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Abstract

In this paper we analyze two classes of functions
proposed in the literature to simultaneously gener-
alize weighted means and OWA operators: WOWA
operators and HWA operators. Since, in some cases,
the results provided by these operators may be ques-
tionable, we introduce functions that also generalize
both operators and characterize those that satisfy
a condition imposed to maintain the relationship
among the weights.

Keywords: Weighted means, OWA operators,
WOWA operators, HWA operators.

1. Introducción

Weighted means and ordered weighted averaging
(OWA) operators (Yager [12]) are well-known func-
tions widely used in the aggregation processes. Al-
though both are defined through a weighting vec-
tor, their behavior is quite different: The weighted
means allow to weight each information source in
relation to their reliability while OWA operators al-
low to weight the values according to their ordering.

The need to combine both functions has been re-
ported by several authors (see, among others, To-
rra [6] and Torra and Narukawa [9]). For this rea-
son, two classes of functions have appeared in the
literature with the intent of simultaneously gener-
alizing weighted means and OWA operators: the
weighted OWA (WOWA) operator (Torra [6]) and
the hybrid weighted averaging (HWA) operator (Xu
and Da [11]).

The aim of this paper is to analyze WOWA oper-
ators and HWA operators. Moreover, since, in some
cases, the results provided by these operators may
be questionable, we propose to use functions that
maintain the relationship among the weights of a
weighting vector when the non-zero components of
the other weighting vector are equal. In this way, we
obtain a class of functions that have been previously
introduced by Engemann et al. [2] in a framework
of decision making under risk and uncertainty.

The paper is organized as follows. In Section 2
we introduce weighted means, OWA operators and
the two classes of functions proposed in the liter-
ature to simultaneously generalize weighted means
and OWA operators: WOWA operators and HWA
operators. Section 3 shows some drawbacks of both
generalizations. In Section 4 we propose a condition

to maintain the relationship among the weights and
characterize the functions that satisfy this condi-
tion. The paper concludes in Section 5.

2. Preliminares

Throughout the paper we will use the following no-
tation: vectors will be denoted in bold; η will de-
note the vector (1/n, . . . , 1/n); x ≥ y will mean
xi ≥ yi for all i ∈ {1, . . . , n}; given σ a per-
mutation of {1, . . . , n}, xσ will denote the vector
(xσ(1), . . . , xσ(n)).

In the following definition we present some well-
known properties usually demanded to the functions
used in the aggregation processes.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if for all x ∈ R
n and for all

permutation σ of {1, . . . , n} the following holds:

F (xσ) = F (x).

2. F is monotonic if for all x, y ∈ R
n the follow-

ing holds:

x ≥ y ⇒ F (x) ≥ F (y).

3. F is idempotent if for all x ∈ R the following
holds:

F (x, . . . , x) = x.

4. F is compensative (also called internal) if for
all x ∈ R

n the following holds:

min(x) ≤ F (x) ≤ max(x).

5. F is homogeneous of degree 1 if for all x ∈ R
n

and for all λ > 0 the following holds:

F (λx) = λF (x).

2.1. Weighted means and OWA operators

Weighted means and OWA operators are defined by
vectors with non-negative components whose sum is
1.

Definition 2. A vector µ ∈ R
n is a weighting vec-

tor if µ ∈ [0, 1]n and
n
∑

i=1

µi = 1.
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Definition 3. Let p be a weighting vector. The
weighted mean associated with p is the function
Fp : Rn −→ R given by

Fp(x1, . . . , xn) =

n
∑

i=1

pixi.

The weighted means are monotonic, idempotent,
compensative and homogeneous of degree 1 func-
tions.

Yager [12] introduced OWA operators as a tool
for aggregation procedures in multicriteria decision
making. An OWA operator is similar to a weighted
mean, but with the values of the variables previ-
ously ordered in a decreasing way. Thus, contrary
to the weighted means, the weights are not associ-
ated with concrete variables. Consequently, OWA
operators satisfy symmetry. Moreover, OWA oper-
ators also exhibit some other interesting properties
such as monotonicity, idempotence, compensative-
ness and homogeneity of degree 1.

