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Abstract� The paper uses the LU-parametric representation of
fuzzy numbers and fuzzy-valued functions, to obtain valid approxi-
mations of fuzzy generalized derivative and to solve fuzzy differential
equations. The main result is that a fuzzy differential initial-value
problem can be translated into a system of in�nitely many ordinary
differential equations and, by the LU-parametric representation, the
in�nitely many equations can be approximated ef�ciently by a �nite
set of four ODEs. Some examples are included.
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1 Introduction
The present paper aims to combine results of [1] and [2] with
the parametric representation in [6] to obtain a new approx-
imation results for fuzzy differential equations (FDE) with
parametric representation. These results are used for numeri-
cally solving FDEs under the parametric representation. The
problem is that a fuzzy initial value problem in general can
be translated to a system consisting of in�nitely many ODEs.
However the systems are uncoupled, we cannot solve in�-
nitely many equations. This is why we have to approximate
the solutions of FDEs.
Some examples are presented.
We will denote RF the set of fuzzy numbers, i.e. normal,

fuzzy convex, upper semicontinuous and compactly supported
fuzzy sets de�ned over the real line. The standard Hukuhara
difference (H-difference �H ) is de�ned by u�H v = w ()
u = v + w; while the generalized Hukuhara difference (gH-
difference for short) is the fuzzy number w, if it exists, such
that

u�gH v = w ()
�

(i) u = v + w
or (ii) v = u� w . (1)

If w = u �gH v exists as a fuzzy number, its level cuts
[w�� ; w

+
� ] are obtained by w�� = minfu�� � v�� ; u+� � v+� g

and w+� = maxfu�� � v�� ; u+� � v+� g for all � 2 [0; 1].

2 Fuzzy differentiability
The following fuzzy differentiability concepts used are of gen-
eralized type. The �rst concept was presented in [1] for the
fuzzy case and the second in [5].

De�nition 1: ([1]) Let f :]a; b[! RF and x0 2]a; b[:We say
that f is strongly generalized Hukuhara differentiable at
x0 (GH-differentiable for short) if there exists an element
f 0GH(x0) 2 RF ; such that, for all h > 0 suf�ciently

small,
(i) 9f(x0 + h)	H f(x0); f(x0)	H f(x0 � h) and

lim
h&0

f(x0 + h)	H f(x0)
h

= (2)

= lim
h&0

f(x0)	H f(x0 � h)
h

= f 0GH(x0);

or (ii) 9f(x0)	H f(x0 + h); f(x0 � h)	H f(x0) and

lim
h&0

f(x0)	H f(x0 + h)
(�h) = (3)

= lim
h&0

f(x0 � h)	H f(x0)
(�h) = f 0GH(x0);

or (iii) 9f(x0 + h)	H f(x0); f(x0 � h)	H f(x0) and

lim
h&0

f(x0 + h)	H f(x0)
h

= (4)

= lim
h&0

f(x0 � h)	H f(x0)
(�h) = f 0GH(x0);

or (iv) 9f(x0)	H f(x0 + h); f(x0)	H f(x0 � h) and

lim
h&0

f(x0)	H f(x0 + h)
(�h) = (5)

= lim
h&0

f(x0)	H f(x0 � h)
h

= f 0GH(x0):

Based on the gH-difference we obtain the following de�-
nition (for interval-valued functions, the same de�nition was
suggested in [4] using inner-difference):

De�nition 2: Let x0 2]a; b[ and h be such that x0+h 2]a; b[,
then the gH-derivative of a function f :]a; b[! RF at x0
is de�ned as

f 0gH(x0) = lim
h!0

1

h
[f(x0 + h)�gH f(x0)]: (6)

If f 0gH(x0) 2 RF satisfying (6) exists, we say that f is
generalized Hukuhara differentiable (gH-differentiable
for short) at x0. De�ne

�hf(x0) =
1

h
[f(x0 + h)�gH f(x0)].

