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Abstract

This paper delves deeply into the recently intro-
duced mathematical morphology based on discrete
t-norms. Closing and opening operators and the
concepts of open and closed objects are introduced.
All the properties satisfied by nilpotent t-norms,
even the generalized idempotence, hold too. After
that, some experimental results, using comparative
measures, on edge detection are showed. Some ex-
perimental results concerning the Top-Hat transfor-
mations and the basic filters built from the opening
and closing operators are presented. Top-Hat exper-
iments are compared with those obtained with the
umbra approach, nilpotent t-norms and uninorms,
proving that the discrete approach provides notable
results. Moreover, different objective measures are
used in order to evaluate the filtered results depend-
ing on the amount of noise in the image.

Keywords: Discrete t-norm, mathematical mor-
phology, edge detection, noise reduction.

1. Introduction

The fuzzy mathematical morphology is a general-
ization of the binary morphology ([1]) using con-
cepts and techniques from the fuzzy sets theory
([2], [3], [4]). This theory allows a better treat-
ment and a representation with greater flexibility of
the uncertainty and ambiguity present in any level
of an image (raw sensor output and its extension
to higher levels). Consequently, the component ex-
traction and the shape recognition improve drasti-
cally. The four basic morphological operators are
dilation, erosion, closing and opening. Thanks to
the fact that gray-scale images can be represented
as fuzzy sets, fuzzy tools can be used to define fuzzy
morphological operators. Thus, conjuntors (usually
continuous t-norms) and its residual implicators has
been used. Conjunctive uninorms also recently have
proved useful as a special case of conjunctors (see
[5], [6], [7]).

However, gray-scale images are not represented in
practice as functions of Rn into [0, 1] because they
are stored in finite matrices whose gray levels belong
to a finite chain of 256 values. Therefore, the images
are represented as discrete functions and discrete
fuzzy operators can be used. In [8] it was shown
that it is possible to use discrete t-norms to build
a fuzzy mathematical morphology that satisfies all

the classical properties. Initial results in edge detec-
tion, showed there, improved, at least at naked eye,
those obtained using the nilpotent t-norms. The
mathematical morphology has been already used in
medical image analysis ([9], [10]). Therefore, dis-
crete fuzzy mathematical morphology could have a
wide range of applications in this research area. The
use of performance measures supports this fact since
it shows that the discrete framework outperforms
the currently used mathematical morphologies and
in some cases, the classical algorithms (Canny, So-
bel, Prewitt. . . ). However, medical images can be
distorted by noise and consequently, morphological
filters will play a key role (see [9], [11]). In this di-
rection, the study of the algebraic properties and
characterization of the closing and opening discrete
operators and open and closed objects when using
discrete t-norms is indispensable. Properties ob-
tained are similar to those obtained in [12] and in
a broader context, in [13]. This theoretical back-
ground allows the construction of the so-called alter-
nate filters and the Top-Hat transformations. The
Top-Hat is used to highlight certain components of
the image, while the alternate filters are designed
to eliminate and reduce noise.
The communication is organized as follows. In Sec-
tion 2, definitions and properties of fuzzy discrete
morphological operators are recalled. In Section 3
the properties related to open and closed objects
including the generalized idempotence law are pre-
sented. In Section 4, some experimental results
on medical images edge detection are performed.
Then, the Top-Hat transformation is introduced
and results comparing different morphological ap-
proaches are shown. The behaviour of alternate fil-
ters is investigated depending on the structuring el-
ement shape and the amount of noise in the image.
Some different objective measures together with the
fuzzy DI-subsethood measures ([14]) are used to
evaluate the filtered results.

2. Fuzzy discrete morphological operators

We will suppose the reader to be familiar with the
basic definitions and properties of the fuzzy discrete
logical operators that will be used in this work, spe-
cially those related to discrete t-norms and discrete
residual implicators (see [8]). From now on, the fol-
lowing notation will be used: L = {0, . . . , n} a finite
chain, I will denote a discrete implicator, C a dis-
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crete conjunctor, N the only strong negation on L

which is given by N(x) = n − x for all x ∈ L, T
a discrete t-norm, IT its residual implicator, A a
gray-scale image and B a gray-level structuring el-
ement that takes values on L. Our methodology is
similar to the used ones in [3, 4, 5, 12, 13].