Definition 4. Let w be a weighting vector. The
OWA operator associated with w is the function
F w : Rn −→ R given by

F w(x1, . . . , xn) =

n
∑

i=1

wixσ(i),

where σ is a permutation of {1, . . . , n} such that
xσ(1) ≥ · · · ≥ xσ(n).

One of the most important issues in the theory of
OWA operators is the determination of associated
weights (see, for instance, Xu [10] and Fullér [3]).
In [13], Yager relates the OWA operators weights
to quantifiers.

Definition 5. A function Q : [0, 1] −→ [0, 1] is a
quantifier if it satisfies the following properties:

1. Q(0) = 0.
2. Q(1) = 1.
3. x > y ⇒ Q(x) ≥ Q(y); i.e., it is a non-

decreasing function.

Given a quantifier Q, the OWA operator weights
can be obtained from the following expression
(Yager [13]):

wi = Q

(

i

n

)

− Q

(

i − 1

n

)

, i = 1, . . . , n.

From this relation follows:

Q

(

i

n

)

=

i
∑

j=1

wj , i = 1, . . . , n;

i.e., the same weighting vector can be obtained
through any quantifier interpolating the points
(

i/n,
i

∑

j=1

wj

)

, i = 1, . . . , n.

2.2. Generalizations of the weighted means

and OWA operators

Two classes of functions have been proposed in
the literature to simultaneously generalize weighted
means and OWA operators: WOWA operators and
HWA operators.

WOWA operators were introduced by Torra [6] in
order to consider situations where both the impor-
tance of information sources and the importance of
values had to be taken into account.

Definition 6. Let p and w be two weighting vec-
tors. The WOWA operator associated with p and w

is the function W w

p
: Rn −→ R given by

W w

p
(x1, . . . , xn) =

n
∑

i=1

µixσ(i),

where σ is a permutation of {1, . . . , n} such that
xσ(1) ≥ · · · ≥ xσ(n) and the weight µi is defined as

µi = f





i
∑

j=1

pσ(j)



 − f





i−1
∑

j=1

pσ(j)



 ,

where f is a non-decreasing function that inter-

polates the points

(

i/n,
i

∑

j=1

wj

)

together with the

point (0, 0). Moreover, f is the identity when the
points can be interpolated in this way.

Different interpolation functions provide different
results (on this, see Torra and Lv [8]). On the other
hand, it is worth noting that any quantifier gener-
ating the weighting vector w satisfies the required
properties of f given in the previous definition (un-
der the assumption that the quantifier is the identity
when w = η). For this reason, it is possible to give
an alternative definition of WOWA operators using
quantifiers (Torra and Godo [7]).

Definition 7. Let p be a weighting vector and let
Q be a quantifier. The WOWA operator associated
with p and Q is the function W Q

p
: Rn −→ R given

by

W Q
p

(x1, . . . , xn) =

n
∑

i=1

µixσ(i),

where σ is a permutation of {1, . . . , n} such that
xσ(1) ≥ · · · ≥ xσ(n) and the weight µi is defined as

µi = Q





i
∑

j=1

pσ(j)



 − Q





i−1
∑

j=1

pσ(j)



 .

WOWA operators are monotonic, idempotent,
compensative and homogeneous of degree 1 func-
tions. Moreover, W η

p
= Fp and W w

η
= F w (To-

rra [6]).
The second class of function that simultaneously

generalize weighted means and OWA operators were
introduced by Xu and Da [11].
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Definition 8. Let p and w be two weighting vec-
tors. The HWA operator associated with p and w

is the function Hw

p
: Rn −→ R given by

Hw

p
(x1, . . . , xn) =

n
∑

i=1

wi(npσ(i)xσ(i)),

where σ is a permutation of {1, . . . , n} such that
pσ(1)xσ(1) ≥ · · · ≥ pσ(n)xσ(n).

As we can see in the previous definition, the HWA
operator associated with p and w is the composition
of the OWA operator associated with w, F w, with
the function H : Rn −→ R

n defined by

H(x1, . . . , xn) = (np1x1, . . . , npnxn).

It is easy to check that Hη

p
= Fp and Hw

η
= F w

(Xu and Da [11]). Moreover, it is also straightfor-
ward to check that HWA operators are monotonic
and homogeneous of degree 1 functions.

3. Analysis of WOWA operators and HWA

operators

In this section we illustrate with examples some
questionable behaviors of WOWA operators and
HWA operators.

