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Abstract

This paper presents a generalization of many par-
ticular results about special types of filters (e.g.,
(positive) implicative, fantastic) on algebras of non-
classical (mostly fuzzy) logics. Our approach is
rooted in the framework of Abstract Algebraic
Logic, and is based on the close connection between
the filter-defining conditions and alternative axiom-
atizations of the logics involved. We identify four
main kinds of theorems proved in the literature and
we formulate general theorems which (provided a
simple syntactical proof) yield the majority of pub-
lished results as their direct consequences.

Keywords: Filters, Abstract Algebraic Logic,
Rasiowa-Implicative Logics

1. Introduction

The study of special types of filters on algebras of
certain non-classical logics has become very pop-
ular in the last years. Many journal papers, e.g.
Haveshki ([7]), Salounové and Rachiinek ([10]),
Kondo and Dudek [9] and others contain (among
others) four main types of results which we are go-
ing to demonstrate on the following particular ex-
amples (see Haveskhi [7], Kondo and Dudek [9]).

We assume that the reader is familiar with the
notion of BL-algebra [6], we recall that a (BL-)filter
(a set F containing 1 such that y € F whenever
x,x = y € F) is fantastic if z — (y — z) € F and
z € Fimply ((z+ - y) - y) > « € F. Then for
each BL-algebra A holds:

1. The following statements are equivalent:

e Every filter on A is fantastic.
e {1} is a fantastic filter on A.
e A is an MV-algebra.

2. A filter F' is fantastic iff for each z € A holds:
((z—=0)—0)—>=zekF.

3. If F is fantastic, then so is any filter G O F.

4. A filter F is fantastic iff every filter on the quo-
tient algebra A/F is a fantastic filter.

The primary purpose of this contribution is to
show triviality of these results once they are formu-
lated in a proper general framework, in this case the
one of Abstract Algebraic Logic (AAL). We develop
a very simple abstract theory covering (among oth-
ers) all the results of the four presented types. In
particular, we reduce all these theorems to a simple,
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purely syntactical, problem of alternative axiomati-
zation of some particular logics.

The secondary but equally important goal of this
paper is to demonstrate that Abstract Algebraic
Logic provides powerful tools for studying algebras
of non-classical logics and should be always taken
into account before particular results on particular
algebras are proved.

2. Preliminaries

2.1. Prominent logics

We use several prominent non-classical logics to pro-
vide examples of our claims. The weakest logic
we will consider here is called Full Lambek logic
with exchange and weakening [5] (also known as
Hohle’s Monoidal Logic [8]). It has four primitive
binary connectives —, &, A, V, and the truth con-
stant 0 (and defined connectives = = ¢ — 0 and
1=0—0); and it can be axiomatized with modus
ponens (from ¢ and ¢ — v infer ¢) as the only de-
duction rule and the axioms listed in Table 1. Other
prominent logics considered in this paper are listed
in Table 2.

Table 1: Axiomatic system of FL.,,

(Ax1) (¢ = ¥) = (¥ = x) = (¢ = X))
(Ax2) (p&y) =
(Ax3) (p&y) = (W&eyp)
(Axda) oAy — @
(Axdb) pAY =Y Ap
(Axdc) (x =) = (x = ¥) = (x = 9 AY))
(Axdd) =V
(Axde) VY=YV
(Axdf) (¢ = x) = (¥ = x) = (¢ VY = X))
(AxBa) (¢ = (v = X)) = (& = X)
(AxBb)  (p& P = x)) = (¢ = (¥ = X))
(Ax6) 0— ¢
Table 2: Prominent logics
Logic definition
Intuitionistic | FLeyw + ¢ — @& @
divFL,,, FLew + oAU = o0& (p — )
Classical FLew + @V
MTL Flew + (¢ = 9)V (¥ — )
IMTL MTL 4+ ——p =
BL MTL + oAy = & (p =)
Lukasiewicz | BL + ——p — ¢
Godel BL + o= o9&y




2.2. Rasiowa-implicative logic

This subsection includes basic definitions and it
also establishes notational conventions. For com-
prehensive introduction to Abstract Algebraic Logic
see [4, 3]. We assume that the notion of proposi-
tional language L is defined as usual. We denote
by the symbol F'm, the free term algebra with sig-
nature £ over a denumerable set of generators (in
this context called the propositional variables). The
universe of this free term algebra will be denoted by
Fm, (and the same convention we will use in the
whole text: if A is an algebra, then A is its uni-
verse). The elements of F'm, are called formulas.
Somewhere in the text we omit the symbol of the
language when it is clear from the context.

