FLpXq » Lmˆn, if X “ t1, . . . ,mu ˆ t1, . . . , nu.

2.2 L-fuzzy Mathematical morphology

Mathematical morphology (MM) was originally con-
ceived as a theory for image processing and analysis
using so called structuring elements. The two basic
operators of mathematical morphology, from which a
variety of image filters such as opening, closing, open-
close filter, morphological gradient, watershed, hit-or-
miss transform, etc., can be constructed are erosion
and dilation. In Section 2.1, we recalled the definitions
of erosion and dilation as algebraic operators that com-
mute respectively with the infimum and the supremum
operator.

For all practical purposes, we need to address the def-
initions of a (morphological) erosion and a (morpho-
logical) dilation of an image by a structuring element.
A general framework for these operators is given by
L-fuzzy sets, where L is a complete lattice. There-
fore, we will from now on assume that L stands for an
arbitrary complete lattice.

The theory of L-fuzzy MM [15] generalizes binary,
gray-scale, fuzzy, IV-fuzzy, intuitionistic fuzzy, bipo-
lar fuzzy MM, etc. [1, 13, 16]. In L-fuzzy MM, one
defines (morphological) dilations and erosions in terms
of L-fuzzy conjunctions and implications whose defini-
tions are given below. If L “ r0, 1s or L “ I, we obtain
fuzzy conjunctions and implications or IV-fuzzy con-
junctions and implications, respectively.

Definition 2.4. An increasing mapping C : Lˆ LÑ
L is called an L-fuzzy conjunction if Cp0L, 0Lq “
Cp0L, 1Lq “ Cp1L, 0Lq “ 0L and Cp1L, 1Lq “ 1L. If C
is additionally commutative, associative and satisfies
Cp1L, xq “ x, then C is called an L-fuzzy triangular
norm or t-norm.

A binary operator I : L ˆ L Ñ L is called an L-
fuzzy implication if Ip¨, zq is decreasing for every z P L,

Ipz, ¨q is increasing for every z P L and if Ip0L, 0Lq “
Ip0L, 1Lq “ Ip1L, 1Lq “ 1L and Ip1L, 0Lq “ 0L. An
L-fuzzy implication I is called a border implicator if
Ip1L, xq “ x for every x P L. Note that if I is the
adjoint implication of an L-fuzzy t-norm, then I is a
border implicator.

An L-fuzzy implication I and conjunction C on L are
said to be adjoint if only if Ipz, ¨q and Cpz, ¨q are adjoint
for every z P L.

For instance, the Fodor implication and the nilpotent
minimum, denoted IFD and TnM , respectively, are
known to be adjoint. The Kleene-Dienes implication,
denoted IKD below, obviously satisfies IKD ď IFD.

TnM px, yq “

"

0 if x` y ď 1,
x^ y otherwise.

(16)

IFDpx, yq “

"

1 if x ď y,
p1´ xq _ y x ą y.

(17)

IKDpx, yq “ p1´ xq _ y. (18)

We are now ready to define the concepts of (mor-
phological) L-fuzzy erosion and dilation of an image
A P FLpXq by a structuring element S P FLpXq.

Definition 2.5. Let A,S P FLpXq and let EI ,DC :
FLpXq ˆ FLpXq Ñ FLpXq be defined as follows:

EIpA,Sqpxq “
ľ

yPX

IpSpy ´ xq, Apyqq (19)

DCpA,Sqpxq “
ł

yPX

CpSpx´ yq, Apyqq (20)

We refer to the operator EI as the (morphological) L-
fuzzy erosion of the image A by the structuring element
(SE) S and to the operator DC as the (morphological)
L-fuzzy dilation of the image A by the structuring ele-
ment (SE) S. The operators EI and DC are said to be
adjoint if and only if EIp¨, Sq and DCp¨, Sq are adjoint
for all S P FLpXq.

Remark 1. Generally speaking, a particular approach
towards L-fuzzy MM is given by a pair consisting of an
L-fuzzy erosion EI and an L-fuzzy dilation DC . One
usually employs a pair pEI ,DCq such that I and C are
adjoint since in this case EI and DC have several useful
algebraic properties.

