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Abstract

The quality of results for partitioning clustering al-
gorithms depends on the assumption made on the
number of clusters presented in the data set. Apply-
ing clustering methods on real data missing values
turn out to be an additional challenging problem for
clustering algorithms. Fuzzy clustering approaches
adapted to incomplete data perform well for a given
number of clusters. In this study, we analyse differ-
ent cluster validity functions in terms of applicabil-
ity on incomplete data on the one hand. On the
other hand we analyse in experiments on several
data sets to what extent the clustering results pro-
duced by fuzzy clustering methods for incomplete
data reflect the distribution structure of data.

Keywords: fuzzy cluster analysis, incomplete data,
cluster tendency, cluster validity

1. Introduction

Clustering is an important unsupervised learning
technique for automatic knowledge extraction from
data. Its task is exploring the distribution of ob-
jects in a data set. In general, clustering is defined
as a technique for partitioning data set into groups
or clusters of similar data objects. Various algo-
rithms for data clustering have been developed and
are used in many areas, including database mar-
keting, image processing, information retrieval, and
others. One of the well-known and widely used
clustering methods is the fuzzy c-means algorithm
(FCM) [1], which produces a fuzzy partitioning of
a data set into c clusters. An important parame-
ter for clustering quality is the number of clusters
c. Applying clustering methods on real data sets
missing values turn out to be an additional chal-
lenging problem for clustering algorithms. For that
reason, several clustering approaches for handling
incomplete data have been proposed in literature
[2, 3, 4, 5]. Data experiments conducted in [2, 5, 6]
have shown that for an optimal number of clusters
some of these methods are able to assign data items
to clusters quite accurately.

However, in real world applications the optimal
number of clusters is generally not known a priori.
The performance measures for assessing the clus-
ter tendency were developed for complete data. In
this study, we analyse different validity functions

from literature in terms of applicability on incom-
plete data on the one hand. On the other hand we
analyse in experiments on several data sets to what
extent the clustering results produced by methods
for incomplete data reflect the distribution struc-
ture of data objects and whether the optimal num-
ber of clusters can be determined using original and
adapted cluster validity functions.

The remainder of the paper is organised as fol-
lows. In Section 2, we give an overview of methods
for adapting fuzzy c-means algorithm for incom-
plete data. We describe different cluster validity
functions and propose some ideas for their adaption
to incomplete data in Section 3. In Section 4, we
present the evaluation results and compare cluster-
ing methods and cluster validity functions, respec-
tively. We close the paper with a short summary
and discussion of future research in Section 5.

2. Fuzzy Clustering of Incomplete Data

2.1. Fuzzy C-Means Algorithm (FCM)

The fuzzy c-means algorithm (FCM) is a well known
clustering algorithm, which produces a partitioning
of n data points X = {x1, ..., xn} in d-dimensional
metric data space into c clusters. Instead of “hard”
dividing the data set into clusters the fuzzy c-
means algorithm assigns data points to clusters with
membership degrees [1]. The membership degree
uik ∈ [0, 1] expresses the relative degree to which
data point xk belongs to the cluster Ci and is cal-
culated as follows:

uik = (D
1/(1−m)
ik )/(

c∑
j=1

D
1/(1−m)
jk ), (1)

where m > 1 is the fuzzification parameter and
Dik = ||xk − µCi ||2A = (xk − µCi)

TA(xk − µCi) is
the squared A-norm distance between data point xk

and the representative (prototype) of the cluster Ci.
Like the most partitioning clustering algorithms

FCM determines an optimal partitioning of a data
set in an iterative process. The algorithm begins
with initialising cluster prototypes µCi (1 ≤ i ≤ c),
which are randomly chosen points in the feature
space. In the first iteration step, the membership
degrees of each data point xk to each cluster Ci are
calculated according to Formula 1. In the second
iteration step, the new cluster prototypes are cal-
culated based on all data points depending on their
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membership degrees to the cluster:

µij = (

n∑
k=1

(uik)
mxkj)/(

n∑
k=1

(uik)
m), (2)

for 1 ≤ i ≤ c and 1 ≤ j ≤ d.
The iterative process continues as long as the

cluster prototypes change up to a value ε. In this
way the objective function given in Equation 3 is
minimised in each iteration step.