Definition 1 The fuzzy discrete dilation DC(A,B)
and the fuzzy discrete erosion EI(A,B) of A by B
are the gray-scale images defined as

DC(A,B)(y) = max
x

C(B(x− y), A(x))

EI(A,B)(y) = min
x

I(B(x − y), A(x)).

Definition 2 The fuzzy discrete closing
CC,I(A,B) and the fuzzy discrete opening
OC,I(A,B) of A by B are the gray-scale im-
ages defined as

CC,I(A,B)(y) = EI(DC(A,B),−B)(y)
OC,I(A,B)(y) = DC(EI(A,B),−B)(y).

The reflection −B of an n-dimensional fuzzy set
B is defined as −B(x) = B(−x), for all x ∈ Z

n.

Obviously a discrete t-norm is a conjunctor.
Thus, these operators and their residual implicators
can be used to define fuzzy discrete morphological
operators using the previous definitions guarantee-
ing the adjunction property. In [8], the discrete t-
norms that have to be used in order to preserve the
morphological and algebraic properties that satisfy
the classical morphological operators were fully de-
termined. The algebraic properties of the fuzzy dis-
crete morphological operators that will be used in
the next section are recalled.

• The fuzzy dilation DT is increasing in both ar-
guments, the fuzzy erosion EIT

is increasing in
the first argument and decreasing in the sec-
ond one, the fuzzy closing CT,IT

and the fuzzy
opening OT,IT

are both increasing in the first
argument.

• All the usual properties (those satisfied in the
morphology based on left-continuous t-norms)
respect to the interactions with Zadeh’s union
and intersection of discrete images are also sat-
isfied.

• If B(0) = n we have: EIT
(A,B) ⊆ A ⊆

DT (A,B).
• In addition, OT,IT

(A,B) ⊆ A ⊆ CT,IT
(A,B).

• The fuzzy closing and the fuzzy opening are
idempotent, i.e.: CT,IT

(CT,IT
(A,B), B) =

CT,IT
(A,B) and OT,IT

(OT,IT
(A,B), B) =

OT,IT
(A,B).

• If B(0) = n, then EIT
(A,B) ⊆ OT,IT

(A,B) ⊆
A ⊆ CT,IT

(A,B) ⊆ DT (A,B).
• As in classical morphology, the difference be-

tween the fuzzy dilation and the fuzzy erosion
of a gray-scale image, DT (A,B) \ EIT

(A,B),
called the fuzzy gradient operator, can be used
in edge detection.

In addition to these properties, it is worth to safe-
guard the duality between the discrete fuzzy mor-
phological operators. Therefore, discrete t-norms
satisfying IT = IT,N are needed. This property
holds for the discrete t-norms enumerated in the
following result (see [8]).

Proposition 3 The identity IT = IT,N is satisfied
in the following cases:

1. When T is the Łukasiewicz discrete t-norm,
TL(x, y) = max{0, x+ y − n}.

2. When T is the nilpotent minimum given by the
following expression

TnM (x, y) =

{

0 if x+ y ≤ n

min{x, y} otherwise

3. When T is an ordinal sum (with only one sum-
mand) of the Łukasiewicz t-norm in a square
[a, n− a]2, a ∈ L with a ≤ n− a, truncated by
0, given by the expression

TnMa(x, y) =














0 if x+ y ≤ n

x+ y − (n− a)
if x+ y > n and
a < x, y ≤ n− a

min{x, y} otherwise

3. Closed and open fuzzy objects

The idempotence properties of fuzzy opening and
closing when T is a discrete t-norm and IT its resid-
ual implicator motivate, as in the classical mathe-
matical morphology, the following definitions.

Definition 4 Let A and B be two gray-scale im-
ages. It is said that A is B-closed (resp. B-open) if
CT,IT

(A,B) = A (resp. OT,IT
(A,B) = A).

