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Abstract

The fuzzy transform (F -transform for short) is a
universal tool for a fuzzy modeling with convinc-
ing applications to image processing. The aim of
this contribution is to explain the effect of the F -
transform in image processing. With this purpose,
we investigate properties of the Fourier transform
over the F -transform components. We prove that
the direct F -transform is a low-pass filter. This
explains specific tools and methodologies that are
developed in the F -transform applications to the
image processing.

Keywords: Convolutions of functions, discrete F -
transform, discrete Fourier transform

1. Introduction

Various kinds of transforms are used as powerful
methods for solving many problems, including im-
age processing. The main idea of them consists in
transforming the original model into a special space
where a computation is simpler. In this contribu-
tion, we will discuss the Fourier transform and the
F -transform.
The Fourier transform is a well known method

that is widely used in image processing. In general,
we can say that the Fourier transform converts a
function (image), considered in a time or spatial
domain, into another function, considered in a fre-
quency domain. In the case of images, the number
of frequencies in a frequency domain is equal to the
number of pixels in the image or spatial domain.

Transformation to a frequency domain is a very
important tool in many applications. For example,
applying filters to images in a frequency domain is
computationally faster than doing the same in an
image domain. Spectrum analysis is also widely
used in speech analysis, image compression, search
of periodicity in a wide variety of data in economics,
biology, physics, etc.

In particular, the Fourier image analysis has sev-
eral useful properties. For example, the operation
of convolution in a spatial domain corresponds to
the operation of multiplication in a frequency do-
main. This is important because multiplication is a
simpler mathematical operation than convolution.

The F -transform is another technique discussed
in this contribution. It performs a transformation
of an original universe of functions into a universe

of vectors. In more details, the F -transform estab-
lishes a correspondence between a set of continuous
functions on an interval of real numbers and the set
of n-dimensional (real) vectors.

The F -transform proves to be a successful
methodology with various applications in image
compression and reconstruction ([4], [5]), image fu-
sion ([2], [3]), numeric solution of differential equa-
tions ([7]), time-series procession ([6]). It turned out
that the F -transform is very general and as power-
ful in many applications as conventional transforms.
Moreover, sometimes the F -transform can be more
efficient than its counterparts.

The structure of this paper is as following: Sec-
tion 2 introduces notions of a fuzzy partition and
a generating function of an h-uniform fuzzy parti-
tion. In this section, the direct form of a discrete
F -transform is reminded and its representation in
the form of a convolution is introduced. In Section
3, the properties of a convolution are recalled. Sec-
tion 4 reminds a definition of the discrete Fourier
transform. In Section 5, an application of the dis-
crete Fourier transform to the F -transform compo-
nents is discussed. Section 6 presents examples, and
Section 7 concludes the contribution.

2. F -transform as Convolution

In this section, we aim at expressing the F -
transform in a form of a convolution of two func-
tions. We will start with reminding basic defini-
tions regarding the F -transform. We will focus on
the discrete F -transform only.

2.1. Discrete F -transform

Let us consider the discrete F -transform [1]. We
choose an interval [a, b] as a universe, and assume
that a function f is given at points p0, . . . , pl−1 ∈
[a, b].
Below, we recall the definition of a fuzzy parti-

tion. Let a = x0 < · · · < xn = b, n ≥ 3 be fixed
nodes within [a, b]. Fuzzy sets A1, . . . , An−1 identi-
fied with their membership functions A1, . . . , An−1,
defined on [a, b], establish a fuzzy partition of [a, b]
if they fulfill the following conditions for k =
1, . . . , n− 1:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x /∈ (xk−1, xk+1), k = 1, . . . , n−1;
3) Ak(x) is continuous;
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4) Ak(x) strictly increase on [xk−1, xk],
k = 1, . . . , n − 1; and strictly decrease on
[xk, xk+1], k = 1, . . . , n− 1;

5)
∑n
k=1 Ak(x) = 1, x ∈ [x1, xn−1].

A1, . . . , An−1 are called basic functions.
We say that the fuzzy partition given by

A1, . . . , An−1, is an h-uniform fuzzy partition if the
nodes xk = a + hk, k = 0, . . . , n, are equidistant,
h = (b−a)/n and two additional properties are met:

6) Ak(xk − x) = Ak(xk + x), x ∈ [0, h], k =
1, . . . , n− 1;

7) Ak(x) = Ak−1(x − h), k = 2, . . . , n − 1, x ∈
[xk−1, xk+1].