Jm(U, µ) =
c∑

i=1

n∑
k=1

um
ikDik. (3)

2.2. Different Approaches for Fuzzy
Clustering of Incomplete Data

To apply the fuzzy c-means algorithm to incomplete
data, in literature several approaches for adapting
FCM have been proposed [2, 3, 4, 5]. Some of them
perform the clustering analysis using only available
feature values. Other methods estimate and re-
place missing values or distances in each iteration
of the algorithm. In experiments described in [2, 6],
the lowest missclassification errors have been ob-
tained by PDSFCM, OCSFCM and NPSFCM. In
experiments on data with missing values missing
completely at random (MCAR), also WDSFCM ob-
tained similarly good results as the other three ap-
proaches. In this study, we focus our considera-
tion on these four methods. We do not expand on
other approaches because either of their weak per-
formance in terms of accuracy or of their adaption
to specific data distribution or specific distribution
of missing values in the data set.

2.2.1. Whole-Data Strategy (WDS)

A simple method for adapting FCM for handling
incomplete data is the whole-data strategy (WDS)
[2]. First, incomplete data items are removed from
the data set and remaining complete data items are
clustered via basic fuzzy c-means algorithm. After-
wards, incomplete data items are assigned to the
nearest cluster by calculating the partial distances
[7] (cf. Formula 4) between incomplete data items
and cluster prototypes.

Dpart(xk, µi) =
d∑d

j=1 Ikj

d∑
j=1

(xkj − µij)
2Ikj , (4)

where

Ikj =

{
1 if xkj is available

0 else

for 1 ≤ i ≤ c, 1 ≤ k ≤ n and 1 ≤ j ≤ d.
In WDSFCM, the partitioning of data set into

clusters is carried out only on the basis of complete
data items. That implies that WDSFCM cannot
be applied to data sets containing no complete data

items. Moreover, in view of cluster tendency assess-
ment, the optimal number of clusters is totally de-
termined by the distribution of complete data items.

2.2.2. Partial Distance Strategy (PDS)

Another approach for adapting the fuzzy c-means
algorithm to incomplete data is the partial distance
strategy (PDS) [2]. For the calculation of member-
ship degrees of data items to clusters in the first
iteration step, the squared distance function D is
replaced by the partial distance function Dpart (cf.
Equation 4). In this way, the distances between in-
complete data items and cluster prototypes are ap-
proximated by partial distances and the distances
between complete data items and cluster prototypes
are calculated in the same way as in FCM. In the
second iteration step of the algorithm, the cluster
prototypes are calculated only on the basis of all
available feature values of data items:

µij = (
n∑

k=1

(uik)
mIkjxkj)/(

n∑
k=1

(uik)
mIkj) (5)

for 1 ≤ i ≤ c and 1 ≤ j ≤ d.
The advantage of this approach, in contrast to

the whole-data stategy, is that it can be used even
if all data items have missing values. This approach
benefits from the fact that all cluster prototypes are
calculated as complete vectors. Hence, all available
feature values of an incomplete data item can be
used for calculation of membership degrees of the
data item to all clusters. Furthermore, the entire
membership matrix can be used for determining the
optimal number of partitions.

