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Abstract

We develop the general theory of RMV-algebras,
which are essentially unit intervals in Riesz spaces
with strong unit. Since the variety of RMV-algebras
is generated by [0, 1], we get an equational charac-
terization of the real product on [0,1] interpreted as
scalar multiplication.
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1. Introduction

An MV-algebra is a structure (A,⊕,∗ , 0), where
(A,⊕, 0) is an abelian monoid and the following
identities hold for all x, y ∈ A: (x∗)∗ = x, 0∗ ⊕ x =
0∗ and (x∗⊕ y)∗⊕ y = (y∗⊕ x)∗⊕ x. Note that ev-
ery MV-algebra A is a bounded distributive lattice,
where x ∨ y = x⊕ (x⊕ y∗)∗ and x ∧ y = (x∗ ∨ y∗)∗
for any x, y ∈ A. If we set x�y = (x∗⊕y∗)∗ then �
is the Łukasiewicz t-norm on [0, 1]. The residuum
is defined by x→ y := x∗ ⊕ y.

MV-algebras are the algebraic structures of
Łukasiewicz ∞-valued logic. The real unit interval
[0, 1] equipped with the operations x∗ = 1 − x and
x⊕y = min(1, x+y) is the standardMV-algebra, i.e.
an equation holds in any MV-algebra if and only if
it holds in [0, 1]. In [19] Mundici proved that MV-
algebras are categorically equivalent with abelian
lattice-ordered groups with strong unit. Conse-
quently, any MV-algebra is, up to isomorphism,
the unit interval of an abelian lattice-ordered group
with strong unit. We refer to [2] for all the unex-
plained notions concerning MV-algebras.
If we consider Riesz spaces [3, 16] with strong

unit instead of lattice-ordered groups, then the unit
interval is closed to the scalar multiplication with
scalars from [0, 1].

The idea of considering these structures is also
related to the problem of axiomatizing the real
product on [0, 1]. These investigations led to the
definition of PMV-algebras (product MV-algebras)
[4]. The analogue of Mundici’s theorem for PMV-
algebras was obtained by Di Nola and Dvurečen-
skij [4]: there exists a categorical equivalence be-
tween PMV-algebras and lattice-ordered rings with
strong unit (`u-rings). Due to a result of Isbell [12],
the class of PMV-algebras is larger than intended.
In [17], Montagna axiomatized the quasi-variety of
PMV-algebras generated by [0, 1].

Interpreting the product as scalar multiplication
with scalars from [0, 1], the standard algebra [0, 1]
generates the variety of Riesz MV-algebras (RMV-
algebras, shortly). These structures are, up to iso-
morphism, unit intervals in Riesz spaces with strong
unit. Our goal is to develop a theory for these struc-
tures and to investigate their relevance within MV-
algebras.

Note that RMV-algebras are particular MV-
modules, structures defined in [6]. Consequently,
some results presented in this paper are obtained
from general results proved in [6, 14].

The second section contains basic facts on RMV-
algebras. We specialize Mundici’s equivalence
to RMV-algebras and Riesz spaces with strong
unit and we establish an adjunction between MV-
algebras and RMV-algebras. Consequently, any
MV-algebra has an RMV-algebra cover. We get
a particular characterization for semisimple RMV-
algebra and we recall a construction from [5], where
the Riesz spaces are proved to be categorical equiv-
alent with a particular class of RMV-algebras.

In the third section we characterize the variety of
RMV-algebras and we prove that it is generated by
the standard RMV-algebra [0, 1]. We also charac-
terize the free RMV-algebras with n generators as
algebras of Mc Naughton functions with real coeffi-
cients.

The last section present LR, a propositional cal-
culus which has RMV-algebras as models. This
calculus has standard completeness with respect to
[0, 1]. In the end we prove a theorem of approxima-
tion: any continuous function h : [0, 1]n → [0, 1] is
uniform limit of functions corresponding to formu-
las of LR.

2. RMV-algebras

In [6] the authors defined the structure of MV-
module over a PMV-algebra. The RMV-algebras
are the unital MV-modules over [0, 1], where the
PMV-algebra structure of [0, 1] is given by the real
product. Hence the general theory of MV-modules
[6, 14] can be applied to RMV-algebras.

