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Abstract

Recently, in [4], we have discussed the following dis-
tributive equation of implications Z(x, 71 (y, z)) =
To(Z(x,y),Z(x,z)) over t-representable t-norms,
generated from strict t-norms, in interval-valued
fuzzy sets theory. In this work we continue these
investigations, but with the assumption that 77 is
generated from nilpotent t-norms, while 75 is gen-
erated from strict t-norms. As a byproduct re-
sult we show all solutions for the following func-
tional equation f(min(u; +v1,a), min(us+ve,a)) =
fur,u2) + f(v1,v2) related to this case.

Keywords: Interval-valued fuzzy sets, intuitionis-
tic fuzzy sets, fuzzy implication, triangular norm,
distributivity equations, functional equations.

1. Introduction

Distributivity of fuzzy implications over different
fuzzy logic connectives has been studied in the re-
cent past by many authors (see [2], [26], 7], [23],
[24], [6],[3]). These equations have a very impor-
tant role to play in efficient inferencing in approxi-
mate reasoning, especially in fuzzy control systems.
Since all the rules of an inference engine are exer-
cised during every inference cycle, the number of
rules directly affects the computational duration of
the overall application. To reduce the complexity
of fuzzy “IF-THEN” rules, Combs and Andrews [9]
required of the following classical tautology

(pAg)—r=@pP—1)V(g—T).

Subsequently, there were many discussions (see [10],
[11], [16], [22]), most of them pointed out the need
for a theoretical investigation required for employ-
ing such equations, as concluded by Dick and Kan-
del [16], “Future work on this issue will require
an examination of the properties of various com-
binations of fuzzy unions, intersections and impli-
cations”. An overview of the most important meth-
ods that reduce the complexity of different inference
systems can be found in [5, Chapter §].

Recently, in [4], we have discussed the distributive
equation of implications

I(x77'1(yaz)) = E(I(xay)az(:ﬂaz))v
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over t-representable t-norms, generated from strict
t-norms, in interval-valued fuzzy sets theory. In
this work we continue these investigations, but with
the assumption that 77 is generated from nilpotent
t-norms, while 75 is generated from strict t-norms.
In [4], as a byproduct result, we have obtained the
solutions of the following functional equation:

flur +vi,ug +v2) = f(ur,uz) + f(vi,v2),

satisfied for all (uy,usz), (vi,v2) € L™, where L™ =
{(u1,uz) € [0,00]% | uy > ug} and f: L — [0, ]
is an unknown function. In this article we will
present all solutions of the following equation:

f(min(u; + v1,a), min(ug + va, a))
= f(ur,uz) + f(v1,v2),

satisfied for all (uy,us), (v1,v9) € L% where a > 0
is fixed real number, f: L* — [0, 00| is an unknown
function and L% = {(uy,u2) € [0,a]? | uy > ua}.
This equation is related to the case with nilpo-
tent and strict t-norms. Such theoretical develop-
ments connected with solutions of different func-
tional equations can be also useful in other topics
like fuzzy mathematical morphology (see [12]) or
similarity measures (cf. [8]).

2. Intuitionistic and interval-valued fuzzy
sets theories

Intuitionistic fuzzy sets theory introduced by
Atanassov [1] assign to each element of the uni-
verse not only a membership degree, but also a non-
membership degree (for the discussion connected
with the proposed terminology see [17]).

Definition 2.1. An intuitionistic fuzzy set A on X
is a set

A={(z,pa(x),va(x))

where pa, va: X — [0,1] are called, respectively,
the membership function and the non-membership
function. Moreover they satisfy the condition

z € X},

palz) +va(z) <1, reX.
Let us define
L* ={(z1,22) € [0,1]* : 21422 <1},

(w1, 22) <p+ (Y1,92) <= 21 < y1 Az2 > yo.



One can easily observe that £* = (L*,<p-) is a
complete lattice with units Op« = (0,1) and 17» =
(1,0). Moreover, an intuitionistic fuzzy set A on
X can be represented by the £*-fuzzy set given by
A: X — L*.