2.2.3. Optimal Completion Strategy (OCS)

The idea of the optimal completion strategy (OCS)
is to estimate missing values depending on the clus-
ter prototypes in an additional iteration step of the
fuzzy c-means algorithm [2]. At the beginning of the
algorithm, missing values of incomplete data items
are replaced by random values in the feature space.
The calculation of membership degrees and the clus-
ter prototypes in the first two iteration steps works
in the same way as in FCM. The available and es-
timated values in the data matrix are not distin-
guished. In a third iteration step missing values of
incomplete data items are estimated depending on
all cluster prototypes as follows:

xkj = (

c∑
i=1

(uik)
m
µij)/(

c∑
i=1

(uik)
m
) (6)

for 1 ≤ k ≤ n and 1 ≤ j ≤ d.
In contrast to the aforementioned two ap-

proaches, the advantage of OCSFCM in respect of
finding the optimal number of clusters is that both
membership degrees and feature values (available
and estimated) can be used by the cluster validity
functions.
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2.2.4. Nearest Prototype Strategy (NPS)

The nearest prototype strategy (NPS) [2] is a mod-
ification of the optimal completion strategy. The
missing values of an incomplete data item are com-
pletely substituted by the corresponding values of
the cluster prototype to which this data item has the
highest membership degree or the minimum partial
distance, respectively. Thus, in the third iteration
step of NPSFCM missing values are estimated as
follows:

xkj = µij with Dik = min {Dpart1k , ..., Dpartck}
(7)

for 1 ≤ k ≤ n and 1 ≤ j ≤ d.
In respect of applying cluster validity functions,

NPSFCM has the same advantages as OCSFCM.

3. Cluster Validity Criteria for Fuzzy
Clustering Incomplete Data

A common method for determining the optimal
number of partitions is to test the clustering algo-
rithm for different numbers of clusters [8]. After
each trial, the clustering results are assessed using
a cluster validity function. The clustering with the
best value for the cluster validity function is rated
as the optimal partitioning of a data set. In the lit-
erature, various cluster validity functions for fuzzy
clustering have been proposed, which consider dif-
ferent aspects of an optimal partitioning and conse-
quently yield different results for different data dis-
tributions. Here, we focus on the most known clus-
ter validity functions as partition coefficient (PC)
[1], compactness and separation (S) [10], fuzzy hy-
pervolume (FHV) and partition density (PD) [11].
Below, we describe them and give an idea how to
apply them to clustering of incomplete data.

3.1. Partition Coefficient (PC)

A simple cluster validity criterion is the partition co-
efficient (PC), which rates a partitioning of a data
set as optimal if data items are clearly assigned into
clusters [1]. This means that membership degrees
should be near by 1 or near by 0. Since partition
coefficient is not normalised to the number of clus-
ters, in our study we used the normalised version of
the partition coefficient proposed in [9]. The nor-
malised partition coefficient (NPC) is normalised to
the range [0, 1]. The high value of NPC indicates a
good partitioning of the data set. According to [9]
NPC is calculated as follows:

NPC(U) =
1

c− 1

c−1∑
i=1

c∑
j=i+1

1

n

n∑
k=1

uikujk. (8)

Since the calculation of PC and NPC is based
only on membership matrix, these cluster validity
functions can be applied to fuzzy clustering of in-
complete data without any changes.

3.2. Compactness and Separation (S)

In the compactness and separation (S) cluster valid-
ity function [10], the distances between data points
and cluster prototypes are related to the distances
between clusters:

S(U,X, µ) =

∑c
i=1

∑n
k=1 u

2
ik||(xk, µi)||2

n min
1≤i,j≤c, i 6=j

||(µi, µj)||2
, (9)

where ||.|| is the Euclidean norm. This cluster va-
lidity function is directly based on the definition of
cluster analysis that data items in the same clus-
ter are to be as similar and data items of different
clusters are to be as dissimilar as possible. Thus,
the smallest value for S indicates an optimal c-
partitioning of a data set.

With regard to the applicability to clustering
of incomplete data, the compactness and separa-
tion cluster validity function requires some changes.
The calculation of S involves the calculation of dis-
tances between data points and cluster prototypes.
Since some clustering methods adapted to incom-
plete data do not estimate missing values, in our
study, we approximate the distances ||(xk, µi)||2 by
the partial distances Dpart(xk, µi) (cf. Equation 4).