Proposition 2.2. Let A,S P FLpXq, where X is a
subset of the Euclidean space Rd or the digital space
Zd that contains 0 “ p0, . . . , 0qT If Sp0q “ 1L, C is an
L-fuzzy t-norm, and I is an L-fuzzy border implicator,
then we have:

EIpA,Sq ď A ď DCpA,Sq. (21)
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In IV-fuzzy MM, i.e., I-fuzzy MM, morphological ero-
sions and dilations are respectively constructed using
IV-fuzzy implications and conjunctions. There are
several ways to construct IV-fuzzy logical operators
from fuzzy logical operators. In this paper, we focus
on the ones described below.

Definition 2.6. Let C and I be respectively be a
fuzzy conjunction and a fuzzy implication. The pes-
simistic conjunction with representative C and the
optimistic implication IoI with representative I are
respectively denoted using the symbols CpC and IoI .
These IV-fuzzy logical operators are defined as follows
for x “ rx, xs, y “ ry, ys P I:

CpCpx,yq “ rCpx, yq, Cpx, yq _ Cpx, yqs , (22)

IoI px,yq “ rIpx, yq ^ Ipx, yq, Ipx, yqs . (23)

Let us recall the following fact which is a corollary of
Theorem 13 of [15]:

Proposition 2.3. Let C and I be respectively be a
fuzzy conjunction and a fuzzy implication. If C satis-
fies Cp1, xq ą 0 for all x ą 0 or if I satisfies Ip1, xq ă 1
for all x ă 1, then IoI and CpC are adjoint if only if I
and C are adjoint.

3 Three Approaches Towards Image
Edge Detection Using IV-FMM

As indicated in Section 1, we are confronted with the
fact that the pixel values of digital images are inher-
ently uncertain. This uncertainty can be taken into ac-
count by mapping a given image to an interval-valued
image.

Suppose we are given an original gray-scale image O
on a point set X such that X Ď Zd with values in
t0, 1, . . . , 255u. The image O can be used to generate
an interval-valued image OIV so as to count for the
quantization and discretization errors [11]:

OIV pxq “ r0_
ľ

yPNpxq

Opyq ´ 1, 255^
ł

yPNpxq

Opxq ` 1s.

(24)
Here, Npxq stands for a 3ˆ 3 neighborhood of x P X.
Subsequently, we mapped OIV to an IV-fuzzy im-
age A P FIpXq by normalizing OIV . Note that the
quantization and discretization errors are respectively
modeled in terms of an interval of length 2 centered
around the pixel value and the neighboring (assuming
8-connectivity) pixel values.

An edge image can be computed in terms of a mor-
phological gradient. In this paper, the morphological
gradient image is given by a difference between the re-
sults of the IV-fuzzy dilation and the IV-fuzzy erosion.

3.1 Edge Detection Based on an
Interval-Valued Morphological Gradient

In this paper, we present two different approaches to-
wards edge detection. The first one employs the dif-
ference between IV-fuzzy sets that is based on the fol-
lowing notion of difference between intervals [6]:

x´y “ rx, xs´ry, ys “ rx´y, px´yq_px´yqs. (25)

Note that the interval x´y may not be an element of
I even if x,y P I and y ď x. Nevertheless, an interval-
valued morphological gradient image can be computed
as the difference, given by Equation 25, between the
IV-fuzzy sets DCpA,Sq and EIpA,Sq. We use the sym-
bol DCpA,SqzEIpA,Sq to denote this interval-valued
difference. Figure 1 illustrates this procedure in terms
of an example.

Figure 1: Sequence that leads to an interval-valued
edge image.

Then we transformed the interval-valued morpholog-
ical gradient image DCpA,SqzEIpA,Sq into a gray-
scale morphological gradient that permits applying the
usual thinning and binarization techniques in order to
obtain a binary edge image that satisfies Canny’s con-
dition of one pixel width [5]. To this end, we computed
a convex combination of the image U corresponding to
the upper bound and the image L corresponding to the
lower bound of DCpA,SqzEIpA,Sq.