Another extension of fuzzy sets theory is interval-
valued fuzzy sets theory introduced, independently,
by Sambuc [25] and Gorzalczany [19], in which to
each element of the universe a closed subinterval of
the unit interval is assigned — it can be used as an
approximation of the unknown membership degree.
Let us define

L' = {(z1,22) € 0,17 : 31 < 2},
(w1, 22) <pr (y1,92) <= 21 <y1 Awa < o

In the sequel, if 2 € L!, then we denote it by x =
[11,22]. One can easily observe that £ = (L1, < 1)
is also a complete lattice with units 0.r = [0, 0] and
100 =[1,1].

Definition 2.2. An interval-valued fuzzy set on X
is a mapping A: X — L’.

It is important to notice that in [13] it is shown
that intuitionistic fuzzy sets theory is equivalent,
from the mathematical point of view, to interval-
valued fuzzy sets theory. In fact, we can see the
point (z1,x3) € L* as the interval [z1,1 — x5] € L'
(and vice-verse). Since we are limited in number of
pages, in this article we will discuss main results in
the language of interval-valued fuzzy sets, but they
can be easily transformed to the intuitionistic case.

3. Basic fuzzy connectives

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-
tives, but we briefly mention some of the results
employed in the rest of the work.

Definition 3.1. Let £ = (L,<p) be a complete
lattice.  An associative, commutative operation
T:L? — L is called a t-norm if it is increasing
and 1, is the neutral element of 7.

Definition 3.2. A t-norm T on ([0, 1], <) is said to
be nilpotent, if it is continuous and if each = € (0,1)
is a nilpotent element of T, i.e., if there exists n € N
such that x[;} = 0, where

ifn=1,

ifn>1.

ol

1‘7
T(z, "),

Definition 3.3. A t-norm T on ([0, 1], <) is said to
be strict, if it is continuous and strictly monotone,
ie, T(z,y) < T(z,z) whenever z > 0 and y < z.

The following characterizations of nilpotent and
strict t-norms are well-known in the literature.
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Theorem 3.4 ([20]). A function T': [0,1]?> — [0,1]
is a nilpotent t-norm if and only if there exists a
continuous, strictly decreasing function t: [0,1] —
[0,00) with t(1) = 0, which is uniquely determined
up to a positive multiplicative constant, such that
T(z,y) =t (min(t(x) + t(y), €0))), @,y € [0,1].
Theorem 3.5 ([20]). A function T: [0,1]*> — [0, 1]
is a strict t-norm if and only if there exists a contin-
uous, strictly decreasing function t: [0,1] — [0, c0]
with t(1) = 0 and t(0) = oo, which is uniquely deter-
mined up to a positive multiplicative constant, such
that

T(w,y) =t (tx) +t(y), w,ye[01].

In our article we shall consider the following spe-
cial class of t-norms.

Definition 3.6 (see [14]). A t-norm 7 on LI is
called t-representable if there exist t-norms 77 and
T on ([0, 1], <) such that T3 < T3 and

T ([z1, 2], [y1,92]) = [T1(z1,91), Ta(22, Y2)],
for all [xq, 2], [y1,v0] € L.

It should be noted that not all t-norms on £ are
t-representable (see [14]).

One possible definition of an implication on £ is
based on the well-accepted notation introduced by
Fodor and Roubens [18] (see also [5], [15] and [21]).

Definition 3.7. Let £ = (L,<p) be a complete
lattice. A function Z: L? — L is called a fuzzy
implication on L if it is decreasing with respect
to the first variable, increasing with respect to
the second variable and fulfills the following con-
ditions: 1(05,05) = I(lﬁ,lﬁ) = Z(Oﬁ,lﬁ) = 15
and Z(l[/,O[/) = 05.

4. Some new results pertaining to
functional equations

In this section we show one new result related to
functional equations, which will be crucial in ob-
taining main results.