Definition 2.1 A Riesz MV-algebra (RMV-
algebra) is a structure (R, ·), where R is an
MV-algebra and · : [0, 1] × R −→ R is such that
the following properties hold for any x, y ∈ R and
r, q ∈ [0, 1]:
(RMV1)(r·x)�(r·y) = 0 and r·(x⊕y) = (r·x)⊕(r·y)
whenever x� y = 0,
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(RMV2)(r·x)�(q·x) = 0 and (r⊕q)·x = (r·x)⊕(q·x)
whenever r � q = 0,
(RMV3)(r · q) · x = r · (q · x),
(RMV4)1 · x = x.

We shall frequently denote an RMV-algebra (R, ·)
by its MV-algebra support R and we shall simply
write rx instead of r · x for r ∈ [0, 1] and x ∈ R.

Example 2.2 (1) ([0, 1], ·) is an RMV-algebra,
where · is the real product. Moreover, due to a
result of Hion [9][Chapter IV, Proposition 2], one
can prove that this is the only structure of RMV-
algebra on [0, 1] and it will be called the standard
RMV-algebra.
(2) If X is a compact Hausdorff space, then
C(X) = {f : X → [0, 1]|f continuous} is an RMV-
algebra, with the scalar multiplications defined by
(rf)(x) := rf(x) for any x ∈ X.

The following example is the motivation of our
theory.

Example 2.3 The unit interval of a Riesz space.
Let (V, u) be a Riesz space with strong unit [16, 3].
Hence the unit interval Γ(V, u) = ([0, u]V ,⊕,∗ , 0) is
an MV-algebra by Mundici’s categorical equivalence
[18]. Moreover, rx ∈ [0, u] whenever r ∈ [0, 1] and
x ∈ [0, u]. It is straightforward that Γ(V, u) is an
RMV-algebra.

If R is an RMV-algebra and I ⊆ R is an MV-
ideal, then rx ∈ I for any r ∈ [0, 1] and x ∈ I
[6][Remark 3.15]. Hence, the MV-ideals and the
RMV-ideals coincide, i.e. the MV-algebra congru-
ences are compatible with the scalar multiplication.
Consequently, if f : R1 → R2 is an MV-algebra
homomorphism then f(rx) = rf(x) r ∈ [0, 1] and
x ∈ R1, so RMV-algebra homomorphisms are MV-
algebra homomorphisms between RMV-algebras, so
we specialize Mundici’s categorical equivalence as
follows.

Theorem 2.4 [6] The category of RMV-algebras
with MV-algebra homomorphisms is equivalent to
the category of Riesz spaces with strong unit with
unit preserving Riesz homomorphisms. As a conse-
quence, for any RMV-algebra R there exists a Riesz
space with strong unit (V, u) such that R is isomor-
phic with Γ(V, u).

Chang’s representation theorem for MV-algebras
[2] immediately yields a similar representation for
RMV-algebras.

Theorem 2.5 Any RMV-algebra R is isomorphic
with a subdirect product of linearly ordered RMV-
algebras.

Proof. There is an MV-algebra embedding h :
R→

∏
P∈Spec(R)R/P , where Spec(R) is the prime

ideal space ofR. But any ideal P is an RMV-algebra

ideal, so R/P is an RMV-algebra. Hence h is an
RMV-algebra embedding.

The relation between MV-algebras and RMV-
algebras can be expressed using the tensor product
of MV-algebras ⊗ defined in [20].

Proposition 2.6 For any MV-algebra A, the ten-
sor product [0, 1]⊗A has an RMV-algebra structure
such that the following properties hold:
(a) r(q ⊗ x) = (rq)⊗ x for any r, q ∈ [0, 1],x ∈ A,
(b)the function ιA : A → [0, 1] ⊗ A defined by
ιA(x) := 1 ⊗ x for any x ∈ A is an MV-algebra
embedding.
Moreover, for any RMV-algebra R and any MV-
algebra homomorphism f : A → R there
exists a unique RMV-algebra homomorphism
f⊗ : [0, 1]⊗A→ R such that f⊗ ◦ ιA = f .