The endomorphisms of the algebra Fm, are
called L-substitutions and play an important role
when defining a notion of logic.

Definition 1 An L-consecution is a pair (', ),
usually written as T' > ¢, where T'U{p} C Fm,.
A consecution T' > ¢ is finitary if I' is finite.

We often identify a consecution of the form (§ > ¢
with the formula ¢ itself. Clearly, a set of consecu-
tions L can be viewed as a relation between sets
of formulas and single formulas, we write I' Fr, ¢
instead of I' > ¢ € L.

Definition 2 A finitary propositional logic L, a
logic for short, in the language L is a set of L-
consecutions such that:

1. Fv ¥ I_L P,

2. if T' b1 @ and for every ¢ € T', A by, 9, then
A FL 2

3. T kL o implies o[['| by, o(p) for every
L-substitution o.

4. if Tk, @ then there is a finite set A C T such
that A l_L @Y.

The first two conditions imply that F, is a con-
sequence relation in the sense of Tarski, the third
one is known as structurality or substitution invari-
ance, the final one is called finitarity. We omit the
subscript L when clear from the context.

A logic can be syntactically presented by means of
several kinds of proof systems, in this contribution
we always use Hilbert style calculi.

Definition 3 Let L be a logic. The set AX of fini-
tary L-consecutions is called an axiomatic system
(or a presentation) of L if the relation b, coin-
cides with the provability relation given by AX as
a Hilbert style calculi:' i.e., T Fy, @ if and only if
there is a sequence of formulas (Yo, 1, ..., ¥,) such
that 1, = @ and for every i < n, ¢; € I' or it is an
axiom or it follows from the previous elements of the
proof by application of some of the deduction rules
(formally: there is A > a € AX and a substitution
o such that o(a) = ¢; and o[A] C {to, ..., Yi—1}).

IElements of AX of the form @) > ¢ are called axioms, the
remaining ones are called deduction rules.
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Definition 4 Let L be a logic and R a set of con-
secutions. The weakest logic containing L. and R s
denoted as L + R.

Clearly, L + R is axiomatized by any of the pre-
sentations of L plus consecutions from R.

Definition 5 A logic L' is an (axiomatic) exten-
sion of L if there is a set R of consecutions (formu-
las) such that L' = L + R.

All logics we consider in this paper are examples
of Rasiowa-implicative logics (introduced in [11],
the term ‘Rasiowa-implicative’ is from [2]). To sim-
plify the exposition, we provide a slightly altered
definition. We assume that the truth constant 1 is
present in the language as a primitive connective
rather than a derived one (by setting 1 = p — p).

Definition 6 A logic L in the language L is said
to be Rasiowa-implicative logic if L contains a truth
constant 1 and a binary connective — such that:

FL e =,

o, 0 =YL,

= = xFLe =X,

FLQOHL

okL1— o,

=Y, = pkLelXi, X @ Xn)
_>C(X17--~Xi7d)a---

for every for every n-ary c € L and i < n.

. Xn)

Let us introduce useful abbreviations: ¢ < ¥ =
{¢ > ¥, - ¢} and T F A for T F ¢ for each
@ € A. Let us stress that <> is not a new connective
but a set of formulae (in the literature < is called
generalized equivalence).

2.3. Algebras and filters

We recall the basics of semantics of Rasiowa-
implicative logics. Again, to streamline the pre-
sentation we do not define the usual notions in
the canonical way, but we prefer more a didactic
equivalent (in our context!) approach. Let us fix
a Rasiowa-implicative logic in the language L, by
L-algebra we understand algebra with signature £
(e.g., each L-algebra has a binary operation — and
constant 1). Homomorphisms from Fm, to an L-
algebra A are called A-evaluations.