Proposition 4.1 ([3, Proposition 3.6]). Fiz real
a > 0. For a function f:[0,a] — [0,00] the follow-
ing statements are equivalent:

(i) [ satisfies the functional equation

f(min(z +y,a)) = f(z) + f(y),

for all z,y € [0,q].
(ii) FEither f =0, or f = oo, or

ifx =0,

ifo>0, for all x € [0, a].



Proposition 4.2. Fiz real a > 0. Let L* =
{(u1,us) € [0,a)? up > uz}. For a function
f: L™ — [0,00] the following statements are equiv-
alent:

(i) [ satisfies the functional equation
f(min(u; + v1,a), min(ug + va, a)) (A)
= f(u1,u2) + f(v1,v2),

for all (uy,us), (v1,vs) € L*.
(ii) Fither

f=0, (S1)
f=o0, (52)
0, if ug =0,
flursuz) = {oo7 if ug >0, (53)
_ 0, Zf up =0,
flursu) = {oo7 if uy >0, (54)

for all (u1,uq) € L*.

Proof. (ii) = (i) It is a direct calculation that all
the above functions satisfy (A).

(i) = (4i) Let a function f: L* — [0, oo] satisfy
equation (A) for all (uy,us), (vi,v2) € L% Setting
up =v; =a in (A) we get

f(min(a+a,a), min(us+vs, a)) = f(a,u2)+f(a,va),

for all ug, vy € [0,a]. Let us denote f,(x) := f(a,x),
for z € [0, a]. Therefore, we get

fa(min(u2 + va, a’)) = fa(UQ) + fa(U2)a

for all ug,vs € [0,a]. For this equation we can use
solutions from Proposition 4.1. We have 3 possible
cases for the function f,.

1. If f, = 0, then putting u; = u2 = a in (A) we
have

f(min(a + v1, a), min(a + va, a))

= f(aa a) + f(vlvUQ)v
for all (vy,v2) € L%, so
f(a’v Cl) = f(a,a) + f(UhUQ)a

thus 0 = f(vy1,v9) for all (vy,v) € L* and we
get first solution f =0, i.e., (S1).

0, ifz=0
2. If fo(x) = o, 1fi S0 then putting u; = a
in (A) we have

fla,min(ug + v2,a)) = f(a,uz) + f(v1,v2),

for all (v1,v2) € L If we take ug = vg = 0
above, then we get

f(a,0) = f(a,0) + f(v1,0),

v € [07 a]7
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thus f(v1,0) =0 for all v; € [0, a].
If we take uo = 0 and vy > 0 above, then we
get

f(a7U2) = f(a,O) + f(’Ul,’Ug),
for all v € [0, a], therefore co = 0 + f(v1,vs),
ie., f(vi,v2) = oo. In summary, we get the
solution (S3).

Therefore, we need to solve our equation with the
last possible assumption that f, = co. Setting now
uz =v2 =0 in (A) we get

f(min(uy + v1,a),0) = f(u1,0) + f(v1,0),

where u1,v; € [0,a]. Let us denote fO(x) := f(z,0),
for all © € [0,a]. Hence, we obtain the following
functional equation

fO(min(uy +vi,a)) = fO(ur) + f°(v1),

satisfied for all uy,v; € [0,a]. For this equation we
again can use solutions described in Proposition 4.1.
We have 3 possible cases for the function fY.

1. If f© =0, then f(a,0) = 0, which contradicts
our assumption f, = oco.

2. If fO = oo, then putting u; = uz = 0 in (A) we
have

f('U17'U2) = f(O, 0) + f(’l)l,’l)g),

for all (v1,v9) € L%, thus f(vi,v2) = 0o, hence
we get next possible solution f = oo, i.e., (S2).

0, ifz=0

3. If fO>x) = >0 then putting us = 0

m?
in (A) we have

f(min(uy + vi,a),v2) = f(u1,0) + f(v1, v2).