According to the de�nition of gH-difference (1), we have
two possibilities:

(i) h�hf(x0) + f(x0) = f(x0 + h) (7)
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(ii) f(x0 + h)� h�hf(x0) = f(x0). (8)
If the limit in (6) exists, we say that f is (i)-gH-
differentiable at x0 (or (ii)-gH-differentiable at x0) if (i)
is true (or (ii) is true, respectively) for small positive
and negative values of h. If only the left-limit (i.e., for
h �! 0�, h < 0) in (6) exists, we say that f is (i)-left-
gH-differentiable (or (ii)-left-gH-differentiable, respec-
tively) at x0 if equality (7) is valid (or (8) is valid, re-
spectively) for small negative values of h; analogously,
we de�ne (i)-right-gH-differentiability and (ii)-right-gH-
differentiability. The



(i)
(ii)

�
-


left
right

�
-gH derivatives are

de�ned accordingly.

3 LU-parametric representation
The Lower-Upper (LU) representation of a fuzzy number is
a result based on the well known Negoita-Ralescu represen-
tation theorem, stating essentially that the membership form
and the �-cut form of a fuzzy number u are equivalent and
in particular, the �-cuts [u]� = [u�� ; u

+
� ] uniquely represent

u, provided that the two functions � �! u�� and � �! u+� ,
w.r.t. �, are left continuous for all � 2]0; 1], right continu-
ous for � = 0, monotonic (u�� increasing, u+� decreasing) and
u�1 � u+1 (for � = 1).
On the other hand, it is well known that monotonic func-

tions have at most a countable number of points of disconti-
nuity and a countable number of points where the derivative
does not exist.
Denote the corresponding points by the increasing sequence

(�j)j2J with 0 < �j � 1 and J = ; (empty set) or J =
f1; 2:::; pg (�nite set) or J = N (set of natural numbers).
Then the two functions u�� ; u+� are differentiable internally

to each of the subintervals ]�j�1; �j [ i.e., they are formed by a
family of differentiable monotonic "pieces" (their restrictions
to each subinterval are monotonic and differentiable).
For simplicity, in this presentation we will assume that J =

; (empty set); otherwise, we can repeat the following results
on each of the subintervals.
So, u is assumed to be a fuzzy number with �-cuts [u]� =

[u�� ; u
+
� ] and � �! u�� , � �! u+� monotonic and differen-

tiable w.r.t. �.
For � 2 [0; 1], let �u�� and �u+� denote the �rst derivatives

of u�� and u+� w.r.t. � (for � = 0 they are right derivatives, for
� = 1 they are left derivatives).
The following lemma is immediate.

Lemma 1: The two differentiable functions u�� ; u+� de�ne a
fuzzy number if and only if for all � 2 [0; 1] we have:8<: u�� � u+�

�u�� � 0
�u+� � 0

OR

8<: u�� � u+�
�u�� � 0
�u+� � 0

.

The lemma above is useful to characterize the gH-
differentiability of a fuzzy-valued function f :]a; b[! RF de-
�ned in terms of its �-cuts [f(x)]� = [f�� (x); f+� (x)].
Based on the results established in [5], when both f�� (x)

and f+� (x) are differentiable w.r.t. x for all �'s, then the �-
cuts of the gH-derivative of f are

f 0gH(x) = [minf(f�� )0(x); (f+� )0(x)g;
maxf(f�� )0(x); (f+� )0(x)g]

provided that the
two functions (f 0gH(x))�� = minf(f�� )0(x); (f+� )0(x)g and
(f 0gH(x))

+
� = maxf(f�� )0(x); (f+� )0(x) de�ne (w.r.t. �) a

fuzzy number; here, (f�� )0; (f+� )0 denote the derivatives w.r.t.
x, for given � 2 [0; 1].
As f�� (x) and f+� (x) de�ne the �-cuts of the fuzzy num-

ber f(x) for each x, clearly they are monotonic and almost
everywhere differentiable w.r.t. � and satisfy the conditions
of Lemma 1. Assume, for simplicity of presentation, that each
function � �! f�� (x) and � �! f+� (x) is differentiable
w.r.t. �.