It is important to note that due to the idempo-
tence of the closing and opening, the closing is B-
closed and the opening is B-open. Almost all the
results presented in this section are analogous to the
respective in the [0, 1]-framework and the proofs are
similar and therefore, they are not included (see [12]
and [7]). The only difference worth to mention is re-
lated to the left-continuity or the right-continuity of
the conjunctor or the implicator. These properties
are necessary in the [0, 1]-framework in order to en-
sure that both operators preserve the infimum and
the supremum adequately. However, in the discrete
approach they are not necessary since we work with
maxima and minima. First of all, each B-open and
B-closed objects are the opening or closing of some
image, respectively.

Proposition 5 Let T be a discrete t-norm and IT

its residual implicator. Then it holds that A is B-
open (resp. B-closed) if, and only if, it exists a
fuzzy object F such that A = DT (F,−B) (resp. A =
EIT

(F,−B)).
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In [13], it is stated that the closing and opening op-
erators only make sense if the opening always gives
an open object, and the closing gives a closed object.
Furthermore, it is recommended that they have ex-
trema properties. The following result shows that
these requisites hold in this theory.

Proposition 6 Let T be a discrete t-norm and
IT its residual implicator. Then OT,IT

(A,B)
is the largest B-open subset greater than A and
CT,IT

(A,B) is the smallest B-closed subset that
contains A.

The intersections and unions preserve the properties
of B-open and B-closed objects, respectively.

Proposition 7 Let T be a discrete t-norm and A1

and A2 two gray-scale images. Then if A1 and A2

are both B-open (resp. B-closed) then A1 ∪ A2 is
B-open (resp. A1 ∩A2 is B-closed).

Up to now any discrete t-norm satisfies all the prop-
erties. However, if the duality between fuzzy open
and closed objects is required, we must resort to the
discrete t-norms of Proposition 3.

Proposition 8 Let T be a discrete t-norm of
Proposition 3. Then, A is B-open if, and only if,
coA is B-closed, where (coA)(x) = n−A(x).

One of the most important properties that the
morphological operators can satisfy is the so-called
generalized idempotence. This property is satis-
fied by the classical opening and closing and the
fuzzy ones when we consider continuous t-norms
and their residual implicator. Using the discrete t-
norms of Proposition 3 and some similar inequalities
to the ones in Propositions 10-13 in [7] for discrete
t-norms, the generalized idempotence of the discrete
fuzzy opening and closing is proved in a similar way
to the [0, 1] case. It is obvious that in the discrete
case, there is no restriction on the ranges of A and
B.

Proposition 9 Let T be a discrete t-norm of
those of Proposition 3 and IT its residual implica-
tor. If A is B-open, then for all fuzzy object F ,
OT,IT

(F,A) ⊆ OT,IT
(F,B) ⊆ F holds and by dual-

ity, F ⊆ CT,IT
(F,B) ⊆ CT,IT

(F,A).

Proposition 10 (Generalized idempotence) Let T
be a discrete t-norm of those of Proposition 3 and
IT its residual implicator. If A is B-open, then
for all fuzzy object F , OT,IT

(OT,IT
(F,B), A) =

OT,IT
(OT,IT

(F,A), B) = OT,IT
(F,A) holds and

dually for the closing.

Remark 11 The two previous propositions are
valid for any discrete t-norm. However, due to the
fact that duality is only satisfied when using the dis-
crete t-norms of Proposition 3, these are the only
ones that satisfy all the algebraic properties to guar-
antee a good mathematical morphology.