3.3. Fuzzy Hypervolume (FHV)

Another cluster validity function is fuzzy hypervol-
ume (FHV) [11]. The fuzzy hypervolume rates a
fuzzy clustering of a data set as optimal if the clus-
ters are of minimal volume. The determinant of the
covariance matrix of cluster Covi is used as a mea-
sure for the volume (compactness) of clusters. The
fuzzy hypervolume is defined as follows:

FHV (U,X, µ) =
c∑

i=1

√
det(Covi) (10)

with

Covi =

∑n
k=1(uik)

m(xk − µi)(xk − µi)
T∑n

k=1(uik)m
.

As the compactness and separation validity func-
tion the fuzzy hypervolume requires the calculation
of distances between data points and cluster pro-
totypes. Pursuing the available case approach, for
assessing the cluster tendency on incomplete data
we compute the covariance matrices according to
[4] as follows:

Covi(ml) =

∑n
k=1(uik)

mIk(ml)(xkm − µim)(xkl − µil)
T∑n

k=1(uik)mIk(ml)
,

(11)
where

Ik(ml) =

{
1 if xkm and xkl are available

0 else

for 1 ≤ i ≤ c and 1 ≤ m, l ≤ d.
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(a) (b) (c)

Figure 1: Test data sets (a) with three, (b) with six and (c) with nine clusters.

3.4. Partition Density (PD)

The fuzzy hypervolume values the quality of a clus-
tering only on the basis of the volume of clusters
regardless of their densities. Thus, the large clus-
ters are automatically rated as “bad”. To overcome
this drawback, the partition density (PD) [11] re-
lates the number of data points closely located to
cluster prototypes to the volume of clusters:

PD(U,X, µ) =
Z

FHV
=

Z∑c
i=1

√
det(Covi)

, (12)

where Z =

c∑
i=1

n∑
k=1

uik

∀ xk ∈ {xk | (xk − µi)
TCov−1

i (xk − µi) < 1}. (13)

Regarding the applicability of the partition density
to incomplete data, this cluster validity measure re-
quires the approximation of the covariance matrix
as well as the distances between data points and
cluster prototypes. In this study, we approximate
the covariance matrix as in FHV (cf. Equation 11)
and the distances dist(xk, µi) by the partial dis-
tances Dpart(xk, µi) (cf. Equation 4).

4. Data Experiments

In order to test the performance of fuzzy clustering
methods adapted to incomplete data and cluster va-
lidity functions regarding finding the optimal num-
ber of clusters, we have conducted several experi-
ments on three data sets with different numbers of
clusters. The data sets were generated by the com-
positions of three, six and nine 3-dimensional Gaus-
sian distributions, respectively. Each of the data
sets consists of 900 data points, which are equally
distributed on about same-sized clusters (see Figure
1). Except for a small number of data items, the
clusters are well separated in all data sets. Since
such a distribution of data is favorable to both the
determining the optimal number of clusters and the
clear assignment of data items into clusters, the

cluster validity functions and the clustering algo-
rithms are expected to work well on the test data.
Regarding the comparability of experimental results
for different distributions of missing values in data
sets, we ensured that the values of different at-
tributes are uncorrelated in all data sets. That is be-
cause dependent features do not provide additional
information for clustering on the one hand. On the
other hand we have observed in further studies that
the clustering results on incomplete data with a con-
ditional distribution of missing values are influenced
by the correlation between features in the data set.

To generate incomplete data sets the test data
have been modified by evenly removing values in all
features with probabilities of 10%, 25%, and 40%
according to the general missing-data pattern [12].
The percentage of missing values was calculated in
relation to all values in the data set. In order to test
whether the performance of algorithms depends on
a random or conditional reduction of a data set, we
removed values from test data according to the com-
mon missing-data mechanisms missing completely
at random (MCAR),missing at random (MAR) and
not missing at random (NMAR) [12].