Notation: We will use the following notations: �f�� (x) =
@
@�f

�
� (x), �f+� (x) = @

@�f
+
� (x), (f�� )0(x) = @

@xf
�
� (x),

(f+� )
0(x) = @

@xf
�
� (x), and, for short, given a fuzzy val-

ued function f(x), we will denote by �f(x) the pairs of
functions (�f�� (x); �f+� (x))�2[0;1]; we will assume that
the following equalities hold for the mixed derivatives:

(�f�� )
0(x) =

@

@x

�
@

@�
f�� (x)

�
(9)

=
@

@�

�
@

@x
f�� (x)

�
= �

�
(f�� )

0(x)
�

(�f+� )
0(x) =

@

@x

�
@

@�
f+� (x)

�
(10)

=
@

@�

�
@

@x
f+� (x)

�
= �

�
(f+� )

0(x)
�
.

The following theorem can be proved.

Theorem 1: Let f :]a; b[! RF be de�ned in terms of its �-
cuts [f(x)]� = [f�� (x); f+� (x)] satisfying conditions (9)-
(10). Then
1. f is (i)-gH-differentiable at x if and only if:8<: (f�1 )

0(x) � (f+1 )0(x)
(�f�� )

0(x) � 0
(�f+� )

0(x) � 0
for all � 2 [0; 1]; ; (11)

2. f is (ii)-gH-differentiable at x if and only if:8<: (f�1 )
0(x) � (f+1 )0(x)
(�f�� )

0(x) � 0
(�f+� )

0(x) � 0
for all � 2 [0; 1]; . (12)

De�nition 3: A switching point x0 2]a; b[ is such that gH-
differentiability changes from type (i) to type (ii) of from
type (ii) to type (i). A switching interval ]x0; x1[ is such
that x0 < x1 and f is gH-differentiable on its left and on
it right but not for all x 2]x0; x1[.

Clearly, by the use of Theorem 2 below, it is easy to �nd
switching points or the starting point of switching intervals.

Theorem 2: Let f :]a; b[! RF be de�ned in terms of its �-
cuts [f(x)]� = [f�� (x); f+� (x)] satisfying conditions (9)-
(10); let f be gH-differentiable; let x0 2]a; b[ be given

786



and let � > 0 suf�ciently small such that x0 � � 2]a; b[
and x0 + � 2]a; b[.
1) if conditions (11) hold for x0 � � < x < x0 and not
for x = x0 then x0 is a switching point or the left point
of a switching interval.
2) if conditions (12) hold for x0 � � < x < x0 and not
for x = x0 then x0 is a switching point or the left point
of a switching interval.
3) if conditions (11) hold for x0 < x < x0 + � and not
for x = x0 then x0 is a switching point or the right point
of a switching interval.
4) if conditions (12) hold for x0 < x < x0 + � and not
for x = x0 then x0 is a switching point or the right point
of a switching interval.

Example 1: Consider the fuzzy valued function f : [0; 1] !
RF de�ned by

f�� (x) = xe�x + �2(e�x
2

+ x� xe�x)
f+� (x) = e�x

2

+ x+ (1� �2)(ex � x+ e�x
2

)

We have the following derivatives w.r.t. x of f�� (x) and
f+� (x)

(f�� )
0(x) = (1� x)e�x +

+�2(1� 2xe�x
2

� e�x + xe�x)
(f+� )

0(x) = 1� 2xe�x
2

+

+(1� �2)(ex � 1� 2xe�x
2

)

and the following derivatives w.r.t. �

�f�� (x) = 2�(e�x
2

+ x� xe�x)
�f+� (x) = �2�(ex � x+ e�x

2

).

It follows that

(�f�� )
0(x) = 2�(1� 2xe�x

2

� e�x + xe�x)
(�f+� )

0(x) = �2�(ex � 1� 2xe�x
2

).