Definition 7 An L-algebra A is L-algebra, in sym-
bols: A € ALG*(L), if

1. Tk, @ implies that for each A-evaluation e we
have e(p) = 1 whenever e[l'] C {1},
2.x—=y=1andy — x =1 implies x = v,

for each T U{p} C Fm, and z,y € A.

Table 3 gives the list of prominent Rasiowa-impli-
cative logics and indicates the traditional names
for the corresponding classes ALG"(L). Of course



Table 3: Prominent Rasiowa-implicative logics

Logic L Traditional name of ALG"(L)

FLcw bounded commutative integral
residuated lattices?

Intuitionistic| Heyting algebras

divFL ., bounded commutative R¢-monoids

Classical Boolean algebras

MTL MTL-algebras

IMTL MTL-algebras

BL BL-algebras

Lukasiewicz | MV-algebras

Godel Godel algebras

those classes of algebras are defined in some explicit
way (usually by equations), so it takes some work
to show they coincide with our implicit definition.

It is well known that ALG*(L) is a quasivariety
(all classes of algebras mentioned in 3 are in fact va-
rieties) and it is the equivalent algebraic semantics
of L in the sense of Blok and Pigozzi [1], i.e.,

LITFpiff {y =T[YeTl} Fare-q =1
2. EFavc-) v~ ¢ iff
7 {aeBlaxBeEtrLp <y
3.1 plppand b 1 < @
L {I~p—=9¢1rY = o} Fargr@ ¢ R Y
and ¢ ~ ¥ FaLg ) {1 = =Y, 1=9Y — ¢}

Condition 1 is in fact the completeness theorem:
I Fp @ iff for each A € ALG"(L) and each A-
evaluation e we have e(p) = 1 whenever ¢['] C {1}.

Filters corresponding to a logic L are, in Alge-
braic Logic, defined as sets closed under all possible
derivations in the logic.

Definition 8 Let A be an L-algebra. We say that
F C A is an L-filter, if for each T U {p} C Fmg:
' ki @ implies that for each A-evaluation e, we
have e(p) € F whenever e[I'| C F.

Note that we have defined the notion of L-filter
on all algebras of the proper signature and not only
on the L-algebras. This is related to a more general
notion of semantics, the so-called logical matrices.
Indeed F is an L-filter in A iff the tuple (A, F') is a
matrix model of L. However to keep the exposition
straightforward we will not go into details here.

It is well-known that the filters defined this way
correspond straightforwardly to the congruences.
Again, we present just a simplified version, in par-
ticular we will assume that ALG*(L) is a variety.
Then for any A € ALG"(A) holds:

o the relation ~p defined as
x~py ff r—oyeFandy—zeF
is a congruence on A for any L-filter F.
e the set F. = {z € A |z ~ 1} is an L-filter for
any congruence ~ on A.
e F . =Fand ~p_ =n~.

2In this paper, for simplicity, we will omit the prefixes and
speak simply about ‘residuated lattices’ and ‘Ré-monoids’.
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Thus we can reformulate our definition of
ALG*(L) as: A € ALG™(L) iff {1} is an L-filter
and ~ = Id.

The following observation greatly simplifies the
task of recognizing whether F' is an L-filter (the first
part is easily proved by induction over the complex-
ity of the proof of ¢ in I, the second one follows from
the fact that 1 has to be in all filters and all axioms
are necessarily evaluated to 1 in any L-algebra).

Lemma 9 Let AX be a presentation of a Rasiowa-
implicative logic L and A an L-algebra. Then F C
A is L-filter iff

1. for each aziom ¢ and for each A-evaluation e
we have e(p) € F,

2. for each deduction rule I' > ¢ € AX and for
each A-evaluation e we have e(p) € F when-
ever e[I'] C F.

If furthermore A € ALG"(L) we can replace the
first condition by

1/ 1€ F.

Because the logic BL (and all other logics men-
tioned in Table 2) can be presented with modus
ponens ({p,p — ¢} > q) as the only deduction rule
we obtain:

Example 10 Let A be a BL-algebra. Then ' C A
is a BL-filter iff 1 € F and for each x,y € A we
have y € F whenever z,x — y € F.