Let us assume that u; > 0 and v{ = vy above.
Then we get

f(min(uy + v2,a),v2) = 0o + f(va,v2),
hence
f(min(uy + v, a),ve) = 00,

for all uy € (0,a],v2 € [0,a]. Observe that
min(uy + vg,a) € (ve,a] and vy € [0,a], thus
we have obtained the result that f(z1,z2) = oo
for any (x1,x2) € L* such that x1 > wo.

Let us take now us = u; and v = vy in (A).
Then we have

f(min(u; + v1,a), min(ug + v1, a))
= f(u1,u1) + f(v1,01),
for all uy,v; € [0,a]. Let us denote by g(z) :=

f(z,z), for € [0,a]. Therefore we obtain the
following functional equation

g(min(uy + v, a)) = g(u1) + g(v1),

satisfied for all uy,v1 € [0,a]. For this equation
we again can use solutions described in Propo-
sition 4.1. We have 3 possible cases for the
function g.



(a) If g = 0, then f(a,a) = 0, which contra-
dicts our assumption f, = co.
(b) If g = oo, then f(0,0) = co, which contra-
dicts our assumption 3 on function fO.
0, ifz=
(© 1o =4
account previous calculations we get the
solution (S4) in this case.

, then taking into
Oo7

O

5. Distributive equation for t-representable
t-norms

In this section we will show how we can use solu-
tions presented in Proposition 4.2 to obtain all solu-
tions, in particular fuzzy implications, of our main
distributive equation
(e, Ti(y, 2)) = B(Z(2,y), I(,2)),
satisfied for all z,y, z € L', where T is an unknown
function, 77 is a t-representable t-norm on £! gen-
erated from nilpotent t-norms Ty, 7o and 73 is a
t-representable t-norm on £! generated from strict
t-norms T3, Ty.
Assume that projection mappings on £! are de-
fined as the following:

(D1)

pri([ey, z]) = w1, pra([zg, 22]) = 22,

for [x1,72] € L. In [4] we have shown that if 7;
and Ty on L' are t-representable, then

s o) (T2 (Y1, 21), Ta (2, 22)])
= T3(9isy oy (W1, 92]): 9, ) ([21, 22])),
9Eer 2y (T2 (Y1, 21), T2 (y2, 22)])
= T4(9Fs, 1) (W1, 92]), G2, ) ([21, 22))),

where [z1, 75] € L! is arbitrarily fixed and functions
g[lm1 m],g[le E LT — L' are defined by

g[lrl,rz](') =prio I([-Tl, ’132], ')a
I 20 () = pro o I([z1, 2], -).

Let us assume that 77 = T5 is a nilpotent t-norm
generated from additive generator ¢; and T3 = T}
is a strict t-norm generated from additive generator
t3. Using the representations of nilpotent t-norms
(Theorem 3.4) and strict t-norms (Theorem 3.5) we

can transform our problem to the following equation
(for a simplicity we deal only with g! now):

H(min(ty (y1) + t1(21),11(0))),
1 (min(ti (y2) + t1(22), 11(0))])

= t5 (t3(9y, ) ([y15 12)))
+ tg(g[lwhm} ([#1, 22])))-

1
g[zl Ig]([
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Hence

t3.0 Gy oy ([t (min(t1 (1) + t1(21),11(0))),
t1 " (min(t1 (y2) + t1(22), 11(0)))])
=30 Gy, ) (U1, 42))
+tzo0 9[11 2a1([21, 22])-

Let us put t1(y1) = w1, t1(y2) = o, t1(21) = v1
and t1(z2) = ve. Of course uq,ug, v1,vs € [0,%1(0)].
Moreover [y, ys], [21,22] € L!, thus y; < yo and
z1 < z9. The generator t; is strictly decreasing, so
u1 > ug and vy > ve. If we put

f[wl,acz] (ua U) i=tgopri OI([zla ‘TQ]v [tl_l(u)v tl_l(v)Dv

where u,v € [0,%1(0)], u > v, then we get the fol-
lowing functional equation

fie1 22y (min(uy + v1,#1(0)), min(uz + v2,21(0)))
= f[wl,wz](ulaUQ) + f[xl,xg](vlav2)a (1)

satisfied for all (u1,us), (v1,v2) € L1 Of course
function fi,, . L1 — [0, 00] is unknown above.
In a same way we can repeat all the above calcula-
tions, but for the function g2, to obtain the following
functional equation