At the point x = 0, f is (ii)-right-gH-differentiable
and it is (ii)-gH-differentiable on the inter-
val ]0; x1[ where x1 = 0:6103336260 is such
that (f�1 )

0(x1) = (f+0 )
0(x1); on the interval

[x1; x2], where x2 = 0:7105062170 is such that
(f+1 )

0(x2) = (f�0 )
0(x2), the function is not gH-

differentiable; f returns to be (i)-gH-differentiable
on the interval ]x2; 1[; �nally, at x = 1 f is (i)-left-
gH-differentiable. The interval [x1; x2] is a switching
interval. Figure 1 shows f and f 0gH .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Figure 1. f(x) (top) and f 0gH(x) (bottom)
for function in example 1.

In the light of using the results above in the setting of
fuzzy differential equations, the LU-parametric representation
of fuzzy numbers proposed in [6], is shown to have a great
application potential. We will recall here its basic elements.
First, we choose a family of "standardized" differentiable

and increasing shape functions p : [0; 1] �! [0; 1], depending
on two parameters �0; �1 � 0 such that
1. p(0) = 0, p(1) = 1,
2. p0(0) = �0, p0(1) = �1 and
3. p(t) is increasing on [0; 1] if and only if �0; �1 � 0.
As an example of valid shape functions we can consider

rational splines

p(t;�0; �1) =
t2 + �0t(1� t)

1 + (�0 + �1 � 2)t(1� t)
:

Then, the parametric shape functions above are adopted to
represent the functions u�(:) and u

+
(:) as "piecewise" differen-

tiable, on a decomposition of the interval [0; 1] into N subin-
tervals 0 = �0 < �1 < ::: < �i�1 < �i < ::: < �N = 1:
At the extremal points of each subinterval Ii = [�i�1; �i], the
values and the �rst derivatives (slopes) of the two functions
are given

u�(�i�1) = u
�
0;i , u

+
(�i�1)

= u+0;i , (13)

u�(�i) = u
�
1;i , u

+
(�i)

= u+1;i

u0�(�i�1) = d
�
0;i , u

0+
(�i�1)

= d+0;i , (14)

u0�(�i) = d
�
1;i , u

0+
(�i)

= d+1;i

and by the transformation t� = ���i�1
�i��i�1 ; � 2 Ii; each subin-

terval Ii is mapped into [0; 1] to determine each piece inde-
pendently. Globally continuous or more regular C(1) fuzzy
numbers can be obtained directly from the values of the para-
meters.
Let p�i (t) denote the model functions on Ii; we obtain, for

example, p�i (t) = p(t;��0;i; �
�
1;i), p

+
i (t) = p(t;�+0;i; �

+
1;i)

with ��j;i =
�i��i�1
u�1;i�u

�
0;i

d�j;i and �
+
j;i = � �i��i�1

u+1;i�u
+
0;i

d+j;i for j =

0; 1 so that, for � 2 [�i�1; �i] and i = 1; 2:; ; ; N :

u�� = u
�
0;i + (u

�
1;i � u

�
0;i)p

�
i

�
t�;�

�
0;i; �

�
1;i

�
(15)

u+� = u
+
0;i + (u

+
1;i � u

+
0;i)p

+
i

�
t�;�

+
0;i; �

+
1;i

�
: (16)
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A fuzzy number with differentiable lower and upper functions
is obtained by taking the values and the slopes in appropriate
way, i.e. u�1;i = u

�
0;i+1 =: u

�
i , u

+
1;i = u

+
0;i+1 =: u

+
i and, for

the slopes, d�1;i = d
�
0;i+1 =: �u

�
i , d

+
1;i = d

+
0;i+1 =: �u

+
i . This

requires 4(N + 1) parameters, being N � 1,

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N with (17)

u�0 � u�1 � ::: � u�N � u
+
N � u

+
N�1 � ::: � u

+
0 (18)

�u�i � 0; �u
+
i � 0, i = 0; 1; :::; N (19)

and the branches are computed according to (15)-(16).
The gH-difference w = u �gH v has the following LU-

parametric form:

u�gH v = (�i;w�i ; �w�i ; w+i ; �w+i )i=0;1;:::;N with
w�i = minfu

�
i � v

�
i ; u

+
i � v

+
i g;