Proof. (a) is proved in [7][Theorem 4.1].
(b) By [20][Proposition 2.3], ιA is an MV-algebra
homomorphism. The fact that ιA is an embedding
was proved by F. Montagna and T. Flaminio (pri-
vate communication).

The above results asserts that any MV-algebra
has an RMV-algebra hull. This construction yields
an adjunction between the category MV of MV-
algebras and the category RMV of RMV-algebras.
Let us define the functors

U : RMV →MV and T⊗ :MV → RMV

as follows: U is the forgetful functor forgets the
scalar multiplication and T⊗(A) := [0, 1] ⊗ A for
any MV-algebra A. If h : A→ B is an MV-algebra
homomorphism then ιB ◦ h : A → [0, 1] ⊗ B, using
Proposition 2.6, we get an RMV-algebra homomor-
phism (ιB ◦ h)⊗ : [0, 1]⊗ B → [0, 1]⊗ A. Hence we
define T⊗(h) := (ιB ◦h)⊗ whenever h : A→ B is an
MV-algebra homomorphism.

Theorem 2.7 (T⊗,U) is an adjoint pair.

Proof. For a detailed proof in the general setting
of MV-modules see [14][Proposition 7.29]. It is ob-
vious that T⊗ is a functor. Let A be an MV-algebra
and R an RMV-algebra. By Proposition 2.6, for
any MV-algebra homomorphism f : A → U(R)
there exists a unique RMV-algebra homomorphism
f⊗ : T⊗(A) → R such that U(f⊗) ◦ ιA = f . This
proves that T⊗ is left adjoint to U .

Proposition 2.8 An MV-algebra A admits an
RMV-algebra structure if and only if A ' [0, 1]⊗A.

Proof. If A is an RMV-algebra then, by Proposi-
tion 2.6, there exists a unique RMV-algebra homo-
morphism (IA)⊗ such that (IA)⊗ ◦ ιA = IA, where
IA : A → A is the identity function. We only have
to prove that ιA ◦ (IA)⊗ = I[0,1]⊗A, but this is true
since the two functions coincide on the generators of
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[0, 1]⊗A, i.e. r⊗x = r(1⊗x) = rιA(x) = ιA(rx) =
ιA((IA)⊗(r ⊗ x)) for any r ∈ [0, 1] and x ∈ A.

We further emphasize some properties of RMV-
algebras.

Lemma 2.9 For any RMV-algebra (R, ·) the
following properties hold.
(a) The function r 7→ r · 1R is an embedding of
[0, 1] in R.
(b) For any maximal ideal M ⊆ R, R/M ' [0, 1].

Proof. (a) By Theorem 2.4, we can take R =
Γ(V, u) for some Riesz space with strong unit u and
the intended result follows from the properties of
Riesz spaces.
(b) For any maximal ideal M ⊆ R, the MV-algebra
R/M is simple, so it is a subalgebra of [0, 1]. Using
(a), we get R/M ' [0, 1].

As a consequence of the previous lemma, the only
simple RMV-algebra is [0, 1].
Recall that an MV-algebra is archimedean if the

corresponding lattice-ordered group is archimedean.
Archimedean MV-algebras are equivalent with the
semisimple ones, i.e. those with the property that
Rad(A) =

⋂
{M ⊆ A|M ∈ Max(A)} = {0},

where Max(A) is the maximal ideal space of A.
Consequently, semisimple and archimedean RMV-
algebras will coincide. Since the unique simple
RMV-algebra is [0, 1], any semisimple RMV-algebra
is isomorphic with a subdirect product of copies of
[0, 1].
For any MV-algebra A, Max(A) is a compact

Hausdorff space with respect to the spectral topol-
ogy. For a nonempty set X, an MV-subalgebra S
of [0, 1]X is separating if whenever x 6= y ∈ X there
exists f ∈ S such that f(x) = 0 and f(y) > 0.
It is known that any archimedean MV-algebra A
is isomorphic with a separating MV-subalgebra of
C(Max(A)) [2].
We can further specialize the characterization of

semisimple RMV-algebras.
Let us firstly recall the MV-algebraic version of

Stone-Weierstrass theorem.

Theorem 2.10 (Stone-Weierstrass for RMV-
algebras )[15] Assume X is a compact Hausdorff
space. Every separating RMV-subalgebra A
of C(X) is dense in C(X) with respect to the
sup-norm.