3.2 Edge Detection Using IV-FMM and
Admissible Orders

First, let us make the following observation: Although
I is infinite, the values that the IV-fuzzy image A P

FIpXq can assume are finite. Since the original image
O has values in t0, . . . , 255u, there are exactly

`

256
2

˘

`

256 “ 32896 possible pixel values of A in I. These
values are elements of I which can be linearly ordered
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using an admissible order. This procedure gives rise
to a value set L “ t0, 1, . . . , 32895u and to an image
AL P LX .

Consider an L-fuzzy conjunction C, an L-fuzzy impli-
cation I (note that C and I are discrete fuzzy con-
nectives [7]), and an SE SL P LX . If C, I and SL
satisfy the conditions of Proposition 2.2, then a mor-
phological gradient image with values in L is given by
DCpAL, SLq ´ EIpAL, SLq.

A third approach is the following: First, one computes
the images D “ DCpA,Sq and E “ EIpA,Sq using
an IV-fuzzy conjunction C, an IV-fuzzy implication I,
and an SE S P IX such that C, I and S are as in
Proposition 2.2. Then one uses an admissible order
to map the IV-fuzzy images D and E to images DL
and EL in LX , respectively. Note that this mapping is
order-preserving. Thus, EL ď AL ď DL which implies
that a gray-scale morphological gradient GL P LX is
given by the usual difference DL ´ EL. Then GL can
be subjected to thinning and binarization in order to
generate a binary edge image. Figure 2 illustrates the
most important steps performed in this approach.

Figure 2: The figure shows from left to right: Results
of the IV-fuzzy erosion and dilation, images obtained
after linearly ordering interval-valued pixel values us-
ing an admissible order, gray-scale morphological gra-
dient image computed from the previous two images.

4 Some Experimental Results

In our simulations, we considered the first 25 images
of the public image dataset of the University of South
Florida, including their respective ground truth images
[2] 1. To begin with, we generated 25 IV-fuzzy images

1The images dataset can be downloaded from
ftp://figment.csee.usf.edu/pub/ROC/

using these gray-scale images following the methodol-
ogy of Lopez-Molina [11]. As to the choice of the struc-
turing element and the fuzzy conjunction and implica-
tion that are the representatives of the IV-fuzzy con-
junction and implication used in the IV-fuzzy dilation
and erosion, a previous article of González-Hidalgo et
al. on fuzzy morphological edge detectors [8] served
as an inspiration. This article reveals that the pair
pTnM , IKDq is one of the two best configurations in
terms of several statistical measures among 40 con-
figuration for detecting the edges of 50 images, com-
prising the folder “Object” of this dataset. Also note
that both of these fuzzy logical connectives are dis-
crete, that CpTnM

is an IV-fuzzy t-norm and that IoIKD

is an IV-fuzzy border implicator. Therefore, the pair
pTnM , IKDq lends itself perfectly to applying the ap-
proaches described in Sections 3.1 and 3.2. We fur-
thermore adopted the same structuring element used
in Gonzalez-Hidalgo’s work, that is

S “

¨

˝

0.86 0.86 0.86
0.86 1 0.86
0.86 0.86 0.86

˛

‚,

as well as the same methods for thinning the edges and
binarizing the result [7, 8]. Specifically, these methods
are non-maximum supression (NMS) for thinning the
edges [5] (using Kovesi’s MATLAB code [10]), followed
by hysteresis to binarize the image [5] with threshold
values determined using the unsupervised approach by
Medina-Carciner et al. [12]. Subsequently we com-
pared the final result pDEq (detected edges) with the
ground truth pGT q image. The latter is a binary edge
image whose edges are one pixel wide. To this end,
we used Pratt’s figure of merit (FoM) that which is
defined as follows [14]:

FoM “
1

maxt|pDEq|pGT q|u

ÿ

xPDE

1

1` ad2
. (26)

Here a P R` is a constant, d is the distance between
the detected edge and the ground truth edge. The
symbols |pDEq| and |pGT q| denote respectively the
numbers of detected and ground truth edge points.
We used a “ 1 and the Euclidean distance.