0 � �w�i =
�
�u�i � �v

�
i if w�i = u

�
i � v

�
i

�u+i � �v
+
i if w�i = u

+
i � v

+
i

w+i = maxfu
�
i � v

�
i ; u

+
i � v

+
i g

0 � �w+i =
�
�u�i � �v

�
i if w+i = u

�
i � v

�
i

�u+i � �v
+
i if w+i = u

+
i � v

+
i

:

4 FDEs with LU-parametric approximation

Fuzzy differential equations can be considered now with dif-
ferent concepts of differentiability. Using the H-derivative, we
can consider the classical Hukuhara differential equation

x0H = f(t; x); x(t0) = x0; (20)

with the GH derivative we can consider the problem

x0GH = f(t; x); x(t0) = x0; (21)

with the gH-derivative we have the equation

x0gH = f(t; x); x(t0) = x0: (22)

Everywhere f :]a; b[�RF ! RF is a given function de�ned
in terms
of level cuts [f(t; x)]� = [f�� (t; x

�
� ; x

+
� ); f

+
� (t; x

�
� ; x

+
� )],

[x(t)]� = [x
�
� (t); x

+
� (t)].

Assumption A: We �x a decomposition 0 = �0 < �1 <
::: < �i�1 < �i < ::: < �N = 1 into N subinter-
vals and we obtain an approximation of x(t) and f(t; x)
in the form (17); simply, the functions x�i (t), x

+
i (t)

, �x�i (t), �x
+
i (t) and f

�
i (t; x

�
i ; x

+
i ), f

+
i (t; x

�
i ; x

+
i ),

�f�i (t; x
�
i ; x

+
i ), �f

+
i (t; x

�
i ; x

+
i ) are computed using (9)-

(10) from the level cuts [x(t)]� = [x�� (t); x
+
� (t)] and

[f(t; x)]� = [f
�
� (t; x

�
� ; x

+
� ); f

+
� (t; x

�
� ; x

+
� )], and for the

required values of � = �i, i = 0; :::; N .

The choice among (20), (21) or (22) of the fuzzy derivative
x0(t) in�uences the equation. As we have seen, the deriv-
ative x0(t) has level cuts [x0(t)]� = [(x�� )

0(t); (x+� )
0(t)] or

[x0(t)]� = [(x
+
� )

0(t); (x�� )
0(t)] when GH or gH differentiabil-

ity is considered. We analyze the problem (22) at the moment.
Following Bede and Gal ([1], Lemma 20), when f(t; x) is

continuous, the differential equation (22) is equivalent to the
following integral equation

x(t)�gH x0 =
tZ

t0

f(s; x(s))ds: (23)

If we write (23) in terms of level cuts, we obtain

case (i):
�
x�� (t) = (x0)

�
� + �

�
� (t; x

�
� ; x

+
� )

x+� (t) = (x0)
+
� + �

+
� (t; x

�
� ; x

+
� )

case (ii):
�
x�� (t) = (x0)

�
� + �

+
� (t; x

�
� ; x

+
� )

x+� (t) = (x0)
+
� + �

�
� (t; x

�
� ; x

+
� )

where ��� (t; x
�
� ; x

+
� ) =

tR
t0

f�� (s; x
�
� ; x

+
� )ds and

�+� (t; x
�
� ; x

+
� ) =

tR
t0

f+� (s; x
�
� ; x

+
� )ds. In both cases, the two

integral equations above are independent for different values
of � 2 [0; 1], and are equivalent to the ordinary differential
equations

(i):
�
(x�� )

0 = f�� (t; x
�
� ; x

+
� ); x�� (t0) = (x0)

�
�

(x+� )
0 = f+� (t; x

�
� ; x

+
� ), x+� (t0) = (x0)

+
�

(ii):
�
(x�� )

0 = f+� (t; x
�
� ; x

+
� ), x�� (t0) = (x0)

�
�

(x+� )
0 = f�� (t; x

�
� ; x

+
� ), x+� (t0) = (x0)

+
� :

.