Theorem 2.11 (Characterization of semisimple
RMV-algebra) Any semisimple RMV-algebra R is
isomorphic with a dense (w.r.t. to the sup-norm)
subalgebra of C(Max(R)).

Proof. By Stone-Weierstrass theorem, R is dense
in C(X).

In the end of this section we recall an important
construction defined in [5]

Remark 2.12 Let V be a Riesz space and R ×lex
V be the lexicographic product. Hence (1, 0) is
a strong unit, so R = Γ(R ×lex V, (1, 0)) is an
RMV-algebra. Denote RMV lex the class of RMV-
algebras R with the property that R ' Γ(R ×lex
V, (1, 0)) for some Riesz space V . This class is ax-
iomatized in [5].

Theorem 2.13 [5][Theorem 4.6]RMV lex is equiv-
alent with the category of Riesz spaces.

If T is an MV-algebra and a 6= 0 in T then the
interval ([0, a],⊕a,∗a , 0) is an MV-algebra with the
operations defined by: x⊕a y := (x⊕ y)∧ a, x∗a :=
x∗ � a. Note that, whenever T is an RMV-algebra,
the interval [0, a] is closed to scalar multiplication,
so [0, a] is an RMV-algebra.

The following result allows us to assert that the
class RMV lex stands to RMV-algebras as perfect
MV-algebras stand to MV-algebras.

Lemma 2.14 For any RMV-algebra R there exists
an RMV-algebra T in RMV lex and an element a 6=
0 in T such that R ' [0, a].

Proof. If R is an RMV-algebra then R ' Γ(V, u)
for some Riesz space with strong unit (V, u). Set
T := Γ(R ×lex V, (1, 0)) and a := (0, u). Then the
intended conclusion is straightforward.

3. Equational characterization.
Free RMV-algebras.

We show that the class of RMV-algebras is the va-
riety generated by [0, 1].

Theorem 3.1 If R is an MV-algebra and
· : [0, 1]×R→ R then (R, ·) is an RMV-algebra if
and only if the following identities are satisfied for
any r, q ∈ [0, 1] and x,y ∈ R:
(R1) (rx)� ((r ∨ q)x)∗ = 0,
(R2) (r � q∗)x = (rx)� ((r ∧ q)x)∗,
(R3) r(qx) = (r · q)x,
(R4) r(x� y∗) = (rx)� (ry)∗,
(R5) 1x = x.

Proof. It follows by [8][Corollary 3.13]. For a
detailed proof one can see [14][Corollary 6.45].

The free objects in a variety always exists. In
the category of RMV-algebras we get the following
particular characterization.

Proposition 3.2 For any set X, the free RMV-
algebra generated by X is [0, 1] ⊗ FreeMV (X),
where FreeMV (X) is the free MV-algebra gener-
ated by X.

Proof. It is straightforward by Proposition 2.6.

We prove that an identity holds in the theory
of RMV-algebras if and only if it holds in the
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standard RMV-algebra [0, 1]. Our approach fol-
lows closely the proof of Chang’s completeness the-
orem for Łukasiewicz logic [1]. To any sentence
in the first-order theory of RMV-algebras we as-
sociate a sentence in the first-order theory of Riesz
spaces such that the satisfiability is preserved by
the Γ functor. The first-order theory of RMV-
algebras, as well as the theory of Riesz spaces, are
obtained considering for each scalar r an unary
function ρr which denotes in a particular model
the scalar multiplication by r, i.e. x

ρr7→ rx. In
the following, the language of RMV-algebras is
LRMV = {⊕,∗ , 0, {ρr}r∈[0,1]} and the language of
Riesz spaces is LRiesz = {≤,+,−,∨,∧, 0, {ρr}r∈R}.
Let t(v1, . . . , vk) be a term of LRMV and v a

propositional variable different from v1, . . ., vk. We
define t̃ as follows:
- if t = 0 then 0̃ is 0,
- if t = v then t̃ is v
- if t = t∗1 then t̃ is v − t̃1,
- if t = t1 ⊕ t2 then t̃ is (t1 + t2) ∧ v,
- if t = ρr(t1) then t̃ is ρr(t̃1).