Figure 1: Original images used in the edge detection
test (left) and their ground-truth (right)

4. Experimental results

4.1. Edge detection

Edge detection is a fundamental pre-processing step
in applications such as image segmentation and
computer vision, and its performance is relevant for
the final results of the image processing. In partic-
ular, medical images edge detection is an indispens-
able step in medical image segmentation and 3D
reconstruction. As we have already said, the fuzzy
morphological gradient

DT (A,B) \ EIT
(A,B)

is a useful tool for edge detection. In [8], some ini-
tial results on edge detection were presented. Those
results proved that the discrete approach give very
competitive results if we compare them with those
obtained from the umbra approach, nilpotent t-
norms or uninorms. However, some quantitative
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Figure 2: From left to right, binarized edge maps obtained by nilpotent minimum, nilpotent Łukasiewicz
t-norm, umbra approach and best result of classical algorithms.

objective performance measure is needed in order
to ensure this statement instead of the simple ob-
servation of the results at naked eye. In this way,
it is necessary to have some natural images with
their ground truth (edges specification) as a dataset
from which to compare the outputs by the differ-
ent algorithms with the use of a performance mea-
sure. Thus, the images and their ground-truth from
Figure 1, belonging to the Berkeley Segmentation
Dataset ([15]) and the public dataset of the Univer-
sity of South Florida ([16]), have been used. In or-
der to quantify the similarity between the detected
edges (DE) and the ground truth (GT), we use the
widely used Pratt’s figure of merit (FoM , [17]), de-
fined as

FoM =
1

max{card{DE}, card{GT }}
·

∑

x∈DE

1

1 + ad2
,

where card is the number of edge points of the im-
age, a is a scaling constant and d is the separation

distance of an actual edge point to the ideal edge
points. FoM takes values in (0, 1], being equal to 1
if, and only if, DE coincides with GT, and is non-
symmetric with respect to DE and GT. This mea-
sure provides an overall evaluation of the quality of
a given contour map, by taking into account both
the amount of false positive (undesired presences
on the edge map), false negative (missing edges)
and shifting or deformation of a correctly detected
edges from its GT position.
These images are applied to the morphological op-
erators based on discrete t-norms established in the
previous section. In all the experimental results, we
applied the nilpotent minimum with the following
structuring element, already used in [4],

B =





219 219 219
219 255 219
219 219 219



 . (1)

The obtained results are compared through the
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Figure 3: Original images used in the edge detection
experimental results

computation of the FoM with those obtained by
the nilpotent Łukasiewicz t-norm, the umbra ap-
proach and the classical edge detection algorithms
of Canny, Sobel, Prewitt, Roberts, Laplacian of
Gaussian operator (LoG) implemented in Matlab
R2008a. For Canny, we modify σ in order to obtain
the best result. We use the counterpart of B in [0, 1]
as structuring element for the Łukasiewicz t-norm.
In order to use FoM , the images must be binarized.
In this way, the best result of non-maxima suppres-
sion ([18]) with experimentally obtained threshold,
and the Otsu thresholding method ([19]) with the
thinning algorithm implemented in Matlab are ap-
plied in the morphological approaches (the default
ones for the classical algorithms). In Figure 2, we
show the results obtained by the discrete approach,
the nilpotent Łukasiewicz t-norm, the umbra ap-
proach and the best of the classical algorithms of
the images displayed in Figure 1. In Table 1, the
values of FoM for each image and each algorithm
are presented.
Note that in all four images, FoM gives the dis-
crete approach a better mark. Although the values
are quite similar, it is important to remark that the
discrete framework could have a wide margin of im-
provement because in these experiments, we have
only used a fixed structuring element with a fixed
discrete t-norm (the nilpotent minimum). Better re-
sults could be obtained using an adequate structur-
ing element for each image, or applying one t-norm
of the family T3 of Proposition 3 that are between
the nilpotent minimum and the Łukasiewicz t-norm.
On the other hand, Canny’s method detects too
much (in particular, textures) for small values of
sigma, meanwhile the geometry of the shape of the
object is changed for greater values of sigma. Thus,

Figure 4: Detected gray-scale edges (left). Bina-
rized with a threshold (right)