Recall that our first approach depends on the parame-
ter α in the convex combination αU `p1´αqL, where
U is the upper bound image and L is the lower bound
image shown in Figure 1. The effect on the gray-scale
morphological gradient image when varying the pa-
rameter α is shown in Figure 3.

In a similar vein, our second approach depends on
the choice of ĺα` or ĺα´. Figure 4 depicts the
gray-scale morphological gradients for different choices
of admissible orders. Note that ĺ0` corresponds to
the lexicographic-1 order and ĺ1´ corresponds to the
lexicographic-2 order.
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Figure 3: Gray-scale edges obtained by varying α that
determines the convex combination of the upper and
lower bound images of an IV morphological gradient
(cf. 3.1): (a) α “ 0.25 (b) α “ 0.5 (c) α “ 0.45 (d)
α “ 1.

We evaluated the performance of each edge detector
in terms of the average of the FoM values over the 25
images under consideration. In the case of the interval-
valued morphological gradient method, we generated
51 edge detectors by considering α P t0, 0.02, . . . , 1u as
parameters in the convex combinations of the upper
and lower bounds of the interval-valued morphological
gradients. In a similar vein, we applied 51 edge detec-
tors following the approach described in Section 3.2
by varying α P t0, 0.02, . . . , 1u in the admissible orders
of type ĺα´. Finally, we applied Kα´ to A P FIpXq,
obtained by normalizing OIV of Equation 24, and gen-
erated a binary edge image from the fuzzy morpholog-
ical gradient image of Kα´pAq. Figure 5 and Table 1
summarize the performances in terms of FoM values
produced by the methods under consideration. Since
the FoM values are similar for the methods based on
ĺα´ and ĺα`, we omitted the latter.

Note that the approaches that involve ordering the
interval values of the IV-fuzzy erosion and dilation
images using an admissible order before subtracting
one from the other outperform the approach that re-
lies on computing a convex combination of the upper
and lower bounds of the interval-valued morphologi-
cal gradient. The latter reveals an approximately in-
creasing performance with respect to α. Note that the
gray-scale values of the resulting morphological gra-
dient image increase as α tends to 1, leading to the
detection of a larger number of edges.

Despite the fact, our IV-MM and admissible order
based edge detection method was applied to an im-

Figure 4: Gray-scale morphological gradients obtained
by varying the admissible order in the approach of Sec-
tion 3.2: (a) ĺ0.0008´ (b) ĺ0.4´ (c) ĺ0.78´ (d) ĺ1´.

Edge detectors FoM

Kα´(IVF dilation) - Kα´(IVF erosion) 0.34148
Fuzzy morph. grad. of Kα´(IVF image) 0.32506
Convex combination IVF gradient 0.32668
Canny 0.27015

Table 1: Average of the FoM values over 25 images
for the Canny method applied to the original image in
comparison with the highest average FoMs achieved
by the three methods for some α P t0, 0.02, . . . , 1u.

age with uncertain pixel values, this method produced
better FoM values for most ĺα´ and ĺα` orders than
the popular Canny edge detector applied to the origi-
nal image without uncertainty.

5 Concluding Remarks

In this paper, we proposed a new edge detection
method for IV-fuzzy images. To this end, we applied
an admissible order to the IV-fuzzy erosion and dila-
tion images and subtracted the former from the lat-
ter. In our experiments, we binarized the resulting
morphological gradient and computed the FoM. Our
approach produced higher FoM values than the gray-
scale morphological gradients of Kα´pAq, Kα`pAq and
than forming the convex combination of the upper and
lower bounds of DCpA,SqzEIpA,Sq. Although we used
an IV-fuzzy image A that contains less information
than the original image O, our approach outperformed
the classical Canny method.
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Figure 5: Average FoM over 25 images for the Canny
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