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Abstract

In the paper we study a method extending fuzzy
measures on the set N = {1,...,n} to n-ary aggre-
gation functions on the interval [0, 1]. The method
is based on a fixed suitable n-ary aggregation func-
tion and the Mobius transform of the considered
fuzzy measure. This approach generalizes the well-
known Lovéasz and Owen extensions of fuzzy mea-
sures. We focus our attention on the special class
of n-dimensional Archimedean quasi-copulas and
prove characterization of all suitable n-dimensional
Archimedean quasi-copulas. We also present a spe-
cial universal extension method based on a suitable
associative binary aggregation function. Several ex-
amples are included.

Keywords: Aggregation function, Choquet inte-
gral, copula, fuzzy measure, n-monotone function,
quasi-copula, Archimedean quasi-copula

1. Introduction

In [13] we have introduced a method extending any
fuzzy measure on the set N = {1,...,n} to an n-ary
aggregation function by means of a (fixed) suitable
aggregation function and the Mé&bius transform of
the considered fuzzy measure. Recall that a fuzzy

measure m on the set N = {1,...,n} is a non-
decreasing set function m: 2 — [0,1] with the
properties m()) = 0 and m(N) = 1. An n-ary
aggregation function (n € N, n > 2) on the in-

terval [0,1] is a function A: [0,1]" — [0,1] which
is non-decreasing in each variable and satisfies the
boundary conditions A(0) = 0 and A(1) = 1. We
briefly outline the proposed method.

To any fuzzy measure m on N and a given fixed n-
ary aggregation function A we assign the function
Fpy.4:10,1] — R defined by

Fa(zy,. ) = > My(I) A(xr), (1)

ICN
where M,, = 2V = R, M, =
S (=1)\Klm(K), is the Mobius transform

KCI

of m and x; = (uq,...,uy,) is the n-tuple assigned
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to an input n-tuple x = (x1,...,2,) € [0,1]" and a

subset I of the set N by

J— xi
ui =9

We say that the function F), 4 extends the fuzzy
measure m if Fp, = m. However, in general,

ifi el
otherwise.

’A|{0,1}n
the functions F), 4 defined by (1) are neither aggre-

gation functions (monotonicity can fail) nor exten-
sions of m. Denote the set of all n-ary aggregation
functions by A(,) and the set of all fuzzy measures
on N by M. In [13] we have completely char-
acterized all aggregation functions which are suit-
able for this construction, i.e., all A € A(,) which
together with any fuzzy measure m € M, give
via (1) an aggregation function F,, 4 extending m.
Such aggregation functions A € A(,) are briefly
called suitable aggregation functions.

For example, all n-dimensional copulas are suitable
aggregation functions. On the other hand, not all
n-dimensional quasi-copulas possess this property.
In this contribution we focus our attention on the
special class of n-dimensional Archimedean quasi-
copulas and prove characterization of all suitable
n-dimensional Archimedean quasi-copulas.

Our approach was motivated by the Lovasz and
Owen extensions of fuzzy measures, [14, 21]. If A =
Min, where Min(z1,...,2,) = min{z1,...,z,},
then the expression on the right-hand side of for-
mula (1) coincides with the the expression

Z M, (I) min a;,

iel
ICN

which is equal to the Choquet integral C' — [ xdm,
N
[5], and also to the Lovdsz extension of the fuzzy

measure m, [15]. Similarly, for A = II, where
(z1,...,2,) = x1---x,, the expression on the
right-hand side of formula (1) coincides with the

the expression
> Mu(D]] s,
ICN i€l

which is known as the Owen extension of m. Note
that the Lovasz and Owen extensions can be ap-
plied universally, for any arity n, while the proposed



method produces (if A is a suitable n-ary aggrega-
tion function) n-ary aggregation functions extend-
ing m. In the last section a special universal exten-
sion method based on a suitable associative binary
aggregation function is proposed. The method is
illustrated by examples.

2. Characterization of suitable aggregation
functions

As mentioned above, in [13] we have characterized
all suitable aggregation functions A. For complete-
ness of information let us recall two main results.
The first of them characterizes all aggregation func-
tions A € A, for which F, 4 is an extension of m
for each m € M,,.

Theorem 1 Let A € A(y. The function Fy, o de-
fined by (1) is for each m € M,y an extension of
m if and only if A is an aggregation function with
zero annihilator.