FoM decreases its value in both cases. From the
edge contours detected, it is noticeably the improve-
ment achieved with the use of discrete t-norms in re-
spect to the results obtained with the only t-norm
on [0, 1] satisfying all the desirable algebraic prop-
erties, the Łukasiewicz t-norm. Note that this ap-
proach gives similar results to those of the umbra
approach.
In order to check the applications of the discrete
fuzzy mathematical morphology to medical image
analysis, we applied the edge detector to the im-
ages of Figure 3. There we have a fracture on the
escaphoid, some muscle cells, a brain tumor and
a head tomography. The results obtained are dis-
played in Figure 4. For each image, the gray-scale
edge image is obtained and then an experimentally
obtained threshold is applied in order to get the bi-
nary edges. Also these edges are refined with the
non-maxima suppression algorithm.
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Table 1: Values of FoM for the results obtained for each algorithm for each image displayed in Figure 1

Image Nilp. Min. Łukasiewicz Umbra App. Canny Sobel Prewitt Roberts LoG

Roaster 0.4978 0.2603 0.2239 0.4934 0.4820 0.4838 0.4425 0.4633
Vase 0.4529 0.0786 0.0554 0.3989 0.3898 0.3877 0.3435 0.3784
Burner 0.4843 0.2734 0.2117 0.4732 0.4688 0.4610 0.4393 0.4273
Stapler 0.3978 0.0644 0.0836 0.3693 0.3683 0.3672 0.3696 0.2831

4.2. Basic and alternate filters. Top-Hat

transformations

The discrete opening and closing previously de-
fined are the elementary morphological filters, or
basic filters. Due to the fact that the opening is
a non-extensive filter and the opening an exten-
sive one, they can be used to suppress non-desired
objects in an image. The opening of a gray-scale
image by means of an structuring element deletes
the light zones smaller than the structuring element
and darkens the light objects. On the other hand,
the closing removes the dark zones smaller than the
structuring element, enlightening the dark objects.
Thus, the size and shape of the structuring element
are key factors to remove non-desired objects of an
image taking into account that the remaining struc-
tures should be not affected.
The opening and closing are morphological trans-
formations and because of that they are useful to
compute their associated residuals, known as Top-
Hat transformations. These transformations find
structures which have been removed by the opening
and closing filters and the residual between the orig-
inal image and the filtered image increases notably
the contrast of the erased regions (see [1]). So, the
Top-Hat transformations are defined as follows

ρT,IT
(A,B) = A \OT,IT

(A,B) (Top-Hat)
ρd

T,IT
(A,B) = CT,IT

(A,B) \A (Dual Top-Hat).

The Top-Hat transformation enhances the light ob-
jects that have been removed by the opening and it
is used to extract contrasted components from the
background, while the dual Top-Hat extracts the
dark components which have been removed by the
closing. Usually, these transformations delete the
soft trends.
In Figure 5, a comparison of both transformations
for the different morphological approaches is dis-
played. We compare the results obtained by the
discrete approach with those obtained by the um-
bra approach and by the Łukasiewicz continuous t-
norm. In addition, they are compared with those
obtained using as conjunctor an idempotent uni-
norm derived of the negation N (x) = 1 − x (see
[7]). Recall that for the morphology based on con-
tinuous t-norms we use the counterpart of (1) on
[0, 1] and scaled by e = 0, 5 in the uninorm frame-
work, where e is the neutral element of the uninorm.
In the results, a threshold has been applied in or-
der to better visualize them. As we can observe,

Figure 5: Top-Hat (left) and Dual Top-Hat (right)
using from top to bottom, TnM , continuous TL, um-
bra approach and idempotent uninorm of the origi-
nal image on the first row

the discrete t-norms outperform at naked eye the
results obtained by the other morphologies.

As we have already commented, the closing and
the opening are the basic filters of the fuzzy math-
ematical morphology. The composition or combi-
nation of these operators between them is the most
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Figure 6: Original medical image (left) with salt
and pepper noise added (right) used in the noise
reduction experiments.

used way to build new filters ([1]). The initial filters
that one can build from the opening and closing are
the alternate filters. Let ξ(A,B) and ψ(A,B) be the
opening and closing, respectively, of an image A by
an structuring element B using a discrete t-norm as
conjunctor and its residual implicator. Now, we can
build four idempotent and increasing filters: ξψ, ψξ,
ψξψ and ξψξ. Due to the idempotence property, the
composition of more than three operators does not
provide us new filters.

