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Abstract

The fuzzy transform (F-transform for short) is a
universal tool for a fuzzy modeling with convinc-
ing applications to image processing. The aim of
this contribution is to explain the effect of the F-
transform in image processing. With this purpose,
we investigate properties of the Fourier transform
over the F-transform components. We prove that
the direct F-transform is a low-pass filter. This
explains specific tools and methodologies that are
developed in the F-transform applications to the
image processing.
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1. Introduction

Various kinds of transforms are used as powerful
methods for solving many problems, including im-
age processing. The main idea of them consists in
transforming the original model into a special space
where a computation is simpler. In this contribu-
tion, we will discuss the Fourier transform and the
F-transform.

The Fourier transform is a well known method
that is widely used in image processing. In general,
we can say that the Fourier transform converts a
function (image), considered in a time or spatial
domain, into another function, considered in a fre-
quency domain. In the case of images, the number
of frequencies in a frequency domain is equal to the
number of pixels in the image or spatial domain.

Transformation to a frequency domain is a very
important tool in many applications. For example,
applying filters to images in a frequency domain is
computationally faster than doing the same in an
image domain. Spectrum analysis is also widely
used in speech analysis, image compression, search
of periodicity in a wide variety of data in economics,
biology, physics, etc.

In particular, the Fourier image analysis has sev-
eral useful properties. For example, the operation
of convolution in a spatial domain corresponds to
the operation of multiplication in a frequency do-
main. This is important because multiplication is a
simpler mathematical operation than convolution.

The F-transform is another technique discussed
in this contribution. It performs a transformation
of an original universe of functions into a universe
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of vectors. In more details, the F-transform estab-
lishes a correspondence between a set of continuous
functions on an interval of real numbers and the set
of n-dimensional (real) vectors.

The F-transform proves to be a successful
methodology with various applications in image
compression and reconstruction ([4], [5]), image fu-
sion ([2], [3]), numeric solution of differential equa-
tions ([7]), time-series procession ([6]). It turned out
that the F-transform is very general and as power-
ful in many applications as conventional transforms.
Moreover, sometimes the F-transform can be more
efficient than its counterparts.

The structure of this paper is as following: Sec-
tion 2 introduces notions of a fuzzy partition and
a generating function of an h-uniform fuzzy parti-
tion. In this section, the direct form of a discrete
F-transform is reminded and its representation in
the form of a convolution is introduced. In Section
3, the properties of a convolution are recalled. Sec-
tion 4 reminds a definition of the discrete Fourier
transform. In Section 5, an application of the dis-
crete Fourier transform to the F-transform compo-
nents is discussed. Section 6 presents examples, and
Section 7 concludes the contribution.

2. F-transform as Convolution

In this section, we aim at expressing the F-
transform in a form of a convolution of two func-
tions. We will start with reminding basic defini-
tions regarding the F-transform. We will focus on
the discrete F-transform only.

2.1. Discrete F-transform

Let us consider the discrete F-transform [1]. We
choose an interval [a,b] as a universe, and assume
that a function f is given at points pg,...,p—1 €
[a, b].

Below, we recall the definition of a fuzzy parti-
tion. Let a = 9 < -+ < x, = b, n > 3 be fixed
nodes within [a, b]. Fuzzy sets Ay, ..., A,_; identi-
fied with their membership functions A;,..., A,_1,
defined on [a, ], establish a fuzzy partition of [a,b]
if they fulfill the following conditions for k£ =
1,...,n—1:

1) Ag:[a,b] = [0,1], Ax(xg) =1,
2) Ap(z) =0ifz ¢ (vg—1,2k41), k=1,...,n—1;
3) Ai(x) is continuous;



(2) strictly increase on [zg_1,xg],

= 1,...,n — 1; and strictly decrease on
[k, 2p+1), K=1,...,n—1;

5) Sni Ap(z) =1, z € [z1, 251

Ay, ..., A, are called basic functions.