3. R-L-filters

In this section we will present general results cov-
ering the four types mentioned in the introduction.
Let us fix a Rasiowa-implicative logic L in that lan-
guage L and a set R of L-consecutions.

3.1. Basic definition and examples

Definition 11 Let A € ALG"(L). An L-filter F is
called R-L-filter if it satisfies the following condition
for every A-evaluation e and every I' > ¢ € R: if
e[l']| C F then e(p) € F.

It is quite obvious that this general def-
inition corresponds to the wusual practice
(in the papers mentioned in the introduc-
tion) of introducing a special classes of fil-
ters.? Indeed e.g. the fantastic BL-filters are
{r—="(¢—=p),r> ((p = q — q) = p}-BLAilters
in the sense of this definition; for more examples of
this kind see Tables 4 and 5.

3There is a minor difference, caused by the fact that the
authors sometimes define, e.g. in BL, ‘fantastic filter’ as a
set containing 1 and satisfying the ‘fantastic’ property. Only
then (!) they prove that it is indeed a filter, i.e., closed under
modus ponens. Thus strictly speaking our general notions
coincide with theirs only after we prove that the particular
properties in question implies that the set in question is in-
deed a filter.




Table 4: Traditional formulation

Type of Condition in traditional form

L-filter

Implicative| ifx — (y — 2) € Fandx — y € F,
thenx -z € F

Positive ife - ((y = 2) - y) € F and

implicative| = € F', then y € F

Fantastic | if 2 - (y — ) € F and z € F,
then ((x > y) »y) > x € F

Boolean zV-zel

Regular -z —zel

Table 5: Our formulation

Type of The corresponding set R

L-filter

Implicative| p — (¢ = r),p—>qg>p—r
Positive p—((g—r)—q),p>yq
implicative

Fantastic | r = (¢q—p),r>((p—¢) —q) —=p
Boolean >pV-p

Regular > ——p—=Dp

3.2. General results

The main idea which allows us to summarize in
this short subsection the results of dozens of arti-
cles about special types of filters can be roughly
expressed as: “a special type of filter in an algebra
of a weaker logic is a (standard) filter in a stronger
logic”. Recall that the expression L + R denotes
the extension of the logic L by the consecutions R.
Using Lemma 9 we can easily prove that:

Proposition 12 Let A € ALG*(L)) and F be an
L-filter on A. Then F is an R-L-filter on A if and
only if F is (L + R)-filter on A.

This proposition together with the fact that the
condition 1 in the definition of L-algebra could be
replaced by ‘{1} is L-filter’ gives us:

Proposition 13 Let R be a set of L-consecutions
and A € ALG*(L). Then A € ALG"(L + R) iff
{1} is R-L-filter.

Now we can present the first of four theorems
generalizing the theorems known from the literature
as presented in the introduction. Its proof is based
on the previous proposition and the fact that for
any logic L, any of its axiomatic extensions L’ and
A € ALG*(L') holds that F is an L-filter iff it is
an L/-filter (this fact easily follows from Lemma 9).

Theorem 14 (Results of type 1.) Let R be a
set of L-consecutions such that L+R is an axiomatic

extension of L. Then the following statements are
equivalent for each A € ALG*(L):

1. all L-filters are R-L-filters,
2. {1} is R-L-filter,
3. Ae ALG*(L+R).
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We can easily show that Lukasiewicz logic equals
to BL+{r — (¢ = p),r > ((p = ¢) = q) — p}
and so we obtain the first result mentioned in the
introduction.

To prove the results of the second type we first
observe that if L+ R C L+ Rs then we can without
a loss of generality assume that Ry C Ry. Thus if F
is an Rs-L-filter on A, then F' is also an Ri-L-filter
on A. This gives us one non-trivial implication in
the next theorem (1. implies 2.), the other one (3.
implies 1.) is a rather straightforward consequence
of the completeness theorem and Proposition 13.