In Figure 6, we have a chest tomography orig-
inal image and the same image with added salt
and pepper noise with parameter 0.02. The noise
was added using the standard functions of Matlab
R2008a. As in the case of edge detection, different
objective measures can be used to evaluate the per-
formance of a filter. Among them, we will use the
MSE, the SNR, the SSIM (see [20]) and the fuzzy
DI-subsethood measure EQσDI (see [14]). Let O1

and F2 be two images of dimensions M × N . We
suppose that O1 is the original noise-free image and
F2 is the restored image for which some filter has
been applied. The EQσDI values are defined as fol-
lows:

EQσDI(F2, O1) =
1

MN

M
∑

i=1

N
∑

j=1

(1−|O1(i, j)−F2(i, j)|).

Smaller values of MSE and larger values of SNR,
SSIM and EQσDI (0 ≤ SSIM,EQσDI ≤ 1) are
indicators of better capabilities for noise reduction
and image recovery.
Figure 7 shows the effect of the choice of different
discrete t-norms in the results as well as how the
measures are improved using a more adequate struc-
turing element for this type of noise as B2 (see Table
2), where

B2 =





0 255 0
255 255 255
0 255 0



 .

Note that all the measures obtained with B2 are
better than the ones obtained with B. In addition,
there is no consensus between the measures to the
question of which t-norm performs better when us-
ing B (EQσDI gives to Łukasiewicz t-norm the bet-
ter mark while the others give it to TnM25). For bi-
nary structuring elements as B2 all discrete t-norms
give the same result.

Figure 7: ψξψ filter using in descending order dis-
crete TL and TnM with B (left) and B2 (right)

Table 2: Values of performance for the results ob-
tained for each discrete t-norm in Figure 7

t-norm S.E. MSE SNR SSIM EQσDI

TL
B 156.291 16.6852 0.988369 0.9843
B2 28.8755 24.0193 0.997982 0.9941

TnM
B 134.88 17.3251 0.990033 0.9829
B2 28.8755 24.0193 0.997982 0.9941

TnM25

B 133.529 17.3688 0.990093 0.9840
B2 28.8755 24.0193 0.997982 0.9941

Table 3 shows the values of these measures in
function of the amount of noise added to the origi-
nal image in Figure 6. Notice that, when the noise
increases, the values of the measures remain accept-
able and SSIM and EQσDI values are still higher
than 0.99.

5. Conclusions and future work

In this work, it has been proved that the fuzzy
mathematical morphology based on discrete t-
norms satisfies all the algebraic properties to be
a “good” mathematical morphology, including all
the properties that are satisfied for the morphol-
ogy based on nilpotent t-norms without restrictions
on the continuity of the conjunctors. Moreover, an
edge detection algorithm based on the fuzzy mor-
phology based on discrete t-norms, derived as a
residual operator, has been presented. To evaluate
the performance of the edge detectors, comparison
experiments with other known approaches were car-
ried out using FoM . The results indicate that this
is a good starting point to develop more complex
algorithms, such as edge detectors based on direc-
tional structuring elements or multi-scale edge de-
tectors. In addition, initial experimental results on
the Top-Hat transformations show notable results
compared with existing fuzzy mathematical mor-
phologies. Also, we have shown how the alternate
filters using discrete t-norms can remove the noise
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Table 3: Values of measures for filtered images with
TnM and B2 changing the amount of noise added.

Noise MSE SNR SSIM EQσDI

0.02 24.0193 24.372 0.997982 0.9941
0.04 41.1312 22.4828 0.997130 0.9933
0.06 51.9862 21.4657 0.996373 0.9926
0.08 68.8897 20.2430 0.995200 0.9919
0.1 98.0487 18.7101 0.993166 0.9907

of an image preserving their structure. Moreover,
when we use an structuring element better adapted
to the noised image we improve the selected objec-
tive measures. The future work will consist on the
construction of new filters and on the selection of
the size, shape, direction of the structuring element
adapted to the noised image and how we can im-
prove performance. Other type of noise should be
considered.
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