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Abstract

We develop the general theory of RMV-algebras,
which are essentially unit intervals in Riesz spaces
with strong unit. Since the variety of RMV-algebras
is generated by [0, 1], we get an equational charac-
terization of the real product on [0,1] interpreted as
scalar multiplication.
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MV-algebra,

1. Introduction

An MV-algebra is a structure (A,®,*,0), where
(A,®,0) is an abelian monoid and the following
identities hold for all x,y € A: (z*)* =z, 0* P =
0* and (z* @ y)* Dy = (y* ®x)* ®z. Note that ev-
ery MV-algebra A is a bounded distributive lattice,
where xVy=2@ (z®y*)* and x Ay = (z* Vy*)*
forany z, y € A. If we set Oy = (*®y*)* then ®
is the Lukasiewicz t-norm on [0,1]. The residuum
is defined by z — y:=z* D y.

MV-algebras are the algebraic structures of
FLukasiewicz oo-valued logic. The real unit interval
[0,1] equipped with the operations z* = 1 — z and
x®y = min(1l, z+y) is the standard MV-algebra, i.e.
an equation holds in any MV-algebra if and only if
it holds in [0,1]. In [19] Mundici proved that MV-
algebras are categorically equivalent with abelian
lattice-ordered groups with strong unit. Conse-
quently, any MV-algebra is, up to isomorphism,
the unit interval of an abelian lattice-ordered group
with strong unit. We refer to [2] for all the unex-
plained notions concerning MV-algebras.

If we consider Riesz spaces [3, 16] with strong
unit instead of lattice-ordered groups, then the unit
interval is closed to the scalar multiplication with
scalars from [0, 1].

The idea of considering these structures is also
related to the problem of axiomatizing the real
product on [0,1]. These investigations led to the
definition of PMV-algebras (product MV-algebras)
[4]. The analogue of Mundici’s theorem for PMV-
algebras was obtained by Di Nola and Dvurecen-
skij [4]: there exists a categorical equivalence be-
tween PMV-algebras and lattice-ordered rings with
strong unit (fu-rings). Due to a result of Isbell [12],
the class of PMV-algebras is larger than intended.
In [17], Montagna axiomatized the quasi-variety of
PMV-algebras generated by [0, 1].
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Interpreting the product as scalar multiplication
with scalars from [0, 1], the standard algebra [0, 1]
generates the variety of Riesz MV-algebras (RMV-
algebras, shortly). These structures are, up to iso-
morphism, unit intervals in Riesz spaces with strong
unit. Our goal is to develop a theory for these struc-
tures and to investigate their relevance within MV-
algebras.

Note that RMV-algebras are particular MV-
modules, structures defined in [6]. Consequently,
some results presented in this paper are obtained
from general results proved in [6, 14].

The second section contains basic facts on RMV-
algebras. = We specialize Mundici’s equivalence
to RMV-algebras and Riesz spaces with strong
unit and we establish an adjunction between MV-
algebras and RMV-algebras. Consequently, any
MV-algebra has an RMV-algebra cover. We get
a particular characterization for semisimple RMV-
algebra and we recall a construction from [5], where
the Riesz spaces are proved to be categorical equiv-
alent with a particular class of RMV-algebras.

In the third section we characterize the variety of
RMV-algebras and we prove that it is generated by
the standard RMV-algebra [0,1]. We also charac-
terize the free RMV-algebras with n generators as
algebras of Mc Naughton functions with real coeffi-
cients.

The last section present Lg, a propositional cal-
culus which has RMV-algebras as models. This
calculus has standard completeness with respect to
[0,1]. In the end we prove a theorem of approxima-
tion: any continuous function h : [0,1]" — [0, 1] is
uniform limit of functions corresponding to formu-

las of Lg.

2. RMV-algebras

In [6] the authors defined the structure of MV-
module over a PMV-algebra. The RMV-algebras
are the unital MV-modules over [0, 1], where the
PMV-algebra structure of [0,1] is given by the real
product. Hence the general theory of MV-modules
[6, 14] can be applied to RMV-algebras.

Definition 2.1 A Riesz MV-algebra (RMV-
algebra) is a structure (R,-), where R is an
MV-algebra and - : [0,1] x R — R is such that
the following properties hold for any x, y € R and
r, q €10,1]:

(RMV1)(r-z)o(ry) = 0and r-(x®y) = (r-z)®(r-y)
whenever x © y = 0,



(RMV2)(r-z)®(q-z) = 0 and (rdq)-z = (r-x)®(g-x)
whenever r © g = 0,

(RMV3)(r-q) -x=1-(q- ),

(RMV4)1 -z = x.