Theorem 15 (Results of type 2.) Let L be Ry,
Ry be sets of L-consecutions. Then the following
statements are equivalent:

1. L+ Ry =L+ Rs.

2. For every A € ALG*(L) and L-filter F holds:
F is an Ry-L-filter iff F' is Ro-L-filter.

3. For every A € ALG™(L) holds: {1} is an R;-
L-filter iff {1} is an Ro-L-filter.

Again, taking for R; the ‘fantastic property’ and
for Ry the rule - ((p — 0) — 0) — p a simple
syntactic proof (BL+Rs is the usual presentation of
Lukasiewicz logic) give us the second result from the
introduction. In fact this theorem gives two ways
of proving this kind of results: either syntactically
or just by checking it for the filter {1}.

In the next theorem we will cover the results of
type three (supersets of special filters). We again
assume that L + R is an axiomatic extension of L.
Thus there has to be some set of axioms Az and we
know that (due to the previous theorem) F is R-L-
filter iff it is Az-L-filter. As elements of Ax are just
axioms, this is equivalent to the fact that e(p) € F'
for each ¢ € Ax. Clearly, this property is preserved
if we take any G D F.

Theorem 16 (Results of type 3.) Let R be a
set of L-consecutions such that L+R is an aziomatic
extension of L, and A € ALG™(L). Further assume
that F' is an R-L-filter on A and G is an L-filter on
A such that F C G.

Then G is also an R-L-filter on A.

Again, the particularization of this theorem for
BL and fantastic filters gives us the third result from
the introduction.

The final type of results deals with factorization
by a filter F' (i.e., by the congruence ~g). We for-
mulate the theorem in a more complex way, note
that the equivalence of the the last three conditions
is established in Theorem 14, and the equivalence
of the first and the last claim can be proved in a
straightforward way.

Theorem 17 (Results of type 4.) Let R be a
set of L-consecutions such that L+R is an aziomatic
extension of L, A € ALG*(L), and F an L-filter
on A. Then the following are equivalent:



1. F is an R-L-filter on A,

2. A/F € ALG*(L+R),

3. every L-filter on A/F is an R-L-filter,
4. {1} is R-L-filter on A/F.

4. Applications of general results

Before we apply our results to derive particular ex-
amples known from the literature, we need to prove
one crucial lemma. On the other hand, this lemma
is all we need to start generating both known and
previously unknown results.

Lemma 18 Using the name of the filter-defining
property for the corresponding consecution (see Ta-
bles 4 and 5) we can prove:

e Classical logic is FLgy, (or any other logic from
Table 2) + boolean or positive implicative or
(e =) = .

e C(lassical logic is IMTL + implicative.

o Lukasiewicz logic is divFLg,, or BL + fantas-
tic.

e Gadel logic is MTL or BL + implicative.

o Intuitionistic logic is FLey or divFLe, + im-
plicative.

Proof As an example, we are going to demonstrate
the one but last statement: Let R be the implicative
condition. As MTL and BL both prove ¢ — (¢ —
w&p) and ¢ — ¢ we obtain that both MTL+ R and
BL+R proves ¢ — @&, i.e., they extend the Godel
logic. Conversely, from the fact that ¢ — (¢ —
X) F v — (¢ = Xx), holds in both MTL and BL
we obtain ¢ = (¢ = x), ¢ = Y F o = (¢ = X),
by transitivity. Residuation plus the Goédel axiom
@ — ¢ & ¢ completes the proof.

4.1. Generation of known results

Now we give a (small) sample of corollaries of our
general results and the previous lemma together
with reference to papers where it was proven in a
‘direct’ way.

Results of type 1

Corollary 19 ([7]) Let A be a BL-algebra.
following statements are equivalent.

The

1. Every BL-filter on A is an implicative/positive
implicative /fantastic BL-filter.

2. {1} is an implicative/positive implicative/fan-
tastic BL-filter on A.

3. A is Gédel/Boolean/MV -algebra.

Corollary 20 ([10]) In any R¢-monoid A the fol-
lowing conditions are equivalent:

1. Every filter on A is an implicative/positive im-
plicative/fantastic filter.

2. {1} is an implicative/positive implicative/fan-
tastic filter.
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3. A is Heyting algebra/Boolean/MV -algebra.