We say that the fuzzy partition given by
Ay, ..., A,_1, 1s an h-uniform fuzzy partition if the
nodes z = a + hk, kK = 0,...,n, are equidistant,
h = (b—a)/n and two additional properties are met:

1) Ay
k

6) Ap(zxy — z) = Ag(zr + 2), = € [0,h], k =
1,...,n—1;

7 Ap(z) = A1z —h), k=2,...,n—1, x €
[Th—1, Th+1]-

Assume that fuzzy sets Ai,...,A,_1 establish
a fuzzy partition of [a,b] and f : P — R is
a discrete real valued function defined on the set
P = {po,...,pi—1} where P C J[a,b] and | >
n. The following vector of real numbers F,[f] =
[F1,...,F,_1] is the (direct) discrete F-transform
of f wrt. Ay,...,A,_1 where the k—th compo-
nent Fj, is defined by

F = Y A’“(pj) (p),k:L...,n—l.

Z] =0 Ak(pj)

By using an inversion formula we can approximately
reconstruct function f from the vector of compo-
nents of its direct discrete F-transform. We define
[1] the inverse discrete F-transform as

n—1

=Y FAi(py), j=0,...,1— L
k=1

an pj

Moreover, the following Theorem 1 says that the
inverse discrete F-transform fr, can approximate
the original function f at common nodes with an
arbitrary precision (proved in [1]).

Theorem 1

Let a function f be given at nodes py, ...,p;—1 con-
stituting the set P C [a,b]. Then, for any € > 0,
there exist n. and a fuzzy partition Ai,..., A, of

[a,b] such that P is sufficiently dense with respect
to Ay, ..., A, and for all p € {po,...,pi—1}

|f(p) —

frn.(p)| <e

holds true.

2.2. F-Transform as Convolution

Let us assume that the interval [a, b] is h-uniformly
partitioned by fuzzy sets Ai,...,A,—1, f is a dis-
crete function, and the F-transform of a discrete
function f is given by F,[f] with components ob-
tained by(1).

It is easy to see that if the fuzzy partition
A1,...,Ap—1 of [a,b] is h-uniform, then there ex-
ists an even function

A:[—h,h] — [0,1]
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such that forall k=1,...,n—1,
Ap(x) = A(z — xg)

We call A a generating function of an h-uniform
fuzzy partition.

The example of a triangular generating func-
tion A and the respective h-uniform fuzzy partition
Aq,...,A,_1 is given in Figure 1.

= Az — x), T € [Tp—1, Tht1]-

Generating function A and Fuzzy Partition

11 A Ar s AL AT

Figure 1: Generating function A of an h-uniform
fuzzy partition.

Let us assume that points po, . . ., p;—1 are equidis-
tant in the interval [a,b] and moreover p; = a +
jh/m; j=0,...,1—1, where m and [ are connected
by the following equality: { = nm + 1. Thus chosen
points pg, ..., p;_1 assure that the nodes xq,...,x,
are among them, i.e. for each k = 0,...,n, there
exists j such that x; = p;. Moreover, the following
Lemma 1 holds true.

Lemma 1
Let Aq,..., A, 1 establish an h-uniform fuzzy par-
tition of [a,b] and points py,...,p—1 from [a,b] are
chosen as above. Then there exists a constant ¢ > 0
such that for allk=1,...,n—1

-1
ZAk(Pj) =
=0

PROOF: In order to prove (2), it is sufficient to
show that forall k=1,...,n— 2,

-1 -1
> Appalp) =D Ar(p;)-
=0 =0

Indeed, the uniformity of our partition and the fact
that

)

(2)

3)

Ap1(Pjrm) = Ak(py),i =0,..., 1 =1 —m
leads to
-1
ZAk+1(pj) = Apr1(Prm) + -+ + Ak 1(Pkr2)m) =
i=o

“+ A (P(h+1)m

ZAk p] )

A (p(kfl)m) +-



O

Remark 1

Let us remark that (2) is not the generalized Rus-
pini condition, because the sum is taken over points
Doy -+, Pi—1- Actually, the sum in (2) is taken over
those points that are covered by a single basic func-
tion Ag,k=1,...,n—1.