We shall frequently denote an RMV-algebra (R, )
by its MV-algebra support R and we shall simply
write rz instead of r - x for r € [0,1] and = € R.

Example 2.2 (1) ([0,1],-) is an RMV-algebra,
where - is the real product. Moreover, due to a
result of Hion [9][Chapter IV, Proposition 2], one
can prove that this is the only structure of RMV-
algebra on [0, 1] and it will be called the standard
RMV-algebra.

(2) If X is a compact Hausdorff space, then
C(X)={f: X — [0,1]|f continuous} is an RMV-
algebra, with the scalar multiplications defined by
(rf)(x) :=rf(x) for any x € X.

The following example is the motivation of our
theory.

Example 2.3 The unit interval of a Riesz space.
Let (V,u) be a Riesz space with strong unit [16, 3].
Hence the unit interval I'(V, u) = ([0, u]y, ®,*,0) is
an MV-algebra by Mundici’s categorical equivalence
[18]. Moreover, rz € [0,u] whenever r € [0,1] and
x € [0,u]. It is straightforward that I'(V,u) is an
RMV-algebra.

If R is an RMV-algebra and I C R is an MV-
ideal, then rx € I for any r € [0,1] and = € [
[6][Remark 3.15]. Hence, the MV-ideals and the
RMV-ideals coincide, i.e. the MV-algebra congru-
ences are compatible with the scalar multiplication.
Consequently, if f : Ry — Rs is an MV-algebra
homomorphism then f(rz) = rf(z) r € [0,1] and
x € Ry, so RMV-algebra homomorphisms are MV-
algebra homomorphisms between RMV-algebras, so
we specialize Mundici’s categorical equivalence as
follows.

Theorem 2.4 [6] The category of RMV-algebras
with MV-algebra homomorphisms is equivalent to
the category of Riesz spaces with strong unit with
unit preserving Riesz homomorphisms. As a conse-
quence, for any RMV-algebra R there exists a Riesz
space with strong unit (V,u) such that R is isomor-
phic with T'(V, u).

Chang’s representation theorem for MV-algebras
[2] immediately yields a similar representation for
RMV-algebras.

Theorem 2.5 Any RMV-algebra R is isomorphic
with a subdirect product of linearly ordered RMV-
algebras.

Proof. There is an MV-algebra embedding h :
R = [1pespec(r) /P, where Spec(R) is the prime
ideal space of R. But any ideal P is an RMV-algebra
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ideal, so R/P is an RMV-algebra. Hence h is an
RMV-algebra embedding.

The relation between MV-algebras and RMV-
algebras can be expressed using the tensor product
of MV-algebras ® defined in [20].

Proposition 2.6 For any MV-algebra A, the ten-
sor product [0, 1]® A has an RMV-algebra structure
such that the following properties hold:

(a) r(¢g®x) = (rq) @z for any r, ¢ € [0,1],z € A,
(b)the function t4 : A — [0,1] ® A defined by
ta(z) == 1@z for any z € A is an MV-algebra
embedding.

Moreover, for any RMV-algebra R and any MV-
algebra homomorphism f A — R there
exists a unique RMV-algebra homomorphism
fo:[0,1] ® A — R such that fgowta = f.

Proof. (a) is proved in [7][Theorem 4.1].

(b) By [20][Proposition 2.3], ¢4 is an MV-algebra
homomorphism. The fact that ¢4 is an embedding
was proved by F. Montagna and T. Flaminio (pri-
vate communication).

The above results asserts that any MV-algebra
has an RMV-algebra hull. This construction yields
an adjunction between the category MV of MV-
algebras and the category RMYV of RMV-algebras.
Let us define the functors

U:RMY - MV and Tg : MV — RMV

as follows: U is the forgetful functor forgets the
scalar multiplication and Tg(A4) = [0,1] ® A for
any MV-algebra A. If h: A — B is an MV-algebra
homomorphism then tgoh: A — [0,1] ® B, using
Proposition 2.6, we get an RMV-algebra homomor-
phism (tpoh)g :[0,1]® B — [0,1] ® A. Hence we
define Tg(h) := (tpoh)g whenever h : A — B is an
MV-algebra homomorphism.