As a �nal step, we represent all the fuzzy quantities by the
LU-fuzzy parametrization, with the meaning of the symbols
as in (17); for each � = �i and i = 0; 1; :::; N we obtain the
differential equations

(i):
�
(x�i )

0 = f�i (t; x
�
i ; x

+
i ), x�i (t0) = (x0)

�
i

(x+i )
0 = f+i (t; u

�
i ; u

+
i ), x+i (t0) = (x0)

+
i�

(�x�i )
0 = �f�i (t; x

�
i ; x

+
i ); �x

�
i (t0) = (�x0)

�
i

(�x+i )
0 = �f+i (t; x

�
i ; x

+
i ), �x

+
i (t0) = (�x0)

+
i

(ii):
�
(x�i )

0 = f+i (t; x
�
i ; ux

+
i ); x�i (t0) = (x0)

�
i

(x+i )
0 = f�i (t; u

�
i ; u

+
i ), x+i (t0) = (x0)

+
i�

(�x�i )
0 = �f+i (t; x

�
i ; x

+
i ), �x

�
i (t0) = (�x0)

�
i

(�x+i )
0 = �f�i (t; x

�
i ; x

+
i ), �x

+
i (t0) = (�x0)

+
i :

They are N + 1 independent (systems) of ordinary differen-
tial equations (four equations) with given initial conditions;
they can be solved by any of the existing ef�cient methods for
ODE.
In the following theorem we use the results in [2] to obtain

a parametrization of an FDE with GH-derivative.
We denote byD(x; y) the usual Hausdorff distance between

two fuzzy numbers x; y 2 RF .
For simplicity of notation, the LU-parametric represen-

tations of a fuzzy number x 2 RF and of a function
f(t; x) :]a; b[�RF ! RF as in Assumption A, will be
denoted by xN = (�i;x

�
i ; �x

�
i ; x

+
i ; �x

+
i ) and fN (t; x) =

(�i; f
�
i ; �f

�
i ; f

+
i ; �f

+
i ), respectively; clearly, each of the ele-

ments f�i , �f
�
i , f

+
i and �f

+
i can be considered as functions

of the �ve variables t, x�i , �x
�
i , x

+
i and �x

+
i for i = 0; :::; N .

Theorem 3: Let " > 0 be arbitrary and let x0 2 RF and
f :]a; b[�RF ! RF . Assume that the conditions of
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Theorem 3.1 in [2] for the solvability of the fuzzy initial
value problem

x0(t) = f(t; x(t)); x(t0) = x0; (24)

are satis�ed. Then there exist LU-parametrizations xN"

and fN"(t; x) withN" subintervals, such that the two so-
lutions of (24) can be approximated with absolute error
D(x(t); xN"

(t)) < " on some interval [t0; t0 + k], by
solving the following two sets of ODEs (i = 0; :::; N ):

(i)

8>>>>>>><>>>>>>>:

�
x�i
�0
= f�i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

�x�i
�0
= �f�i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

x+i
�0
= f+i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

�x+i
�0
= �f+i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )

x�i (t0) = x
�
0;i; x

+
i (t0) = x

+
0;i

�x�i (t0) = �x
�
0;i; �x

+
i (t0) = �x

+
0;i

; (25)

(ii)

8>>>>>>><>>>>>>>:

�
x�i
�0
= f+i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

�x�i
�0
= �f+i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

x+i
�0
= f�i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )�

�x+i
�0
= �f�i (t; x

�
i ; x

+
i ; �x

�
i ; �x

+
i )

x�i (t0) = x
�
0;i; x

+
i (t0) = x

+
0;i

�x�i (t0) = �x
�
0;i; �x

+
i (t0) = �x

+
0;i

. (26)

After the preceding results, the LU parametric represen-
tation can be adopted to solve any FDE with fuzzy valued
functions having at most a �nite number of discontinuities (or
points where the derivative w.r.t. � does not exist); in fact, it
is suf�cient that the points b� where there is a discontinuity or
a non differentiability is included as a point �i in the decom-
position 0 � �1 � ::: � �N of the interval [0; 1] used for the
parametric representation.
Furthermore, it is possible to intercept the switching points

(and the switching intervals) by the following simple rule,
based on one of the theorems above.