In our experiments, we first clustered the com-
plete data sets with basic FCM with different num-
bers of clusters. We evaluated partitionings of
data sets obtained with different cluster validity
functions as partition coefficient (PC) [1], partition
entropy (PE) [1], normalised partition coefficient
(NPC) [9], proportion exponent (PX) [13], compact-
ness and separation index (S) [10], fuzzy hypervol-
ume (FHV) [11], partition density (PD) [11] and
average partition density (APD) [11]. Only NPC,
S, FHV, PD and APD could correctly determine
the optimal number of clusters in all test data sets.
Although the clustering structure of data sets was
very clear, PC and PE had trouble determining the
optimal number of partitions in the data sets. As
in other studies, e.g. in [14], these indices under-
estimated the number of clusters. Due to extreme
values out of range we could not compute PX for
all numbers of clusters, so we did not determine its
optimum.
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(a) Averaged optimal number of clusters obtained by WDSFCM on data sets with missing values MCAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
6C 6.00 6.00 5.67 6.00 6.00 5.47 6.00 6.00 6.93 6.00 6.00 9.23
9C 8.83 8.97 9.00 7.30 6.83 7.30 9.33 9.10 9.13 9.37 9.13 11.10

(b) Averaged optimal number of clusters obtained by PDSFCM on data sets with missing values MCAR (asterisks indicate
adapted versions of cluster validity measures).

NPC S* FHV* PD*
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 7.77 7.43 3.00 7.40 7.50
6C 6.10 6.07 5.90 5.80 5.87 5.27 6.97 9.47 9.10 8.93 9.27 9.17
9C 9.47 9.60 10.10 8.03 7.43 8.17 10.50 10.33 8.80 10.50 9.83 9.33

(c) Averaged optimal number of clusters obtained by OCSFCM on data sets with missing values MCAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.50 7.03 3.00 6.37 7.23
6C 6.00 5.93 5.23 6.00 6.10 5.37 6.00 6.30 8.07 6.00 7.30 8.33
9C 8.90 8.83 8.67 7.33 6.90 7.40 9.27 10.20 11.00 9.23 10.20 11.10

(d) Averaged optimal number of clusters obtained by NPSFCM on data sets with missing values MCAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.03 3.00 3.00 2.97 3.00 3.33 7.77 3.00 7.60 7.73
6C 6.00 5.97 5.77 6.00 5.97 5.30 6.00 6.13 8.13 6.00 9.17 9.13
9C 9.03 8.97 9.80 8.23 7.97 9.07 9.13 9.10 10.83 9.13 9.70 11.20

Table 1: Over 30 trials averaged optimal number of clusters obtained by different methods on data sets with
missing values MCAR.

We clustered the incomplete data with the afore-
mentioned fuzzy c-means algorithms for incomplete
data with different numbers of clusters. To create
the testing conditions as real as possible, we ini-
tialised the cluster prototypes with random values
at the beginning. We evaluated obtained clustering
results using original and adapted cluster validity
functions, respectively. For that reason, we com-
pared the average optimal number of clusters deter-
mined by the cluster validity measures over 30 trials
of the clustering methods. Note that we did not av-
eraged the values computed by the cluster validity
functions because the differences between these val-
ues for different numbers of clusters are very small
so that an outlier could completely bias the final re-
sult. The average number of clusters discovered is
only one of the measures for estimating the optimal
number of partitions in a data set if the true number
of clusters is not known. In this study, we aim to
give a deeper insight into the quality of cluster va-
lidity indices and clustering methods for incomplete
data. Therefore, using the knowledge about the real
distribution of test data, we determined the devia-
tion between obtained and true number of clusters.
In Tables 1-3 the values are bold-faced if in more
than 85% of trials the real number of clusters could
be correctly determined so that the cluster tendency

was clearly recognisable. The italicised cells indi-
cate the zero deviation from the average number of
clusters discovered.