Assume that fuzzy sets A1, . . . , An−1 establish
a fuzzy partition of [a, b] and f : P −→ R is
a discrete real valued function defined on the set
P = {p0, . . . , pl−1} where P ⊆ [a, b] and l >
n. The following vector of real numbers Fn[f ] =
[F1, . . . , Fn−1] is the (direct) discrete F -transform
of f w.r.t. A1, . . . , An−1 where the k−th compo-
nent Fk is defined by

Fk =
∑l−1
j=0 Ak(pj)f(pj)∑l−1

j=0 Ak(pj)
, k = 1, . . . , n− 1. (1)

By using an inversion formula we can approximately
reconstruct function f from the vector of compo-
nents of its direct discrete F -transform. We define
[1] the inverse discrete F -transform as

fF,n(pj) =
n−1∑
k=1

FkAk(pj), j = 0, . . . , l − 1.

Moreover, the following Theorem 1 says that the
inverse discrete F-transform fF,n can approximate
the original function f at common nodes with an
arbitrary precision (proved in [1]).

Theorem 1
Let a function f be given at nodes p0, . . . , pl−1 con-
stituting the set P ⊆ [a, b]. Then, for any ε > 0,
there exist nε and a fuzzy partition A1, . . . , Anε

of
[a, b] such that P is sufficiently dense with respect
to A1, . . . , Anε and for all p ∈ {p0, . . . , pl−1}

|f(p)− fF,nε
(p)| < ε

holds true.

2.2. F -Transform as Convolution

Let us assume that the interval [a, b] is h-uniformly
partitioned by fuzzy sets A1, . . . , An−1, f is a dis-
crete function, and the F -transform of a discrete
function f is given by Fn[f ] with components ob-
tained by(1).
It is easy to see that if the fuzzy partition

A1, . . . , An−1 of [a, b] is h-uniform, then there ex-
ists an even function

A : [−h, h] −→ [0, 1]

such that for all k = 1, . . . , n− 1,

Ak(x) = A(x− xk) = A(xk − x), x ∈ [xk−1, xk+1].

We call A a generating function of an h-uniform
fuzzy partition.

The example of a triangular generating func-
tion A and the respective h-uniform fuzzy partition
A1, . . . , An−1 is given in Figure 1.
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1

Generating function A and Fuzzy Partition

−h h

A1
An−1. . . . . .Ak

0 x0 x1 xk xn−1
xn

A1

Figure 1: Generating function A of an h-uniform
fuzzy partition.

Let us assume that points p0, . . . , pl−1 are equidis-
tant in the interval [a, b] and moreover pj = a +
jh/m; j = 0, . . . , l−1, where m and l are connected
by the following equality: l = nm+ 1. Thus chosen
points p0, . . . , pl−1 assure that the nodes x0, . . . , xn
are among them, i.e. for each k = 0, . . . , n, there
exists j such that xk = pj . Moreover, the following
Lemma 1 holds true.

Lemma 1
Let A1, . . . , An−1 establish an h-uniform fuzzy par-
tition of [a, b] and points p0, . . . , pl−1 from [a, b] are
chosen as above. Then there exists a constant c > 0
such that for all k = 1, . . . , n− 1,

l−1∑
j=0

Ak(pj) = c. (2)

proof: In order to prove (2), it is sufficient to
show that for all k = 1, . . . , n− 2,

l−1∑
j=0

Ak+1(pj) =
l−1∑
j=0

Ak(pj). (3)

Indeed, the uniformity of our partition and the fact
that

Ak+1(pj+m) = Ak(pj), j = 0, . . . , l − 1−m,

leads to
l−1∑
j=0

Ak+1(pj) = Ak+1(pkm) + · · ·+Ak+1(p(k+2)m) =

Ak(p(k−1)m) + · · ·+Ak(p(k+1)m) =
l−1∑
j=0

Ak(pj),

k = 1, . . . , n− 2.
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Remark 1
Let us remark that (2) is not the generalized Rus-
pini condition, because the sum is taken over points
p0, . . . , pl−1. Actually, the sum in (2) is taken over
those points that are covered by a single basic func-
tion Ak, k = 1, . . . , n− 1.