Recall that 0 is the annihilator of A if
A(zq,...,z,) = 0 whenever 0 € {x1,...,2,}.
In general, extensions Fj;, 4 need not be monotone.
Before giving conditions ensuring the monotonicity
of F,, 4, we introduce some notations.
Fix i € N. Let u, v be any elements in [0, 1], such
that

u = (Il, ..

~7Ii717xi7xi+17"'7xn)a

/
vV = (:I:la"wxi—laxmxi-‘rla"'axn)a

with 2} > z;. For any subset E C N \ {i} denote
by uf and v n-tuples with coordinates

uF ;P =al,
uf = wy; wP =1, ifj¢ EU{i},
Uf = 0 vf = z;, otherwise. (2)

Finally, recall that for an n-ary aggregation function
A, the A-volume of an n-box [u, v] in [0, 1], [u,v] =
[u1,v1] X ... X [tn, vy], is defined by

Va (fu,v]) = 3 (-1)*© A(e),

where the sum is taken over all vertices ¢ =
(c1,...,cpn) of the n-box [u, v] (i.e., each ¢y is equal
to either uy, or vg), and a(c) is the number of indices
k’'s such that ¢, = uy.

Theorem 2 Let A € A, be an aggregation func-
tion with zero annihilator. The function Fy, a
is for each m € M,) non-decreasing in the ith
variable (i = 1,...,n) if and only if for all n-
tuples u = (T1,...,Ti—1,Ti, Tigl,---,Ln), V =
(T1y ey Tim1, X Tig1,y - oy ) in [0,1)" with x} >
x;, it holds that for each E C N \ {i}, A-
volumes Va([uf,vE]), where the end-points of n-
bozes [uf,vE] are defined by (2), are non-negative.

29

For example, by Theorem 2, for a binary aggre-
gation function A with zero annihilator the func-
tion Fj, 4 is non-decreasing for each m € M(g)
if and only if A-volumes of all possible 2-boxes
[(x1,22), (z],1)] and [(x1,22), (1,25)] in [0, 1]? with
x} > x1 and xh > x9, are non-negative. Note that
A-volumes of 2-boxes of the type [(0,z2), (z1, 25)]
and [(z1,0), (2}, z2)], which in binary case are also
obtained from conditions (2), are trivially non-
negative because of the monotonicity of A.

From Theorems 1 and 2 we obtain the following
characterization.

Corollary 1 An n-ary aggregation function A is a
suitable aggregation function if and only if it has
zero annihilator and satisfies the conditions for the
monotonicity of Fim 4 given in Theorem 2 for each
variable.

For example, all n-copulas [24, 19] are suitable
aggregation functions for our construction. Recall
that n-copulas are defined as functions C': [0, 1]™ —
[0, 1] satisfying

(C1) the boundary conditions:

if 0 € {z1,...,zn} then C(x1,...,2,) =0,
c(,...,1,z;,1,...,1) = z; for each j =
1,...,n and each z; € [0,1],

(C2) the n-increasing property:
Ve (Ju, v]) > 0 for each n-box [u, v] in [0, 1]™.

It is easy to see that aggregation functions described
in the following proposition also possess zero anni-
hilator and the A-volumes of all n-boxes in [0, 1]™
are non-negative.

Proposition 1 Let C be an n-copula, f;:[0,1] —
[0,1], non-decreasing functions such that f;(0) =
0, fi(l) = 1,4 = 1,...,n. Then the function
A:[0,1]™ — [0,1] defined by

A(l‘l,...7$n) = C(fl(xl),

s foln)) s

is a suitable n-ary aggregation function.

Not only copulas and distorted copulas from
Proposition 1 are suitable aggregation functions.

Example 1 Consider the function A: [0,1]® —
[0, 1], given by

A(z,y,2) = zyzmin(l,z + y + 2).

The function A is a ternary aggregation func-
tion with zero annihilator. It is not a copula,
because, e.g., for u = (0.3,0.3,0.3) and v =
(0.35,0.35,0.35) the A-volume of the corresponding
3-box is V4([u,v]) = —0.0019 < 0. After quite te-
dious computations one obtains that A is a suitable
aggregation function. This example can be general-
ized for any n > 3.