Theorem 2.7 (7g,U) is an adjoint pair.

Proof. For a detailed proof in the general setting
of MV-modules see [14][Proposition 7.29]. It is ob-
vious that 7g is a functor. Let A be an MV-algebra
and R an RMV-algebra. By Proposition 2.6, for
any MV-algebra homomorphism f : A — U(R)
there exists a unique RMV-algebra homomorphism
fe : Te(A) — R such that U(fg)ota = f. This
proves that Tg is left adjoint to U.

Proposition 2.8 An MV-algebra A admits an
RMV-algebra structure if and only if A ~ [0, 1]® A.

Proof. If Ais an RMV-algebra then, by Proposi-
tion 2.6, there exists a unique RMV-algebra homo-
morphism (I4)g such that (I4)g ota = L4, where
I4: A — A is the identity function. We only have
to prove that 14 o (I4)g = Ijp,1j94, but this is true
since the two functions coincide on the generators of



0,1]@A,ie. rez=r(1®z) =ria(x) =a(rz) =
ta((Ia)g(r @ x)) for any r € [0,1] and = € A.

We further emphasize some properties of RMV-
algebras.

Lemma 2.9 For any RMV-algebra the
following properties hold.
(a) The function r +— r -
[0,1] in R.

(b) For any maximal ideal M C R, R/M ~ [0, 1].

(R7 )

1gr is an embedding of

Proof. (a) By Theorem 2.4, we can take R =
I'(V,u) for some Riesz space with strong unit v and
the intended result follows from the properties of
Riesz spaces.

(b) For any maximal ideal M C R, the MV-algebra
R/M is simple, so it is a subalgebra of [0, 1]. Using
(a), we get R/M ~ [0,1].

As a consequence of the previous lemma, the only
simple RMV-algebra is [0, 1].

Recall that an MV-algebra is archimedean if the
corresponding lattice-ordered group is archimedean.
Archimedean MV-algebras are equivalent with the
semisimple ones, i.e. those with the property that
Rad(A) = ({M C AIM € Max(A)} = {0},
where Max(A) is the maximal ideal space of A.
Consequently, semisimple and archimedean RMV-
algebras will coincide. Since the unique simple
RMV-algebra is [0, 1], any semisimple RMV-algebra
is isomorphic with a subdirect product of copies of
[0, 1].

For any MV-algebra A, Max(A) is a compact
Hausdorff space with respect to the spectral topol-
ogy. For a nonempty set X, an MV-subalgebra S
of [0,1]% is separating if whenever x # y € X there
exists f € S such that f(z) = 0 and f(y) > 0.
It is known that any archimedean MV-algebra A
is isomorphic with a separating MV-subalgebra of
C(Max(A)) [2].

We can further specialize the characterization of
semisimple RMV-algebras.

Let us firstly recall the MV-algebraic version of
Stone-Weierstrass theorem.

Theorem 2.10 (Stone-Weierstrass for RMV-
algebras )[15] Assume X is a compact Hausdorff
space. Every separating RMV-subalgebra A
of C(X) is dense in C(X) with respect to the
sup-norm.

Theorem 2.11 (Characterization of semisimple
RMV-algebra) Any semisimple RMV-algebra R is
isomorphic with a dense (w.r.t. to the sup-norm)
subalgebra of C(Max(R)).

Proof. By Stone-Weierstrass theorem, R is dense

in C(X).

In the end of this section we recall an important
construction defined in [5]
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Remark 2.12 Let V be a Riesz space and R X,
V be the lexicographic product. Hence (1,0) is
a strong unit, so R = T'(R X, V,(1,0)) is an
RMV-algebra. Denote RMVe, the class of RMV-
algebras R with the property that R ~ I'(R X,
V., (1,0)) for some Riesz space V. This class is ax-
iomatized in [5].

Theorem 2.13 [5][Theorem 4.6] RMV,, is equiv-
alent with the category of Riesz spaces.

If T is an MV-algebra and a # 0 in T then the
interval ([0, al, ®4,**,0) is an MV-algebra with the
operations defined by: x @,y := (x ®y) Aa, z** =
x* ® a. Note that, whenever T' is an RMV-algebra,
the interval [0, a] is closed to scalar multiplication,
so [0, a] is an RMV-algebra.

The following result allows us to assert that the
class RMV., stands to RMV-algebras as perfect
MV-algebras stand to MV-algebras.