By (2), the expression (1) can be rewritten as
follows:

Fk =
∑l−1
j=0 A(xk − pj)f(pj)

c
; k = 1, . . . , n−1. (4)

Let us consider Fk as a value of a discrete function
F , defined on the set Zn−1 = {1, . . . , n − 1} with
values from R such that F : Zn−1 −→ R and F (k) =
Fk. We will use (4) for an analytic extension of F
from Zn−1 to Zl = {0, 1, . . . , l − 1}, so that

F (t) =
∑l−1
j=0 A(pt − pj)f(pj)

c
; t = 0, . . . , l−1. (5)

Similarly, we can assume that functions A and f
are defined on the set Zl and rewrite (5) into

F (t) =
∑l−1
j=0 A(t− j)f(j)

c
; t = 0, . . . , l − 1. (6)

Finally, we will normalize values of A dividing
them by c and keep the same denotation A for the
normalized function. Then without loss of general-
ity, we will continue working with the below given
expression for F :

F (t) =
l−1∑
j=0

A(t− j)f(j); t = 0, . . . , l − 1. (7)

Analyzing (7), we see that the function F : Zl −→
R is a convolution (see e.g., [8], [9]) of two discrete
functions A and f . Let us remark that F contains
the F -transform components Fk, k = 1, . . . , n − 1
among its values.

3. Convolution of Functions

Let us briefly remind the general definition of a con-
volution of functions (see e.g., [8]) and its proper-
ties. Let two functions h, g : Zl −→ Zl be defined
on the set of natural numbers Zl = {0, 1, . . . , l− 1}.
Then a discrete convolution h ∗ g is a function
h ∗ g : Zl −→ Zl defined by

(h ∗ g)(t) =
l−1∑
j=0

h(t− j)g(j).

The important property is that the (discrete)
Fourier transform (see below) of a convolution of
functions is the product of their Fourier transforms,
i.e.

ĥ ∗ g = ĥ · ĝ, (8)

where symbols ĥ ∗ g, ĥ, ĝ denote the Fourier trans-
forms of h ∗ g, h, g, respectively.

4. Discrete Fourier Transform

In this section, we recall the definition of the dis-
crete Fourier transform (see e.g., [8]) as well as
some properties which will be used further on. Let
h : Zl −→ C be a function from the set Zl =
{0, 1, . . . , l − 1} to the set of complex numbers C.
Then the discrete Fourier transform ĥ : Zl −→ C of
h has the following representation:

ĥ(u) =
l−1∑
t=0

h(t) · exp(−2πitu/l); u ∈ Zl. (9)

The inversion formula recovers the function h
from its discrete Fourier transform ĥ. It is defined
by

h(t) = 1
l

l−1∑
u=0

ĥ(u) · exp(2πitu/l); t ∈ Zl. (10)

5. Discrete Fourier Transform of
F -transform Components

Let the function F : Zl −→ R be given by (7) and
coincide with the F -transform components at cer-
tain nodes. The discrete Fourier transform of F is
equal to:

F̂ (u) =
l−1∑
t=0

F (t) · exp(−2πitu/l); u = 0, . . . , l − 1.

Using the inversion formula of the Fourier transform
we will obtain the following representation of the
function F :

F (t) = 1
l

l−1∑
u=0

F̂ (u) · exp(2πitu/l); t = 0, . . . , l − 1,

(11)
where expressions

exp(2πitu/l), u = 0, . . . , l − 1 (12)

represent basis functions of the Fourier decomposi-
tion (11).

Our purpose is to estimate values of F̂ (u) for each
frequency u, u = 0, . . . , l − 1.

Main Result

Theorem 2
Let f̂ : Zl −→ R be the Fourier transform of a
function f : Zl −→ R. Let n ≥ 3 and A1, . . . , An−1
be an h-uniform fuzzy partition of [a, b] where h =
b−a
n . Assume that the fuzzy partition A1, . . . , An−1

has A : [−h, h] −→ [0, 1] as a generating function
and moreover, A is of a triangular shape, i.e. A(x)
is defined on [−h, h] by

A(x) =
{

1− |x|h , |x| ≤ h,
0, |x| > h.