By (2), the expression (1) can be rewritten as
follows:

Yo Alek —p) ()

F, = ck=1,...,

. n—1. (4)
Let us consider F}, as a value of a discrete function
F, defined on the set Z,,_y = {1,...,n — 1} with
values from R such that F': Z,,_1 — Rand F(k) =
Fj,. We will use (4) for an analytic extension of F
from Z,_1 to Z; = {0,1,...,1 — 1}, so that

-1
P = Zio AR =) f0)

ct=0,...,01—1. (5)

Similarly, we can assume that functions A and f
are defined on the set Z; and rewrite (5) into

SO At — ) f3)

Cc

c

F(t) =

;t=0,...,0—1

Finally, we will normalize values of A dividing
them by ¢ and keep the same denotation A for the
normalized function. Then without loss of general-
ity, we will continue working with the below given
expression for F:

-1

S At -5)fG); t=0,...

=0

F(t) = A-1. (7)

Analyzing (7), we see that the function F': Z; —
R is a convolution (see e.g., [8], [9]) of two discrete
functions A and f. Let us remark that F' contains
the F-transform components Fy, k = 1,...,n —1
among its values.

3. Convolution of Functions

Let us briefly remind the general definition of a con-
volution of functions (see e.g., [8]) and its proper-
ties. Let two functions h,g : Z; — Z; be defined
on the set of natural numbers Z; = {0,1,...,1—1}.
Then a discrete convolution h * g is a function
hxg:Z; — Z; defined by

-1

> h(t - 5)g(i).

=0

(h*g)(t) =

The important property is that the (discrete)
Fourier transform (see below) of a convolution of
functions is the product of their Fourier transforms,

e. .

where symbols h/\*g, h, g denote the Fourier trans-
forms of h * g, h, g, respectively.

h’/\*g:ﬁg7
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4. Discrete Fourier Transform

In this section, we recall the definition of the dis-
crete Fourier transform (see e.g., [8]) as well as
some properties which will be used further on. Let
h : Z; — C be a function from the set Z; =
{0,1,...,1 — 1} to the set of complex numbers C.
Then the discrete Fourier transform / : Z, — Cof
h has the following representation:

-1

> " h(t) - exp(—2mitu/l); u € Z.
t=0

h(u) = (9)

The inversion formula recovers the function h
from its discrete Fourier transform h. It is defined
by

-exp(2mitu/l); t € Z;.  (10)

=
3
5. Discrete Fourier Transform of

F-transform Components

Let the function F : Z; — R be given by (7) and
coincide with the F-transform components at cer-

tain nodes. The discrete Fourier transform of F' is
equal to:
-1
F(u) = ZF(t) -exp(—2mitu/l); u=0,...,1 —1.
t=0

Using the inversion formula of the Fourier transform
we will obtain the following representation of the
function F:

;X__:

where expressions

cexp(2mitu/l); t=0,...,1—1,

(11)

exp(2mitu/l), u=0,...,0—1 (12)
represent basis functions of the Fourier decomposi-
tion (11).

Our purpose is to estimate values of F'(u) for each
frequency w, u=20,...,0 — 1.

Main Result

Theorem 2
Let f : Z; — R be the Fourier transform of a
function f:Z; — R. Let n > 3 and Ay,...,Ap_1
be an h-uniform fuzzy partition of [a,b] where h =
b’Ta. Assume that the fuzzy partition Aq,...,A,_1
has A : [—h,h] — [0,1] as a generating function
and moreover, A is of a triangular shape, i.e. A(x)
is defined on [—h, h] by
Als) = {O Bl jz| < h,

|z| > h. (13)



Let F : Z; — R be the discrete function given by
(7), which contains the F-transform components of
f among its values. Then the Fourier transform of
F is given by

F(0) = f(0);
(u) ~ %exp(—%‘iu/n)(l — cos %Tu) - fu);
u=1,...,1—1,

where m is a fixed parameter.