Lemma 2.14 For any RMV-algebra R there exists
an RMV-algebra T in RMV,., and an element a #
0 in T such that R ~ [0, a.

Proof. If R is an RMV-algebra then R ~ I'(V,u)
for some Riesz space with strong unit (V,u). Set
T :=T(R X V,(1,0)) and a := (0,u). Then the
intended conclusion is straightforward.

3. Equational characterization.
Free RMV-algebras.

We show that the class of RMV-algebras is the va-
riety generated by [0, 1].

Theorem 3.1 If R is an MV-algebra and
-:10,1] x R — R then (R,-) is an RMV-algebra if
and only if the following identities are satisfied for
any r, ¢ € [0,1] and z,y € R:

(r) © ((r v q)2)* =0,

(rogz=(rz) © ((r Ag)”,

r(gz) = (r- q)z,

r(z©y*) = (rz) © (ry)*,

1

Proof. It follows by [8][Corollary 3.13]. For a
detailed proof one can see [14][Corollary 6.45].

The free objects in a variety always exists. In
the category of RMV-algebras we get the following
particular characterization.

Proposition 3.2 For any set X, the free RMV-
algebra generated by X is [0,1] ® Freeyv(X),
where Freepry(X) is the free MV-algebra gener-
ated by X.

Proof. It is straightforward by Proposition 2.6.

We prove that an identity holds in the theory
of RMV-algebras if and only if it holds in the



standard RMV-algebra [0,1]. Our approach fol-
lows closely the proof of Chang’s completeness the-
orem for Lukasiewicz logic [1]. To any sentence
in the first-order theory of RMV-algebras we as-
sociate a sentence in the first-order theory of Riesz
spaces such that the satisfiability is preserved by
the T' functor. The first-order theory of RMV-
algebras, as well as the theory of Riesz spaces, are
obtained considering for each scalar r an unary
function p, which denotes in a particular model
the scalar multiplication by r, ie. = £ rz. In
the following, the language of RMV-algebras is
Lrmv = {8,%,0,{pr}rc0,1)} and the language of
Riesz spaces is »CRiesz = {S; +, =V, A 0; {PT}TGR}~

Let t(v1,...,v;) be a term of Lryy and v a
propositional variable different from vy, ..., vy. We
define ¢ as follows:

- if ¢ = 0 then 0 is 0,

-ift=v then ¢ is v

-if t =t then t is v — 1y,

-ift =t ®ty then tis (£, +t2) A v,

- if t = p.(t) then t is p,(t1).
Let p(v1, .. .,vg) be a formula of L gy such that all
the free and bound variables of ¢ are in {v1,...,v;}
and v a propositional variable different from v, ...,
vk. We define ¢ as follows:

- if ¢ is t; = to then gEis~t~1 = to,

- if ¢ is =) then ¢ is 7,

- if ¢ is ¥V x then @ is ¥V and similarly for

A, =, &,

- if ¢ is (Vv;)9) then @ is

Vi (0 < 0)A(v; < v)—),

- if ¢ is Jv;9p then ¢ is

Fu; (0 < v)A(v; < v)—).

Thus to any formula ¢(vy, ..., vk) of Lray we asso-
ciate a formula @(vy,...,vg,v) of LRjes-. As a con-
sequence, to any sentence o of Lrysy corresponds a
formula with only one free variable 7(v) of Lgjes.-

Proposition 3.3 Let (V,u) be a Riesz space with
strong unit and R = I'(V,u). If o is a sentence in
the first-order theory of RMV-algebras then

R E o if and only if V = o[u].

Proof. By structural induction on terms it fol-
lows that t[ai,...,a,] = tla1,...,an,u] whenever
t(vi,...,v,) is a term of Lrpyy and aq, ..., a, € R.

The rest of the proof is straightforward.

Theorem 3.4 An equation o in the theory of
RMV-algebras holds in all RMV-algebras if and
only if it holds in the standard RMV-algebra [0, 1].

Proof. One implication is obvious. To prove
the other one, let R be an RMV-algebra such that
R t£ 0. Since R ~ I'(V,u) for some Riesz space
with strong unit (V,u), we have that I'(V,u) £~ o.
Using Proposition 3.3, we infer that V' F~ o[u] in the
theory of Riesz spaces. Since the order relation in
any lattice can be expressed equationally, we note
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that o(v) is a quasi-identity. By [13][Corollary 2.6]
a quasi-identity is satisfied by all Riesz spaces if and
only if it is satisfied by R. Hence there exists a real
number ¢ > 0 such that R = [c]. Since R [ 7[0],
we get ¢ > 0. If follows that f : R — R defined
by f(x) + z/c is an automorphism of Riesz spaces.
We infer that R = 1], so [0,1] £ o.