3.1. WOWA operators

As we have seen in the previous section, WOWA
operators satisfy many interesting properties. How-
ever, they do not always provide the expected result
as we show in the following examples.

Example 1. Suppose we have five sensors to
measure a certain physical property. The sensors
are of different quality and precision, so they are
weighted according to the weighting vector p =
(0.3, 0.2, 0.2, 0.2, 0.1). Moreover, to prevent a faulty
sensor alter the measurement, we take the weighting
vector w = (0, 1/3, 1/3, 1/3, 0); thus, the maximum
and minimum values are not considered.

Given w = (0, 1/3, 1/3, 1/3, 0), we have to choose
a quantifier interpolating the points (0, 0), (0.2, 0),
(0.4, 1/3), (0.6, 2/3), (0.8, 1) and (1, 1). We consider
the quantifier given by

Q(x) =











0 if x ≤ 0.2,
5
3 x − 1

3 if 0.2 < x < 0.8,

1 if x ≥ 0.8,

which is depicted in Figure 1.
Suppose the values obtained by the sensors are

x = (10, 4, 5, 6, 3). If σ is a permutation ordering
these values in a decrease way, then, in this case,
pσ = p = (0.3, 0.2, 0.2, 0.2, 0.1). The weighting vec-
tor µ is

µ1 = Q(0.3) − Q(0) = 1/6,
µ2 = Q(0.5) − Q(0.3) = 1/3,
µ3 = Q(0.7) − Q(0.5) = 1/3,
µ4 = Q(0.9) − Q(0.7) = 1/6,
µ5 = Q(1) − Q(0.8) = 0,

0.2 0.4 0.6 0.8 1

1
3

2
3

1
Q(x)

Figure 1: Quantifier associated to the weighting
vector w = (0, 1/3, 1/3, 1/3, 0).

and the value returned by the WOWA operator is

W w

p
(10, 4, 5, 6, 3) =

10

6
+ 2 +

5

3
+

4

6
= 6.

However, our intention is not to consider the max-
imum and minimum values and only take into ac-
count the values 4, 5 and 6; which have been pro-
vided by sensors with the same weight. Therefore,
it seems logical to make the average of these values,
in which case we would get 5 as final value.

Example 2. Consider again the situation of the
previous example and suppose now that p =
(0.4, 0.2, 0.2, 0.1, 0.1) and x = (10, 3, 5, 6, 7). If
σ is a permutation ordering these values from
the largest to the smallest element, then pσ =
(0.4, 0.1, 0.1, 0.2, 0.2). The weighting vector µ is

µ1 = Q(0.4) − Q(0) = 1/3,
µ2 = Q(0.5) − Q(0.4) = 1/6,
µ3 = Q(0.6) − Q(0.5) = 1/6,
µ4 = Q(0.8) − Q(0.6) = 1/3,
µ5 = Q(1) − Q(0.8) = 0,

and the value returned by the WOWA operator is

W w

p
(10, 3, 5, 6, 7) =

10

3
+

7

6
+ 1 +

5

3
=

43

6
.

As in the previous example, we do not want to
consider the maximum and minimum values and to
aggregate the remaining ones, in this case the values
5, 6, and 7. However, the WOWA operator returns
a value greater than the three aggregate values be-
cause it weights the maximum (10 in this case) with
1/3.

It is important to emphasize that when p =
(0.4, 0.2, 0.2, 0.1, 0.1) and w = (0, 1/3, 1/3, 1/3, 0)
(and regardless of the quantifier used), the weight
assigned by the WOWA operator to the first sensor
is 1/3 when its value is the maximum or the mini-
mum. Therefore, the intended purpose of using the
weighting vector w (not considering the maximum
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and minimum values) is not reached. On the other
hand, the weight assigned by the WOWA operator
to the first sensor can be up to 2/3 (for instance,
when its value is the median of the values). In this
case, it may be that three values given by the sen-
sors are not taken into account (for instance, when
pσ = (0.1, 0.1, 0.4, 0.2, 0.2)).