Corollary 21 ([12]) In any residuated lattice L
the following conditions are equivalent:

1. Every filter on L is a Boolean/regular filter.

2. {1} is a Boolean/regular filter.

3. L is Boolean algebra/involutive residuated lat-
tice i.e. residuated lattice satisfying ——xr = x
for all x € L.

Results of type 2.

Corollary 22 ([9]) For any filter F of a BL-
algebra A, the following conditions are equivalent:

1. F is an implicative/positive
tive/fantastic filter,

220 > 2x&e € F /(- —>2) >xeF/
——x = x € F for every x € A.

implica-

Corollary 23 ([9], [10]) Boolean and positive im-
plicative filters of any BL-algebra coincide.

Corollary 24 ([10]) If F is a filter of an R(-
monoid A, then the following conditions are equiv-
alent:

1. F is a fantastic filter of A.
2. -—x — x € F for every x € A.

Results of type 3.

Corollary 25 ([7]) Let A be a BL-algebra. If F
is a implicative/positive implicative/fantastic filter
on A, then every filter G containing F is also an
implicative /positive implicative/fantastic filter.

Corollary 26 ([10]) If F and G are filters of
an Rl-monoid A, FF C G and F is an im-
plicative/positive implicative/fantastic filter on A,
then G is also an implicative/positive implica-
tive/fantastic filter on A.

Corollary 27 ([12]) Let L be a residuated lattice.
If F is a regular filter of L, then every filter G con-
taining F is also a regular filter of L.

Results of type 4.

Corollary 28 ([7]) Let A a BL-algebra, F a fil-
ter. Then F is an implicative/positive implica-
tive/fantastic filter on A if and only if every fil-
ter on the quotient algebra A/F is an implica-
tive /positive implicative/fantastic filter.

Corollary 29 ([10]) A filter F' of an R{-monoid
A is Boolean/implicative/fantastic if and only if
A/F is an Boolean/Heyting/MV -algebra.

Corollary 30 ([12]) Let F be a filter of a resid-
uated lattice L. Then the following assertions are
equivalent:

1. F is a Boolean filter of L.
2. The quotient residuated lattice L/F is a
Boolean algebra.



4.2. Generating new ‘original’ results

Now we are going to demonstrate how our theory
could be (ab)used to generate new ‘original’ results
matching presented patterns. We can formulate
results that (probably) nobody formulated so far.
First, we could generalize known results to other
classes of algebras:

Corollary 31 (Type 1.) Let A be an IMTL-
algebra. The following statements are equivalent.

1. Fvery IMTL-filter on A is an implicative
IMTL-filter.

2. {1} is an implicative IMTL-filter on A.

3. A is Boolean algebra.

Corollary 32 (Type 2.) Boolean and implicative
filters of any IMTL-algebra coincide.

Corollary 33 (Type 3.) Let A be an IMTL-
algebra. If F' is a implicative filter, then every filter
G containing F is also a implicative.

Corollary 34 (Type 4.) A filter F' of an IMTL-
algebra A is implicative iff every filter on the quo-
tient algebra A/ F is implicative.

Second, we could also define new classes of filters
(with as good motivation as those defined in the
literature have) and prove all four types of results.

Definition 35 Let A be a MTL-algebra. A filter F'
is called a contractional filter on A if for allxz € A
we have x — y € F whenever v — (z — y) € F.

As we know that MTL + contrational property
(expressed as consecution) is Godel logic, we imme-
diately obtain:

Corollary 36 (Type 1.) In any MTL-algebra A
the following conditions are equivalent:

1. Fvery filter on A is a contractional filter.
2. {1} is a contractional filter.
3. A is a Godel algebra.

Corollary 37 (Type 2.) Contractional and im-
plicative filters of any MTL-algebra coincide.

Corollary 38 (Type 3.) Let A be an MTL-
algebra, F,G C A filters. If F C G and F is a
contractional filter, then G is also a contractional

filter.

Corollary 39 (Type 4.) Let A a MTL-algebra
and F an MTL-filter. Then F is an contractional
filter on A if and only if every MTL-filter on the
quotient algebra A/F is a contractional filter.
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