Corollary 3.5 [0, 1] generates the variety of RMV-
algebras.

Given t(vy, -+ ,v,) aterm in Ly we define the
term function f; : [0,1]™ — [0, 1] as usual (see [?] for
the general theory). In the theory of MV-algebras,
the term functions are Mc Naughton functions [2],
i.e. continuous piecewise affine functions with in-
teger coeflicients. We immediately obtain a similar
description for the term functions in Lgpsy .

Definition 3.6 Let n > 1 be a natural number.
A Mc Naughton function with real coefficients is
a continuous function f : [0,1]" — [0, 1] which
satisfies the following condition:

there exists a finite number of affine functions (with
real coefficients) ¢1, ..., qx : " — R such that for
any (a,...,a,) € [0,1]" thereisi € {1,...,k} with
fla,...;an) = qilar, ..., an,).

Theorem 3.7 If t(vy, -+ ,v,) is a term in Lpyy
then the term function f; : [0,1]™ — [0,1] is a Mc
Naughton function with real coefficients.

Proof. We prove the conclusion by structural
induction on terms:

- if t is v; for some i € {1,...,n} then f; = m; (the
i-th projection);

-if tis t1 @ty and let qq,. .., ¢, be the polynomials
of f;, and p1,...,pr be the polynomials of f;,; then
ft is defined by the polynomials {1} U {si;}i;,
where s;; = ¢; + p; for any i € {1,...,s} and
je{l,...,rk

- tis t7 and ¢,...,qs are the corresponding poly-
nomials of f;,, then i 1 — ¢i,...,1 — ¢s are the
polynomials of fi;

-t is pr(t1) for some r € [0,1] and ¢y,. . .,q5 are the
corresponding polynomials of f;,, then i rq1,...,rqs
are the polynomials of f;.

Remark 3.8 Term functions and Mc Naughton
functions with integer coefficients coincide in the
case of MV-algebras. It is an open question if this
holds for RMV-algebras too:

(x) given f : [0,1]" — [0,1] a Mc Naughton func-
tion with real coefficients, can we find a term t in
Lpr such that f = f;?

Note that, for f : [0,1]" — [0,1] a Mc Naughton
function with real coefficients, there are finite sets
I and J such that

f= Vie] /\jeJ fij’



where f;; : [0,1]* — R are affine functions with
real coefficients [21, Theorem 2.1]. It follows that it
would be enough to answer (x) for affine functions
with real coefficents.

In Section 4 we develop a propositional calculus
for RMV-algebras. Since the primary connectives of
FLukasiewicz logic are — and —, we have to provide
an equational characterization of the scalar multi-
plication using implication and negation.

Remark 3.9 [14, Section 6.4] Let R be an MV-
algebra and o : [0,1] x R — R such that the follow-
ing properties hold for any z, y € Rand r, q € [0,1]:
(1) 7o )= (rox) = (ro)
(2°) (r @ g7 oz = ((r Ag)oz) = (row),
(3°) r (qox) (r-q)ox
(£) ((rVa)oz) > (roz) = 1,
(5°) loz ==z.
We call dual RMV-algebra a structure (R,o) as
above. If R is an MV-algebra and o : [0,1] x R — R
we define

r-x:=(ro(z*))* forany z € R, r € [0,1].
Hence (R, -) is an RMV-algebra if and only if (R, o)
is a dual RMV-algebra [14].

4. A propositional calculus for
RMYV-algebra

We develop in a classical way a propositional calcu-
lus L that have RMV-algebra as models. One can
see [14] for detailed proof in the general setting of
MV-modules. Note that Theorem 4.5 and Theorem
4.6 are not proved in general.

The language of the propositional calculus Lp
consists of:
- denumerable many propositional variables: v,

cUpy e

(the set of all the propositional variables will be
denoted by Var),
- the logical connectives of £: — (binary) and -
(unary),
- unary logical connectives : ¢, for any r € [0, 1], -
parentheses: (and ).
We denote by Form(Lg) the set of formulas, which
are defined inductively as usual.