The aggregation function A from the previous
example is a 3-quasi-copula. In general, n-quasi-
copulas are functions @: [0,1]™ — [0, 1], which sat-
isfy the same boundary conditions (C1) as n-copulas
do and which are non-decreasing (in each variable)
and 1-Lipschitz, see [20, 4].

In contrast to n-copulas, not all n-quasi-copulas are
suitable aggregation functions.

Example 2 The function W: [0,1]3 — [0,1] given
by W(z,y,z) = max{0,x + y + z — 2} is a proper
3-quasi-copula. As the W-volume

Vir ([(0.5,0.5,0.5), (1,1,1)]) = —0.5 < 0,

W is not a suitable aggregation function, because
Theorem 2 requires the W-volume of the 3-box
[(0.5,0.5,0.5), (1,1,1)] to be non-negative.

If we denote by C,) the set of all n-copulas, by
Q(n) the set of all n-quasi-copulas and by F(,) the
set of all m-ary aggregation functions suitable for
our construction, then, supported by the previous
results, we can write Cy) ; Fny and Q) g Fn)-

3. Special sets of suitable aggregation
functions

In this section we focus our attention on the set
of Archimedean n-quasi-copulas. Let us introduce
several preparatory notions.

Definition 1 An n-quasi-copula @Q: [0,1]™ — [0, 1]
given by
P (@) + -

Q(z1,...,xn) = + o(xn)),

where @: [0,1] — [0,00] is a continuous strictly de-
creasing convez function with ¢(1) = 0 and pseudo-
inverse @~V is called an Archimedean n-quasi-
copula.

The function ¢ is called an additive generator of Q.
Its pseudo-inverse (= : [0, 00] — [0,1] is defined
by

¢ () = ¢~ (min(p(0),u)).

For n-copulas we have the following result, see [17].

Theorem 3 A function C: [0,1]™ — [0, 1] given by

Clar,....an) = o (p(x1) + - + @(an)),

where @: [0,1] = [0,00] is a continuous strictly de-

creasing convez function with ¢(1) = 0 and pseudo-
(=1

inverse @\~ is an n-copula if and only if there
exists an n-monotone function f: [—o0o,0] — [0,1]
such that

oD (—z) = f(a),

x € [—00,0].

Note that a real function f is called n-monotone on
an interval I if all its differences of order 1,...,n
are non-negative. This means that f is n-monotone
if and only if for each k € {1,...,n}, each z € I

and all €1,...€x > 0such that x +e;+---+e €1
MV COMISTET
I1S{1,..., el

compare with [2, 16, 11]. Now, we can formulate
the result.

Theorem 4 Let (Q be an Archimedean n-quasi-
copula. Then the following is equivalent

(i) Q s a suitable aggregation function.
(ii) @ is an n-copula.

Proof. (ii) = (i). The claim is evident.

(i) = (ii). Let k € {1,...,n}. Let x1,..., 2% and

x} be any elements in [0, 1] such that z} > ;. Con-

sider the n-box [z1, 2}] X [z2, 1] X ... X [x, 1] x [0, 1] x
x [0,1]. By Theorem 2 it holds

0] % [2),1,...,1]) > 0.
(3)

On the other hand, as 0 is the annihilator of @ and
Q is generated by ¢ (¢(1) = 0), we obtain

0] x [2,1,...,1])

Vo ([x1, 22, ..., 2,0, ...

Vo ([x1, 2, ..., 2,0, . ..

= > o (Z () +<p(w’1)1zc(1)> (-
*}

iel
(4)
If we denote

a=p(@)), b =p()— ),
by = @(x2),..., bk = v(xk),

then from (4) and (3) we obtain that for each k < n
it holds

Z oY (a—I—Zb) DI >0, (5)
k}

i€l

For 2 € [~ 00,0] define f(z) = ¢~V (—z) and de-
k

note u = — <a+ > bi> . Then
i=1

p—Y (CH-Zbi) = f (—a— Z@)
iel iel
f <U +) bi) (=
iel
Finally, from (5) and (6) it follows that

> f(u—l—Zb) DR >0, (7)

IC{1,...,k} i€l

(6)

which means that f is n-monotone and by Theorem
3, @ is an n-copula.
O



Remark 1 Observe that based on the results pre-
sented in [25], Theorem 4 can be generalized to the
case of associative n-quasi-copulas. The associativi-
ty of n-ary functions in the Post sense [22] is consid-
ered, i.e., the associativity of an n-ary quasi-copula
Q@ means that for all z1,...,z2,-1 € [0, 1] it holds

Q (Q(xla cee 7(En),$n+1, .. '7:1;211—1)
Q(xl,Q(xg, e ,I’n+1), .. .,Ignfl) = ...
= Q(xl,...,xn,hQ({En,...,I2n71>.