Since in all tests we obtained the same results for
APD and PD, below we present the results obtained
for NPC, S, FHV and PD organised according to
missing-data mechanisms.

4.1. Test Results on Data with Missing
Values MCAR

Tables 1 shows the performance results for WDS-
FCM, PDSFCM, OCSFCM and NPSFCM on data
sets with missing values MCAR using different clus-
ter validity functions. For WDSFCM we applied
the cluster validity criteria on clusterings produced
only on the basis of completely available data items.
Since for missing values MCAR the missingness
does not depend on the data values (missing or ob-
served) in the data set [12], the structure of the
data set is well represented by the complete data
items. Due to that the optimal number of clusters
could be correctly determined by almost all cluster-
ing methods even for a high percentage of missing
values in the data sets. Comparing the clustering
methods with each other the best performance re-
sults were obtained by WDSFCM, OCSFCM and
NPSFCM. Since complete data items well represent
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(a) Averaged optimal number of clusters obtained by WDSFCM on data sets with missing values MAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 2.00 2.00 3.00 2.00 2.00 3.00 2.00 2.00 3.00 2.00 2.00
6C 5.00 3.00 4.00 4.00 3.00 4.00 5.00 9.23 9.60 5.00 8.80 9.20
9C 7.60 6.63 6.23 7.53 6.67 5.67 8.57 11.03 11.63 7.80 11.27 11.47

(b) Averaged optimal number of clusters obtained by PDSFCM on data sets with missing values MAR (asterisks indicate
adapted versions of cluster validity measures).

NPC S* FHV* PD*
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 7.27 7.30 4.17 5.67 6.23
6C 5.77 5.17 4.70 5.17 5.53 4.57 6.37 7.17 8.33 6.90 6.57 8.73
9C 9.00 9.23 5.57 7.37 7.10 7.23 10.87 10.70 8.30 10.43 10.93 8.87

(c) Averaged optimal number of clusters obtained by OCSFCM on data sets with missing values MAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.03 3.00 3.00 3.00 3.00 3.67 5.47 3.50 3.67 5.97
6C 5.57 5.37 4.70 5.33 5.47 3.63 6.07 6.53 8.07 6.40 6.93 8.07
9C 8.93 7.60 7.00 7.47 6.20 5.77 9.23 9.80 10.77 9.30 10.00 10.53

(d) Averaged optimal number of clusters obtained by NPSFCM on data sets with missing values MAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.63 4.60 3.00 3.63 5.77
6C 5.37 5.53 4.97 5.37 5.50 4.90 6.03 6.27 7.97 6.03 6.27 9.13
9C 8.77 8.70 7.93 7.20 6.63 6.40 9.37 9.73 11.07 9.33 10.03 11.13

Table 2: Over 30 trials averaged optimal number of clusters obtained by different methods on data sets with
missing values MAR.

the distribution structure of the data set, cluster-
ings produced by WDSFCM are comparable with
clusterings produced by the basic FCM on complete
data. Estimating missing values by values close to
cluster prototypes (by corresponding values of clus-
ter prototypes, respectively), OCSFCM and NPS-
FCM preserve and strengthen the clustering struc-
ture of data. The poorest performance results were
obtained by PDSFCM. Experiments conducted in
[2, 6] showed that, approximating distances between
incomplete data points and cluster prototypes by
partial distances, this method assigns data items
into clusters as accurately as OCSFCM and NPS-
FCM for an optimal number of clusters. But in
our experiments, the clustering results obtained by
PDSFCM were fairly instable regarding the deter-
mination of the optimal number of clusters. The
number of clusters proposed by this method was
underestimated or overestimated from trial to trial.
This is due to the fact that the partial distance func-
tion does not hold the triangle inequality so that it
does not provide reliable estimation of distances for
low dimensional data (when the proportion of com-
plete features is relatively small in relation to the
number of all features).