Let ϕ(v1, . . . , vk) be a formula of LRMV such that all
the free and bound variables of ϕ are in {v1, . . . , vk}
and v a propositional variable different from v1, . . .,
vk. We define ϕ̃ as follows:

- if ϕ is t1 = t2 then ϕ̃ is t̃1 = t̃2,
- if ϕ is ¬ψ then ϕ̃ is ¬ψ̃,
- if ϕ is ψ∨χ then ϕ̃ is ψ̃∨χ̃ and similarly for
∧,→,↔,
- if ϕ is (∀vi)ψ then ϕ̃ is
∀vi((0 ≤ vi)∧(vi ≤ v)→ψ̃),
- if ϕ is ∃viψ then ϕ̃ is
∃vi((0 ≤ vi)∧(vi ≤ v)→ψ̃).

Thus to any formula ϕ(v1, . . . , vk) of LRMV we asso-
ciate a formula ϕ̃(v1, . . . , vk, v) of LRiesz. As a con-
sequence, to any sentence σ of LRMV corresponds a
formula with only one free variable σ̃(v) of LRiesz.

Proposition 3.3 Let (V, u) be a Riesz space with
strong unit and R = Γ(V, u). If σ is a sentence in
the first-order theory of RMV-algebras then

R |= σ if and only if V |= σ̃[u].

Proof. By structural induction on terms it fol-
lows that t[a1, . . . , an] = t̃[a1, . . . , an, u] whenever
t(v1, . . . , vn) is a term of LRMV and a1, . . ., an ∈ R.
The rest of the proof is straightforward.

Theorem 3.4 An equation σ in the theory of
RMV-algebras holds in all RMV-algebras if and
only if it holds in the standard RMV-algebra [0, 1].

Proof. One implication is obvious. To prove
the other one, let R be an RMV-algebra such that
R 6|= σ. Since R ' Γ(V, u) for some Riesz space
with strong unit (V, u), we have that Γ(V, u) 6|= σ.
Using Proposition 3.3, we infer that V 6|= σ̃[u] in the
theory of Riesz spaces. Since the order relation in
any lattice can be expressed equationally, we note

that σ̃(v) is a quasi-identity. By [13][Corollary 2.6]
a quasi-identity is satisfied by all Riesz spaces if and
only if it is satisfied by R. Hence there exists a real
number c ≥ 0 such that R 6|= σ̃[c]. Since R |= σ̃[0],
we get c > 0. If follows that f : R → R defined
by f(x) 7→ x/c is an automorphism of Riesz spaces.
We infer that R 6|= σ̃[1], so [0, 1] 6|= σ.

Corollary 3.5 [0, 1] generates the variety of RMV-
algebras.

Given t(v1, · · · , vn) a term in LRMV we define the
term function ft : [0, 1]n → [0, 1] as usual (see [?] for
the general theory). In the theory of MV-algebras,
the term functions are Mc Naughton functions [2],
i.e. continuous piecewise affine functions with in-
teger coefficients. We immediately obtain a similar
description for the term functions in LRMV .

Definition 3.6 Let n > 1 be a natural number.
A Mc Naughton function with real coefficients is
a continuous function f : [0, 1]n −→ [0, 1] which
satisfies the following condition:

there exists a finite number of affine functions (with
real coefficients) q1, . . ., qk : <n −→ < such that for
any (a1, . . . , an) ∈ [0, 1]n there is i ∈ {1, . . . , k} with
f(a1, . . . , an) = qi(a1, . . . , an).

Theorem 3.7 If t(v1, · · · , vn) is a term in LRMV

then the term function ft : [0, 1]n → [0, 1] is a Mc
Naughton function with real coefficients.

Proof. We prove the conclusion by structural
induction on terms:
- if t is vi for some i ∈ {1, . . . , n} then ft = πi (the
i-th projection);
- if t is t1⊕ t2 and let q1,. . ., qm be the polynomials
of ft1 and p1,. . .,pk be the polynomials of ft2 ; then
ft is defined by the polynomials {1} ∪ {sij}i,j ,
where sij = qi + pj for any i ∈ {1, . . . , s} and
j ∈ {1, . . . , r};
- t is t∗1 and q1,. . .,qs are the corresponding poly-
nomials of ft1 , then i 1 − q1,. . .,1 − qs are the
polynomials of ft;
- t is ρr(t1) for some r ∈ [0, 1] and q1,. . .,qs are the
corresponding polynomials of ft1 , then i rq1,. . .,rqs
are the polynomials of ft.