On the other hand, there are other interesting
properties that the WOWA operator does not sat-
isfy:

1. The value returned by the WOWA operator
does not always lie between the values returned
by the weighted mean and the OWA operator:

F w(10, 3, 5, 6, 7) =
7

3
+ 2 +

5

3
= 6,

Fp(10, 3, 5, 6, 7) = 4 + 0.6 + 1 + 0.6 + 0.7

= 6.9,

but W w

p
(10, 3, 5, 6, 7) = 43/6.

2. The value returned by the WOWA operator
does not always coincide with the values re-
turned by the weighted mean and the OWA
operator when both are equal:

F w(8, 2.5, 5, 6, 7) =
7

3
+ 2 +

5

3
= 6,

Fp(8, 2.5, 5, 6, 7) = 3.2 + 0.5 + 1 + 0.6 + 0.7

= 6,

but

W w

p
(8, 2.5, 5, 6, 7) =

8

3
+

7

6
+ 1 +

5

3
= 6.5.

3.2. HWA operators

Although HWA operators are monotonic and ho-
mogeneous of degree 1 functions, they are neither
idempotent nor compensative, as we show in the
following example.

Example 3. Consider again the situation of Ex-
ample 2, where p = (0.4, 0.2, 0.2, 0.1, 0.1) and w =
(0, 1/3, 1/3, 1/3, 0). If 10 is the value returned by all
sensors, then the vector of components npσ(i)xσ(i)

is (20, 10, 10, 5, 5) and

Hw

p
(10, 10, 10, 10, 10) =

25

3
6= 10;

that is, Hw

p
is not idempotent. On the other

hand, if the values obtained by the sensors are
x = (10, 5, 5, 8, 6), then the vector of components
npσ(i)xσ(i) is (20, 5, 5, 4, 3), and

Hw

p
(10, 5, 5, 8, 6) =

14

3
< min{10, 5, 5, 8, 6};

i.e., Hw

p
is not compensative.

4. Choosing functions to maintain the

relationship among the weights

As we have seen in the previous section, the HWA
operators are neither idempotent nor compensative.
For their part, WOWA operators have good prop-
erties but they do not always return the expected
value. If we consider again Example 2, we want
to aggregate the values 5, 6, and 7, which are
the values given by the sensors with weights 0.2,
0.1, and 0.1, respectively. One possibility is to
weight these values by means of the weighting vector
(0.5, 0.25, 0.25). In this way, it is possible to main-
tain the relationship among the initial weights. The
returned value in this case is 23/4.

According to the above remarks, we look for a
function F w

p
: Rn −→ R given by

F w

p
(x1, . . . , xn) =

n
∑

i=1

ρixσ(i),

where σ is a permutation of {1, . . . , n} such that
xσ(1) ≥ · · · ≥ xσ(n) and the weight ρi is defined as

ρi =
f(wi, pσ(i))

n
∑

j=1

f(wj , pσ(j))

,

where f : [0, 1]2 −→ [0, 1]. In this way the weights
ρi depend on the weights wi and pσ(i).

In order to maintaining the relationship among
the weights of a vector (p or w) when the non-
zero components of the other vector are equal, it
is necessary that f satisfies the following condition:

f(tx, y) = f(x, ty) = tf(x, y),

for all x, y ∈ [0, 1] and t ∈ [0, ∞) with tx, ty ∈ [0, 1].
In the next proposition we characterize the func-
tions that satisfy this condition.

Proposition 1. Let f : [0, 1]2 −→ [0, 1] be a func-
tion such that

f(tx, y) = f(x, ty) = tf(x, y)

for all x, y ∈ [0, 1] and t ∈ [0, ∞) with tx, ty ∈ [0, 1].
Then f(x, y) = cxy, where c ∈ [0, 1].

Proof:

Given x, y ∈ [0, 1],

f(x, y) =f(x · 1, y · 1) = xf(1, y · 1)

=xyf(1, 1).

If f(x, y) = cxy, with c ∈ [0, 1], then

ρi =
wipσ(i)

n
∑

j=1

wjpσ(j)

;
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that is,

F w

p
(x1, . . . , xn) =

n
∑

i=1

wipσ(i)xσ(i)

n
∑

j=1

wjpσ(j)

.