Comparing the cluster validity functions the best
results were obtained by NPC. Due to the simple

distribution structure of data the data items were
assigned to the clusters with “precise” membership
degrees, what is favorable to the rationale of NPC.
Determining the optimal number of clusters the
poorest results were obtained for the adapted ver-
sions of FHV and PD, which were applied on par-
titionings produced by PDSFCM. Using only avail-
able values for computing the covariance matrices
the volumes of clusters were poorly approximated
and assessed. There were great differences between
covariance matrices computed on complete and in-
complete data. Since in most of cases, the opti-
mal number of clusters was correctly determined by
other cluster validity indices on the partitionings
produced by PDSFCM, the proposed adapted ver-
sions of FHV and PD do not seem to be satisfying
solutions regarding the cluster tendency assessment
in presence of missing values in data.

4.2. Test Results on Data with Missing
Values MAR

The performance results in terms of determining
the optimal number of clusters obtained by different
clustering methods on data sets with missing values
MAR are presented in Table 2. Since for missing
values MAR the missingness of values depends on
values that are observed (and not on components
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(a) Averaged optimal number of clusters obtained by WDSFCM on data sets with missing values NMAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 6.63 3.00 2.00 5.73
6C 4.00 4.00 3.70 4.00 4.00 3.70 6.03 4.00 9.43 7.47 4.00 2.00
9C 8.47 6.23 4.60 8.43 6.37 3.20 9.60 10.63 10.90 8.50 8.33 10.57

(b) Averaged optimal number of clusters obtained by PDSFCM on data sets with missing values NMAR (asterisks
indicate adapted versions of cluster validity measures).

NPC S* FHV* PD*
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 2.97 3.00 3.00 3.27 7.27 7.90 7.40 5.77 7.53 7.53
6C 6.00 6.00 4.30 4.00 6.03 5.63 8.87 8.83 8.30 9.00 9.47 9.03
9C 9.77 7.20 8.40 8.13 7.27 5.10 11.00 9.97 8.63 11.03 9.80 9.13

(c) Averaged optimal number of clusters obtained by OCSFCM on data sets with missing values NMAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 2.90 3.00 3.00 2.97 3.00 6.30 6.40 3.30 5.63 6.37
6C 6.00 5.20 4.53 4.00 5.13 5.50 6.00 7.70 8.57 6.00 7.40 8.10
9C 8.83 6.73 6.47 8.17 6.93 5.47 9.50 9.73 10.27 9.13 9.97 10.40

(d) Averaged optimal number of clusters obtained by NPSFCM on data sets with missing values NMAR.

NPC S FHV PD
10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

3C 3.00 3.00 3.23 3.00 3.00 3.10 3.00 7.47 7.57 3.00 7.47 7.63
6C 6.00 5.23 5.57 4.00 5.10 4.90 6.00 8.57 9.50 6.00 8.80 9.73
9C 8.97 7.30 6.30 7.93 7.23 5.20 9.20 9.60 11.10 9.07 10.00 11.20

Table 3: Over 30 trials averaged optimal number of clusters obtained by different methods on data sets with
missing values NMAR.

that are missing) [12], we removed values in two at-
tributes depending on values of the third one. In
this way, for a certain percentage of missing val-
ues there could be more data items afflicted with
missing values in a data set with missing values
MAR than e.g. in a data set with missing values
MCAR. On the other side, there is a completely
available attribute in a data set. Since missing val-
ues MAR occur in data items with certain proper-
ties, the completely available data items do not rep-
resent the clustering structure of complete data set
as well as in the case of missing values MCAR. This
fact provides the explanation for the poor perfor-
mance of WDSFCM (cf. Table 2 (a)), which carries
out the cluster analysis only on the basis of com-
plete data items. On average, the optimal number
of clusters determined on clusterings produced by
this approach is smaller than the actual one. In
contrast, the partitionings of data sets with three
clusters produced by OCSFCM and especially by
NPSFCM on data with missing values MAR reflects
the clustering structure of complete data set almost
as well as in the case of missing values MCAR. For
a small percentage of missing values, the optimal
number of clusters in other data sets could be cor-
rectly determined only in at most 50% of trials of
OCSFCM and NPSFCM. Whereas, the most sta-