(13)
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Let F : Zl −→ R be the discrete function given by
(7), which contains the F -transform components of
f among its values. Then the Fourier transform of
F is given by

F̂ (0) = f̂(0);

F̂ (u) ≈ mn2

2π2u2 exp(−2πiu/n)(1− cos 2πu
n

) · f̂(u);

u = 1, . . . , l − 1,

where m is a fixed parameter.
proof: Let us consider F in the form of the con-
volution (7). Using the property (8), we can write

F̂ (u) = Â(u) · f̂(u). (14)

Now we will estimate Â(u) and leave f̂(u) as it is.
Recall that in (14), the function A is normalized.
We use the general expression (9) to compute Â(u):

Â(u) =
l−1∑
t=0

A(t) · exp(−2πitu/l); u = 0, . . . , l − 1.

In particular, A(0) = 1, which easily follows from
normalization of A. For other values u = 1, . . . , l −
1, the expression above will be approximated by
respective integrals, so that

Â(u) ≈ m

h
exp(−2πiu/n)

∫ h

−h
A(x) cos 2πxu

nh
dx−

i
m

h
exp(−2πiu/n)

∫ h

−h
A(x) sin 2πxu

nh
dx;

u = 1, . . . , l − 1.

Because A is an even function on [−h, h] (cf. (13)),
the second integral in the expression above is 0.
By direct integration of

∫ h
−hA(x) cos 2πxu

nh dx, we ob-
tain the following approximate values of Â(u), u =
1, . . . , l − 1:

Â(u) ≈ mn2

2π2u2 exp(−2πiu/n)(1− cos 2πu
n

). (15)

Substitution of (15) into (14) gives us the desired
expression:

F̂ (u) ≈ mn2

2π2u2 exp(−2πiu/n)(1− cos 2πu
n

) · f̂(u);

u = 1, . . . , l − 1.

�

Corollary 1
Let the assumptions of the Theorem 2 be fulfilled.
Then the influence of the Fourier coefficient f̂(u) in
the representation (11) is weakened by the factor
1
u2 .

In other words, Corollary 1 states that every F -
transform component works as a low-pass filter of
an original function.

6. Graphical Example

Below, we illustrate the idea described above on a
particular example. We take an interval [0, 2π] as
a universe and two discrete functions sin x, sin 5x,
both defined at points 0 = p0, . . . , p80 = 2π, where
pj = jπ

40 , j = 0, . . . , 80. We form a h-uniform fuzzy
partition of the interval [0, 2π] represented by tri-
angular basic functions A1, . . . , A7 over the nodes
x0, . . . , x8, where the distance between each two
neighboring nodes h = π

4 .
For both functions we compute the direct discrete

F -transform and the inverse discrete F -transform
with respect to the given fuzzy partition of the in-
terval [0, 2π]. The function sin x with its inverse
F -transform and the F -transform components is
depicted on Figure 2 and the function sin 5x with
the corresponding inverse F -transform and the F -
transform components is shown on Figure 3. Both
functions and their F -transforms are represented at
points pj , j = 0, . . . , 80, although graphs seem to
be continuous.

It is easy to see that the oscillation of sin 5x is
higher than that of sin x. Therefore by Lemma 2
from [1], for the same partition, the approximation
of sin x by its inverse F -transform is closer to the
original function than the approximation of sin 5x
by its inverse F -transform.

In the frequency domain of the Fourier spec-
tra, peaks of a high oscillating function give evi-
dence of a presence of high frequencies. As can be
seen from Figure 3, the F -transform components
of sin 5x reduce the influence of high frequencies in
the respective approximation given by the inverse
F -transform.

Therefore, in order to increase the quality of ap-
proximation of a high oscillating function by its
inverse F-transform it is necessary to increase the
value of n leaving all other parameters unchanged,
as can be seen on Figure 4. However, this requires
a thorough analysis of the expression (15).

7. Conclusion

Our investigation was focused on the discrete F -
transform and its effect in image processing. After
a brief introduction, the discrete F -transform was
presented in the form of a convolution. We inves-
tigated properties of the discrete Fourier transform
of the direct discrete F -transform. We proved that
every F -transform component works as a low-pass
filter of an original function.
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Figure 2: Above: Function sin x, its inverse F -
transform and corresponding 7 components of direct
F-transform; Below: Fuzzy partition of [0, 2π].
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Figure 3: Above: Function sin(5x), its inverse F -
transform and corresponding 7 components of direct
F-transform; Below: Fuzzy partition of [0, 2π].
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