Rule to detect a switching: Consider a time iteration of the
FDE solver, i.e. we have evaluated the solution x�i (bt �
h); x+i (bt� h) at t = bt� h and we perform the next iter-
ation to obtain the solution at t = bt (i.e. with a step size
h and assume that the discretization error of the solver is
suf�ciently small); suppose that x�i (bt� h) < x+i (bt� h)
for all i � N ;
Solve the systems (25) or (26) starting with i = N and
decreasing i from N to 0;
If, for a given i � N , we �nd that x+i (bt) < x�i (bt) then a
switching point exists between bt� h and bt.
5 Linear fuzzy differential equations

Consider the following linear fuzzy differential equations
where, for all t 2 [t0; T ], a(t) and b(t) are fuzzy num-
bers having � � cuts [a(t)]� = [a�� (t); a

+
� (t)], [b(t)]� =

[b�� (t); b
+
� (t)]:

1. x0(t) = a(t)x(t) + b(t),
2. x0(t)� a(t)x(t) = b(t),
3. x0(t)� a(t)x(t)� b(t) = 0,
4. x0(t)� b(t) = a(t)x(t).

The initial condition is x(t0) = u where u is a given fuzzy
number.
We can write the four equations, in terms of gH-derivative,

as

1.
�
minf(x�� (t))0; (x+� (t))0g = (a(t)x(t))�� + b�� (t)
maxf(x�� (t))0; (x+� (t))0g = (a(t)x(t))+� + b+� (t)

2.
�
minf(x�� (t))0; (x+� (t))0g = (a(t)x(t))+� + b�� (t)
maxf(x�� (t))0; (x+� (t))0g = (a(t)x(t))�� + b+� (t)

3.
�
minf(x�� (t))0; (x+� (t))0g = (a(t)x(t))+� � b+� (t)
maxf(x�� (t))0; (x+� (t))0g = (a(t)x(t))�� � b�� (t)

4.
�
minf(x�� (t))0; (x+� (t))0g = (a(t)x(t))�� + b+� (t)
maxf(x�� (t))0; (x+� (t))0g = (a(t)x(t))+� + b�� (t)

Splitting the four FDE in terms of (i) or (ii) gH-
differentiability, we obtain:

1(i)
�
(x�� (t))

0 = (a(t)x(t))�� + b
�
� (t)

(x+� (t))
0 = (a(t)x(t))+� + b

+
� (t)

,

1(ii)
�
(x+� (t))

0 = (a(t)x(t))�� + b
�
� (t)

(x�� (t))
0 = (a(t)x(t))+� + b

+
� (t)

,

2(i)
�
(x�� (t))

0 = (a(t)x(t))+� + b
�
� (t)

(x+� (t))
0 = (a(t)x(t))�� + b

+
� (t)

,

2(ii)
�
(x+� (t))

0 = (a(t)x(t))+� + b
�
� (t)

(x�� (t))
0 = (a(t)x(t))�� + b

+
� (t)

,

3(i)
�
(x�� (t))

0 = (a(t)x(t))+� + b
+
� (t)

(x+� (t))
0 = (a(t)x(t))�� + b

�
� (t)

,

3(ii)
�
(x+� (t))

0 = (a(t)x(t))+� + b
+
� (t)

(x�� (t))
0 = (a(t)x(t))�� + b

�
� (t)

,

4(i)
�
(x�� (t))

0 = (a(t)x(t))�� + b
+
� (t)

(x+� (t))
0 = (a(t)x(t))+� + b

�
� (t)

,

4(ii)
�
(x+� (t))

0 = (a(t)x(t))�� + b
+
� (t)

(x�� (t))
0 = (a(t)x(t))+� + b

�
� (t)

.