An associative n-quasi-copula is a suitable aggrega-
tion function if and only if it is an ordinal sum of
n-ary Archimedean copulas. For the later concept
see [18].

4. A universal extending method

As mentioned in Introduction, the Lovasz and
Owen extensions can be applied universally, inde-
pendently of the arity n. To obtain another uni-
versal extension method, consider a suitable binary
aggregation function A: [0,1]?> — [0,1]. In [13] we
proved the following characterization of suitable bi-
nary aggregation functions. Note that Example 2
shows that this characterization is valid for binary
case only.

Theorem 5 Let A € Awy. The function Fy, a
given by (1) is for each m € M) an aggrega-
tion function extending m if and only if for each
(z,y) €[0,1]* it holds

Alz,y) = Q(f(2),9(y)), (8)

where @ is a 2-quasi-copula and f, g are non-
decreasing [0,1] — [0,1] functions with f(0) =
9(0) =0, f(1) =g(1) = 1.

Suppose that the considered suitable binary ag-
gregation function A is associative. The associativ-
ity of A means that for all z, y, z € [0, 1] it holds
A(A(x,y),2z) = A(z, Ay, 2)), ie.,

Q(f(Q(f(2),9(y)9(2))

=Q(f(2),9(Q(f(y),9(2))))-

Putting y = z = 1 one obtains f(x) = f(f(z)).
Similarly, the equality g(z) = g¢(g(z)) can be
proved. To obtain a continuous extension, the con-
tinuity of f and g is required, and so the only pos-
sibility for f and g is the identity function. Thus
A = @, where @Q is an associative 2-quasi-copula.
Its n-ary extension is a suitable aggregation func-
tion if and only if it is an n-copula. Following the
results in [18] we can conclude:

Theorem 6 An associative binary aggregation

function A:[0,1]* — [0,1] generates a continuous

extended aggregation function A: J [0,1]" — [0,1]
neN

such that for each n > 2, Z|[071]n is a suitable n-ary
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aggregation function, if and only if A is an ordi-
nal sum of Archimedean copulas, A = ({ay, bx, Ck)),
where each Cy is generated by an additive gener-
ator ¢i: [0,1] — [0,00], such that the function
fr: [=00,0] = [0,1], given by fu(z) = ¢f V(~2),
is totally monotone, i. e., fi has all derivatives on
| — 00, 0] which are non-negative.

Example 3 (i) Let A = T be the Hamacher
product given by A(z,y) = I+Z2w A is an
Archimedean copula generated by the additive
(strict) generator ¢: p(z) = L — 1. The function
f(z) = ¢ (—2) = &, 2 € [~00,0], has deriva-
tives f(")(z) = #, n € N, which are non-
negative. The function

-1
1
A(xy,...,zp) = <Z;—n+1>

i=1

is a suitable n-ary aggregation function and more-
over, for any n.

(i) Let A be the copula ordinal sum, A =
((0,1/2,1I)), i.e.,

_ [ 2y (z,y) € [0,1/2],2
Alz,9) _{ min{z,y} otherwise.
The product copula II is generated by the additive
generator ¢(x) = —logax. For the function f(z) =
o H(—x) =%, x € [~00,0], all derivatives are non-
negative. The function

A(z1,. .., zp)
n
_ 3 ‘Hlmin{2:17i,1} if min{zy,... 20} < 3,
i=
min{zy,...,2,} otherwise,

is a suitable aggregation function for any n.
Observe that the extension of fuzzy measures based
on A can be seen as a mixture of the Lovisz and
Owen extensions in the following sense: if x €
[1/2,1]™ then Fy, a(x) = Fu min(X), €., Fipoa is
just the Lovasz extension, and if x € [0,1/2]™ then
Foa(x) = %Fmﬁn(2x), ie., F 4 is a linear trans-
form of the Owen extension.
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