PROOF: Let us consider F' in the form of the con-
volution (7). Using the property (8), we can write

A N

F(u) = A(w) - f(u). (14)

Now we will estimate A(u) and leave f(u) as it is.
Recall that in (14), the function A is normalized.
We use the general expression (9) to compute A(u):

-1

> A(t) - exp(—2mitu/l); u=0,...

t=0

Au) = =1,

In particular, A(0) = 1, which easily follows from
normalization of A. For other values u =1,...,] —
1, the expression above will be approximated by
respective integrals, so that

h
N m 2rzu
Alu) =~ — —2mi A 5 —
(u) h exp(—2miu/n) [h () cos o dz
h
2
iﬁexp(—Qﬂ'iu/n)/ A(x)sin ﬂdav;
h ) h

Because A is an even function on [—h, h] (cf. (13)),

the second integral in the expression above is 0.

2nzu
nh

tain the following approximate values of zzl(u)7 U=
1,...,0—1:

By direct integration of ffh A(x) cos

dx, we ob-

A mn? 21U

Au) ~ 332 exp(—2miu/n)(1 — cos T)
Substitution of (15) into (14) gives us the desired
expression:

(15)

A mn? 2mu
2

~ 7u2exp(—27riu/n)(1 — cos T) - flu);

Corollary 1
Let the assumptions of the Theorem 2 be fulfilled.

Then the influence of the Fourier coefficient f (u) in
the representation (11) is weakened by the factor
5.

In other words, Corollary 1 states that every F-
transform component works as a low-pass filter of
an original function.
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6. Graphical Example

Below, we illustrate the idea described above on a
particular example. We take an interval [0, 27] as
a universe and two discrete functions sin x, sin 5z,
both defined at points 0 = pg,...,psg = 27, where
Dj = %7 7=0,...,80. We form a h-uniform fuzzy
partition of the interval [0, 27] represented by tri-
angular basic functions Aq,..., A7 over the nodes
To,...,Ts, where the distance between each two
neighboring nodes h = 7.

For both functions we compute the direct discrete
F-transform and the inverse discrete F-transform
with respect to the given fuzzy partition of the in-
terval [0,27]. The function sinz with its inverse
F-transform and the F-transform components is
depicted on Figure 2 and the function sin5x with
the corresponding inverse F-transform and the F-
transform components is shown on Figure 3. Both
functions and their F-transforms are represented at
points p;, j = 0,...,80, although graphs seem to
be continuous.

It is easy to see that the oscillation of sin bz is
higher than that of sinz. Therefore by Lemma 2
from [1], for the same partition, the approximation
of sinx by its inverse F-transform is closer to the
original function than the approximation of sin 5z
by its inverse F-transform.

In the frequency domain of the Fourier spec-
tra, peaks of a high oscillating function give evi-
dence of a presence of high frequencies. As can be
seen from Figure 3, the F-transform components
of sin 5z reduce the influence of high frequencies in
the respective approximation given by the inverse
F-transform.

Therefore, in order to increase the quality of ap-
proximation of a high oscillating function by its
inverse F-transform it is necessary to increase the
value of n leaving all other parameters unchanged,
as can be seen on Figure 4. However, this requires
a thorough analysis of the expression (15).

7. Conclusion

Our investigation was focused on the discrete F-
transform and its effect in image processing. After
a brief introduction, the discrete F-transform was
presented in the form of a convolution. We inves-
tigated properties of the discrete Fourier transform
of the direct discrete F-transform. We proved that
every F-transform component works as a low-pass
filter of an original function.
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sin x

"""" Inverse F-transform of sin
®  F-transform components

X =21

Figure 2: Above: Function sinz, its inverse F-
transform and corresponding 7 components of direct
F-transform; Below: Fuzzy partition of [0, 27].

— Sin 5X
Inverse F-transform of sin 5
@ F-transform components

A1 A2 A3 A4 A5 A6 A7

Figure 3: Above: Function sin(5z), its inverse F-
transform and corresponding 7 components of direct
F-transform; Below: Fuzzy partition of [0, 27].
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