Remark 3.8 Term functions and Mc Naughton
functions with integer coefficients coincide in the
case of MV-algebras. It is an open question if this
holds for RMV-algebras too:
(?) given f : [0, 1]n → [0, 1] a Mc Naughton func-
tion with real coefficients, can we find a term t in
LR such that f = ft?
Note that, for f : [0, 1]n → [0, 1] a Mc Naughton
function with real coefficients, there are finite sets
I and J such that

f =
∨
i∈I

∧
j∈J fij ,
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where fij : [0, 1]n → R are affine functions with
real coefficients [21, Theorem 2.1]. It follows that it
would be enough to answer (?) for affine functions
with real coefficents.

In Section 4 we develop a propositional calculus
for RMV-algebras. Since the primary connectives of
Łukasiewicz logic are → and ¬, we have to provide
an equational characterization of the scalar multi-
plication using implication and negation.

Remark 3.9 [14, Section 6.4] Let R be an MV-
algebra and ◦ : [0, 1]×R→ R such that the follow-
ing properties hold for any x, y ∈ R and r, q ∈ [0, 1]:
(1◦) r ◦ (x→ y) = (r ◦ x)→ (r ◦ y),
(2◦) (r � q∗) ◦ x = ((r ∧ q) ◦ x)→ (r ◦ x),
(3◦) r ◦ (q ◦ x) = (r · q) ◦ x,
(4◦) ((r ∨ q) ◦ x)→ (r ◦ x) = 1,
(5◦) 1 ◦ x = x.
We call dual RMV-algebra a structure (R, ◦) as
above. If R is an MV-algebra and ◦ : [0, 1]×R→ R
we define
r · x := (r ◦ (x∗))∗ for any x ∈ R, r ∈ [0, 1].

Hence (R, ·) is an RMV-algebra if and only if (R, ◦)
is a dual RMV-algebra [14].

4. A propositional calculus for
RMV-algebra

We develop in a classical way a propositional calcu-
lus LR that have RMV-algebra as models. One can
see [14] for detailed proof in the general setting of
MV-modules. Note that Theorem 4.5 and Theorem
4.6 are not proved in general.
The language of the propositional calculus LR

consists of:
- denumerable many propositional variables: v1,
. . .,vn, . . .
(the set of all the propositional variables will be

denoted by V ar),
- the logical connectives of L: → (binary) and ¬
(unary),
- unary logical connectives : ♦r for any r ∈ [0, 1], -
parentheses: ( and ).
We denote by Form(LR) the set of formulas, which
are defined inductively as usual.

Definition 4.1 The axioms of LR are defined as
follows:
a formula which has one of the following forms is
an axiom (where ϕ, ψ and χ are arbitrary formulas
and r, q are arbitrary elements of [0, 1]):
(L1) ϕ→ (ψ → ϕ),
(L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)),
(L3) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ),
(L4) (¬ψ → ¬ϕ)→ (ϕ→ ψ)
(F1) ♦r(ϕ→ ψ)↔ (♦rϕ→ ♦rψ),
(F2) ♦(r�q∗)ϕ↔ (♦r∧qϕ→ ♦rϕ),
(F3) ♦r♦qϕ↔ ♦r·qϕ,
(F4) ♦r∨qϕ→ ♦rϕ,
(F5) ♦1ϕ↔ ϕ.

Note that (L1)-(L4) are the axiom of Łukasiewicz
logic. Note that the axioms (F1)-(F5) are the duals
of (R1)-(R5) if we consider that the term function
associated to ♦rϕ is (rf∗ϕ)∗, where fϕ is the term
function of ϕ.

The deduction rule of LR is modus ponens:
ϕ, ϕ→ ψ

ψ
. Proofs are defined as usual.