ble results were obtained using FHV and PD. In
contrast, the most instable results were obtained on
clusterings produced by WDSFCM and PDSFCM,
especially using the adapted versions of FHV and
PD. The “best“ values for c were so varying that no
tendency was recognisable regarding the determin-
ing the optimal number of clusters.

4.3. Test Results on Data with Missing
Values NMAR

Table 3 shows the cluster validity results for cluster-
ing algorithms on data with missing values NMAR.
Since missing values NMAR induce a conditional
reduction of a data set (the missingness of data
depends on the missing values themselves [12]),
complete data items do not reflect the clustering
structure of data set as in the case of missing val-
ues MCAR. Therefore, the performance results ob-
tained by WDSFCM slightly differ from the results
on data with missing values MAR. Compared to
missing values MAR the improvement of the results
for this method is based on the fact that values were
removed in all attributes and this way more com-
plete data items were contained in data sets. The
performance results for OCSFCM and NPSFCM are
considerably worse than in case of missing values
MCAR. For a small percentage of missing values in
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data sets the optimal number of clusters could be
reliably determined, but for a high percentage of
missing values in data sets the clustering structure
of data could be determined only for data set with
three clusters.

Comparing cluster validity functions with each
other a crucial distinction emerges for data with
missing values NMAR and MAR. On average, the
optimal number of clusters determined by NPC and
S is smaller than the actual number of clusters.
In contrast, FHV and PD determined a greater
number of clusters than the optimum. The reason
for this is concerned with the monotonicity proper-
ties of these cluster validity functions for increasing
number of clusters.

5. Conclusions and Future Work

In this paper, we analysed different cluster validity
functions for fuzzy clustering in terms of determin-
ing the optimal number of clusters on incomplete
data. We proposed some adaptions for cluster va-
lidity performance measures involving data matrix
for the calculation. Furthermore, in experiments on
several data sets we analysed to what extent the
clustering results produced by clustering methods
for incomplete data reflect the distribution struc-
ture of original data. The experimental results have
shown that the best performance in terms of cluster
tendency assessment was achieved by clustering al-
gorithms OCSFCM and NPSFCM, which estimate
missing values by values close to cluster prototypes.
In this way, they preserve and strengthen cluster-
ing structure of data. In contrast, the clustering re-
sults obtained by the partial distance strategy FCM
were instable regarding the determining the optimal
number of clusters. However, the basic OCSFCM
and NPSFCM leave clustering structure (e.g. clus-
ter sizes) out of consideration while estimating miss-
ing values. Due to this these methods are instable
in assigning data object to clusters on data with dif-
ferently sized clusters [5]. Therefore, in our future
research, we plan to continue working on the im-
provement of clustering algorithms for incomplete
data using cluster dispersion.

Comparing cluster validity functions regarding
finding the optimal number of clusters, NPC ob-
tained slightly better results than FHV and PD.
However, summarising the results of our study, we
do not conclude that NPC is the better cluster
validity index for determining the optimal num-
ber of clusters. It might produce better results on
data with simple distribution structure compared to
other indices but, as already mentioned in [14], NPC
ignores the geometric structure of clustering. Clus-
ter validity indices like FHV and PD overcome this
problem involving the data matrix for calculation.
Since not all clustering methods for incomplete data
complete the data matrix and the adaptions pursu-
ing the available case approach for FHV and PD

do not provide satisfying results, in future we also
plan to develop a better adaption of cluster valid-
ity functions using volume and density of clusters
to incomplete data.
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