Considering that (i)-gH-differentiability requires (x�� (t))0 �
(x+� (t))

0 8� and (ii)-gH-differentiability requires (x+� (t))0 �
(x�� (t))

0 8�, we see immediately the following cases, in com-
bination with the necessary validity conditions:
(VC): for all t, x�1 (t) � x+1 (t) and, w.r.t. �, x�� (t) is

increasing and x+� (t) is decreasing.
Observe that
- equations 1(i) always have an acceptable fuzzy (i)-

gH-differentiable solution, with increasing support length;
- equations 1(ii) have an acceptable fuzzy (ii)-gH-

differentiable solution, with decreasing support length, if the
validity conditions (VC) are also satis�ed;
- equations

2(i) have an acceptable (i)-gH-differentiable solution only if
(VC) are satis�ed and

(a(t)x(t))+� + b
�
� (t) � (a(t)x(t))�� + b+� (t);

- equations 2(ii) have an accept-
able (ii)-gH-differentiable solution only if (VC) are satis�ed
and

(a(t)x(t))�� + b
+
� (t) � (a(t)x(t))+� + b�� (t);
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- equations 3(i) cannot have an acceptable fuzzy (i)-
gH-differentiable solution (unless all is crisp);
- equations 3(ii) cannot have an acceptable fuzzy (ii)-

gH-differentiable solution (unless all is crisp);
- equations 4(i) produce

an acceptable (i)-gH-differentiable solution only if (VC) are
satis�ed and

(a(t)x(t))�� + b
+
� (t) � (a(t)x(t))+� + b�� (t);

- equations 4(ii) produce an acceptable (ii)-gH-
differentiable solution only if (VC) are satis�ed and

(a(t)x(t))�� + b
+
� (t) � (a(t)x(t))+� + b�� (t).

We conclude this section by considering the case of the lin-
ear FDE on [a; b] = [0; 2]

x0(t) = (1� t)x(t) + e�t h0; 0:5; 1i
x(0) = h�0:5; 0:5; 1i

in the case where a(t) = (1 � t) is a crisp (non fuzzy)
coef�cient function and h0; 0:5; 1i is a triangular symmetric
fuzzy number with support [0; 1]; we have b�� (t) = e�t �2 and
b+� (t) = e

�t(1� �
2 ). The initial value (t = 0) is the triangular

fuzzy number with support [�0:5; 1] and core f0:5g. For this
equation, the two solutions are obtained by solving two sets of
ordinary differential equations, depending on the sign of a(t).
The (i)-gH-differentiable solution is obtained by solving the

ODEs8>>>><>>>>:
(x�� (t))

0 =

�
(1� t)x�� (t) + e�t �2 t � 1
(1� t)x+� (t) + e�t �2 t > 1

(x+� (t))
0 =

�
(1� t)x+� (t) + e�t(1� �

2 ) t � 1
(1� t)x�� (t) + e�t(1� �

2 ) t > 1
x(0) = h�0:5; 0:5; 1i

and the solution, obtained numerically using the LU-
parametric representation with N = 8, is the Hukuhara-type
standard solution with increasing support (see Fig. 2).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

2

0

2

4

Figure 2. H-differentiable solution x(t) (top) and
its gH-derivative x0H(t) (bottom).

The (ii)-gH-differentiable solution is obtained by solving
the ODEs8>>>><>>>>:

(x�� (t))
0 =

�
(1� t)x+� (t) + e�t(1� �

2 ) t � 1
(1� t)x�� (t) + e�t(1� �

2 ) t > 1

(x+� (t))
0 =

�
(1� t)x�� (t) + e�t �2 t � 1
(1� t)x+� (t) + e�t �2 t > 1

x(0) = h�0:5; 0:5; 1i

.

The (ii)-gH-differentiable solution, obtained numerically
using the LU-parametric representation withN = 8, is a valid
fuzzy number for t 2 [0; t1], where t1 � 0:478; if, at t = t1,
the FDE is switched to (i)-gH-differentiability the solution is
continued up to t = 2. The point t1 � 0:478 is a switching
point and the found solution is (ii)-gH-differentiable on [0; t1]
and (i)-gH-differentiable on [t1; 2]. The gH-differentiable
solution on the interval [0; 2] is illustrated in Fig. 3.
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Figure 3. gH-differentiable solution x(t) (top) and
its gH-derivative x0gH(t) (bottom).

6 Conclusion
Following the ideas recently developed in [3], we propose
here to investigate fuzzy differential equations with gH-
differentiability and we suggest a numerical procedure using
the LU-parametric representation.
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