Proposition 4.2 (Deduction theorem)
Θ ∪ {ϕ} ` ψ iff Θ ` ϕn → ψ for some n ≥ 1,

where ϕn denotes ϕ� · · · � ϕ︸ ︷︷ ︸
n times

.

We define the Lindenbaum-Tarski algebra. In the
sequel Θ ⊆ Form(LR) is a fixed set of formulas. For
any two formulas ϕ and ψ we define

ϕ ≡Θ ψ iff Θ ` ϕ→ ψ and Θ ` ψ → ϕ.

Since ≡Θ is an equivalence relation on Form(LR),
we denote [ϕ]Θ the equivalence class of ϕ with re-
spect to ≡Θ.

On Form(LR)/≡Θ we define the following oper-
ations:
[ϕ]∗Θ : = [¬ϕ]Θ,
[ϕ]Θ → [ψ]Θ : = [ϕ→ ψ]Θ,
[ϕ]Θ ⊕ [ψ]Θ : = [(¬ϕ)→ ψ]Θ,
1Θ : = [ϕ]Θ, where Θ ` ϕ,
0Θ : = 1∗Θ,
r[ϕ]Θ : = [¬(♦r(¬ϕ))]Θ
With the above operations, Form(LR)/≡Θ is an

RMV-algebra by Remark 3.9. When Θ = ∅, we
denote LindaR := Form(LR)/≡∅ and this is the
Lindenbaum-Tarski algebra of RMV-logic.

Since the Lindenbaum-Tarski algebra is freely
generated by the set of variables, by Proposition
3.2, we get the following.

Corollary 4.3 LindaR ' [0, 1] ⊗ LindLuk, where
LindaLuk is the Lindenbaum-Tarski algebra of
Łukasiewicz logic.

Let R be an RMV-algebra. Following
Remark 3.9, an R-evaluation is a function
e : Form(LR)→ R which satisfies the following
conditions:

(e1) e(ϕ→ ψ) = e(ϕ)∗ ⊕ e(ψ),
(e2) e(¬ϕ) = e(ϕ)∗,
(e3) e(♦aϕ) = (ae(ϕ)∗)∗,

for any ϕ ∈ Form(LR) and r ∈ [0, 1].
The notions of satisfaction and semantic conse-

quence are defined as usual.
According to [11], the system LR is a core fuzzy

logic, hence the strong completeness with respect to
linearly ordered structures follows by [11, Theorem
2.11].

For LR we also prove completeness with respect
to the standard model.

144



Theorem 4.4 (Strong completeness theorem) As-
sume Θ be a set of formulas and ϕ a formula of LR.
The following are equivalent:
(a) Θ ` ϕ,
(b) Θ |=R ϕ for any RMV-algebra R,
(c) Θ |=R ϕ for any linearly-ordered RMV-algebra
R.

Proof. The equivalence of (a) and (b) is straight-
forward. The equivalence with (c) follows by Theo-
rem 2.5. See also [11, Theorem 2.11].

Theorem 4.5 (Standard completeness) For a for-
mula ϕ of LR, the following are equivalent:
(a) ` ϕ,
(b) |=[0,1] ϕ.

Proof. It follows by Theorem 3.4.

As a direct consequence of the standard complete-
ness it follows that the logic of RMV-algebras is a
conservative extension of Łukasiewicz logic.

Finally, we prove an approximation result.

Theorem 4.6 (Approximation of continuous func-
tions) Let n ≥ 1 be a natural number. For any
continuous function h : [0, 1]n → [0, 1] there exists
a sequence of formulas (ϕn)n of LR such that h is
the uniform limit of (fϕn

)n.

Proof. If Formn is the set of the formulas
which contain only the variables v1, . . ., vn, then
Rn = Formn/≡∅ is the free RMV-algebra with n-
generators. By Theorem 3.7, Rn is a semisimple
RMV-algebra. By Theorem 2.11, Rn is dense in
C(X) in the sup-norm which proves our result.

Remark 4.7 The logical system briefly presented
in this chapter is strongly related with Rational
Łukasiewicz Logic developed in [10], where only
multiplication by rationals is considered. The alge-
braic structures of Rational Łukasiewicz Logic are
the divisible MV-algebras. Our system is also a con-
servative extension of Rational Łukasiewicz Logic.
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