It is worth noting that this function has been used
by Engemann et al. [2] in a framework of decision
making under risk and uncertainty (in this case, p

is the vector of probabilities of the states of nature).
In order to ensure that F w

p
is well defined,

we need that wjpσ(j) be non-zero for some j ∈
{1, . . . , n}. This requirement is guaranteed by any
of the following conditions:

1. The number of non-zero weights in each vector
p and w is greater than n/2.

2. All the components of p are non-zero.

It is important to point out that the last condi-
tion can be assumed without loss of generality (if
any component of p is zero, this means that the
weight of this information source is null; so it is not
necessary to take it into account).

In addition to this, F w

p
has another problem in

your definition: sometimes, the vector pσ is not
unique and F w

p
may return different values accord-

ing to the vector pσ used. This fact is illustrated in
the following example.

Example 4. Consider p = (0.5, 0.2, 0.3), w =
(0.3, 0.4, 0.3), and x = (7, 5, 7). When x is or-
dered from greatest to least, then we have the vector
(7, 7, 5). In this vector, the first component can be
associated to the weight 0.5 or 0.3. In the first case,
the components of the weighting vector ρ are

ρ1 =
5

11
, ρ2 =

4

11
, ρ3 =

2

11
,

and

F w

p
(7, 5, 7) =

35

11
+

28

11
+

10

11
=

73

11
.

In the second case, the components of the weighting
vector ρ are

ρ1 =
9

35
, ρ2 =

4

7
, ρ3 =

6

35
,

and

F w

p
(7, 5, 7) =

9

5
+ 4 +

6

7
=

233

35
.

A similar problem arises in the IOWA operators,
introduced by Yager and Filev [14]. The solution
proposed by these authors, applied to our frame-
work, is to replace the weights associated to equal
values by the average of them. In the previous ex-
ample we replace the weights p1 = 0.5 and p3 = 0.3
by 0.4. In this case the components of the weighting
vector ρ are

ρ1 =
6

17
, ρ2 =

8

17
, ρ3 =

3

17
,

and

F w

p
(7, 5, 7) =

42

17
+

56

17
+

15

17
=

113

17
.

It is worth noting that the behavior of this func-
tion is similar to a weighted mean, but where the
weighting vector varies depending on x

1. For this
reason, F w

p
is idempotent and compensative. More-

over, it is easy to check that F w

p
is homogeneous of

degree 1 and that F η

p
= Fp (Engemann et al. [2])

and F w

η
= F w.

Nevertheless, as noted by Liu [5], F w

p
is not mono-

tonic. In fact, as we show in the following example,
F w

p
is not monotonic although the non-zero compo-

nents of the weighting vector w are equal.

Example 5. Consider again the vectors p =
(0.4, 0.2, 0.2, 0.1, 0.1) and w = (0, 1/3, 1/3, 1/3, 0).
Then, we have:

F w

p
(6.5, 3, 5, 6, 7) =

26

7
+

6

7
+

10

7
= 6,

F w

p
(10, 3, 5, 6, 7) =

7

4
+

6

4
+

10

4
=

23

4
.

On the other hand, similar to WOWA operators,
there are other interesting properties that F w

p
does

not satisfy:

1. The value returned by F w

p
does not always lie

between the values returned by the weighted
mean and the OWA operator:

F w(10, 3, 5, 6, 7) = 6,

Fp(10, 3, 5, 6, 7) = 6.9,

but F w

p
(10, 3, 5, 6, 7) = 23/4.

2. The value returned by F w

p
does not always co-

incide with the value returned by the weighted
mean and the OWA operator when both values
are the same:

F w(8, 2.5, 5, 6, 7) = 6,

Fp(8, 2.5, 5, 6, 7) = 6,

but F w

p
(8, 2.5, 5, 6, 7) = 23/4.

5. Concluding remarks

In this paper we have analyzed the functions pro-
posed in the literature to simultaneously generalize
weighted means and OWA operators. The HWA
operators are neither idempotent nor compensative,
and the WOWA operators do not always provide the
expected result. Due to the questionable behavior
of these operators, we have imposed a condition to
maintain the relationship among the weights and
we have characterized the functions that satisfy this
condition. However, the obtained functions are not
monotonic. So, we can conclude that none of the
analyzed functions is fully convincing.

1This behavior is also seen in OWA operators and mixture

operators. These last functions were introduced by Marques
Pereira and Pasi [4] and they are a particular case of Bajrak-
tarević means [1].
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