Definition 4.1 The axioms of L are defined as

follows:

a formula which has one of the following forms is

an axiom (where @, ¥ and x are arbitrary formulas

and r, g are arbitrary elements of [0, 1]):

(Ll o= (Y — <p)
( = (¥ = x) = (¢ = X)),

((p=9) =) = (¥ =) = o),

(=Y = =) = (¢ = ¥)

Or(p = ¥) & (Orp = Orth),

<> (rog* )‘P <~ (<>r/\q§0 — <>T(10)

Or <>q90 = Or. q¥s

<>7"\/q90 — <>r§07

O

Note that (L1)-(L4) are the axiom of L.ukasiewicz
logic. Note that the axioms (F1)-(F5) are the duals
of (R1)-(R5) if we consider that the term function
associated to Q¢ is (rfy;)*, where f, is the term
function of .

The deduction rule of Lg is modus ponens:
¢, o=

(G

. Proofs are defined as usual.

Proposition 4.2 (Deduction theorem)
OU{ptFyiff ©F ¢ — ¢ for some n > 1,
where ¢™ denotes ¢ ® --- ® .
—_——

n times

We define the Lindenbaum-Tarski algebra. In the
sequel © C Form(LR) is a fixed set of formulas. For
any two formulas ¢ and v we define

p=oyif OFp —>vYand OF Y — .

Since =g is an equivalence relation on Form(Lg),
we denote [ple the equivalence class of ¢ with re-
spect to =g.

On Form(Lgr)/=e we define the following oper-
ations:

[ele = [w]@,

[ple = [Y]e : = [p = Yo,
[vle © [Y]eo =[<w>+w1 o
lo : = [ ]@, where O | ¢,
O : =

Sl (oo

With the above operations, Form(Lg)/=e is an
RMV-algebra by Remark 3.9. When © = 0, we
denote Lindar := Form(Lr)/=p and this is the
Lindenbaum-Tarski algebra of RMV-logic.

Since the Lindenbaum-Tarski algebra is freely
generated by the set of variables, by Proposition
3.2, we get the following.

Corollary 4.3 Lindar ~ [0,1] ® Lindpy, where
Linday.; is the Lindenbaum-Tarski algebra of
Fukasiewicz logic.

Let R be an RMV-algebra. Following
Remark 3.9, an R-evaluation is a function
e: Form(Lg) — R which satisfies the following
conditions:

(el) e(p = ¥) = e(p)” @ (),

(€2) e(—p) = e(y)",

(3) e(0ap) = (ae()")",
for any ¢ € Form(Lg) and r € [0,1].

The notions of satisfaction and semantic conse-
quence are defined as usual.

According to [11], the system Lp is a core fuzzy
logic, hence the strong completeness with respect to
linearly ordered structures follows by [11, Theorem
2.11].

For Lr we also prove completeness with respect
to the standard model.



Theorem 4.4 (Strong completeness theorem) As-
sume O be a set of formulas and ¢ a formula of Lg.
The following are equivalent:

(a) O F o,

(b) © =R ¢ for any RMV-algebra R,

(¢) © ER @ for any linearly-ordered RMV-algebra
R.

Proof. The equivalence of (a) and (b) is straight-
forward. The equivalence with (c¢) follows by Theo-
rem 2.5. See also [11, Theorem 2.11].

Theorem 4.5 (Standard completeness) For a for-
mula ¢ of Lg, the following are equivalent:

(a) F o,

(b) Epo. -

Proof. It follows by Theorem 3.4.

As a direct consequence of the standard complete-
ness it follows that the logic of RMV-algebras is a
conservative extension of Lukasiewicz logic.

Finally, we prove an approximation result.

Theorem 4.6 (Approximation of continuous func-
tions) Let n > 1 be a natural number. For any
continuous function h : [0,1]™ — [0, 1] there exists
a sequence of formulas (), of Lr such that h is
the uniform limit of (fy, )n.

Proof. If Form, is the set of the formulas
which contain only the variables vy, ..., v,, then
R,, = Form,, /=y is the free RMV-algebra with n-
generators. By Theorem 3.7, R, is a semisimple
RMV-algebra. By Theorem 2.11, R, is dense in
C(X) in the sup-norm which proves our result.

Remark 4.7 The logical system briefly presented
in this chapter is strongly related with Rational
Lukasiewicz Logic developed in [10], where only
multiplication by rationals is considered. The alge-
braic structures of Rational Lukasiewicz Logic are
the divisible MV-algebras. Our system is also a con-
servative extension of Rational Lukasiewicz Logic.
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