Flr2l(min(uy + vi, 1(0)), min(uz + v2, t1(0)))
= [l (uy ug) + fEl (0, 00),  (2)

satisfied for all (u1,us), (vi,v2) € L) where

f[xl’mﬂ(u?’u) i=tzoprs OZ([$17332]’ [tl_l(u)vtl_l(v)])

is an unknown function. Observe that (1) and (2)
are exactly our functional equation (A). There-
fore, using solutions of Proposition 4.2, we are able
to obtain the description of the vertical section
Z([w1,x2),-) for a fixed [z1,22] € L. Since in this
proposition we have 4 possible solutions, we should
have 16 different solutions of (D1). Observe now
that some of these solutions are not good, since the
range of T is L'. Now, we will check all possibilities.
Let us fix arbitrarily [z1,22] € LT and consider 16
different cases:

L. f[$1,x2] =0 and f[ml’wﬂ =0.
This implies that

), t1 (u2)]) =0,

for all uy,us € [0,t1(0)], uy > ug, thus

t3 o pry OI([(El,.’EQ], [tfl(ul

prioZ([zy, xa), [y1,02) =1,  [y1,92) € L'
Similarly we get
pra o Z([z1, z2], [y1,92]) = 1, [y1,92] € L'

In summary, we obtain the following correct
solution:

I([w1, z2, [y1,92]) = [1,1] = 11



2. f[zl,mz] =0 and f[ﬂh,zz] - 0.
This implies that

prioZ([z1, 2], [y1,2]) =1, [Y1,92] € LI?
while
pra o Z([x1, 2], [y1,y2]) =0, [y1,y0] € L.

In summary we get the following function

I([xlva]v [y1,y2]) = [L 0]7

but this solution is not correct, since [1,0] ¢ L.

. f[rl,Iz] = 0 and f[mhm] (w1, u2) =
0, ifuy=0,
oo, if ug > 0.

Similarly as above one can check that such sit-
uation does not give the correct solution.

. f[ﬂll 2] = 0 and f[ml’mz] (Ul, UQ) =
0, if Uy = 0,
oo, if u; > 0.

One can check that such situation does not give
the correct solution.

- Jlw1,00) = 00 and flenze]l =0,

This implies that

prioZ([z1, z2], [y1,92]) = 0, [y1,52] € L7,
while
pro o I([z1, 2], [y1,2]) =1, [y1,y2] € L.

In summary we obtain the following correct
solution:

I([x1, 22, [y1, 42]) = [0, 1].

. f[zl,mz] = 00 and f[xl’mz] = 00.
In this case we obtain the following correct
solution:

I([x1, z2), [y1,y2]) = [0,0] = 01

* f[.’l:l,(tg] = o0 a‘nd f[thZ](ul} ’U,Q) =
0, if Uy = 0,
o0, if ug > 0.

In this case we obtain the following correct
solution:

[0,1],
[0,0],

ifyg = 1,
lny < 1.

T(ies, 2]l 2)) = {

) = 00 and  fEl(uup) =
0, if Uy = 0,
oo, ifwu; > 0.

In this case we obtain the following correct
solution:

[0, 1],
[07 O]a

lfyl =1,
ifyl < 1.

I([z1, w2, [y1,y2]) = {
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10.

12.

13.

14.

15.

. f[rl,mz] (ul,ug) = {

O7 if Uy = 0,
if ug > 0.

and
Oo )

f[$17w2] = 0
In this case we obtain the following correct
solution:

[171]7 if Y2 = L,
I [} bl ) =
([z1,22], [y1,92]) {[0, 1], ify, < 1.
0, if ug = 0,
f[wl,w] (u1,us2) = {oo if uy >0 and

f[IhfL’z] = 0.
One can check that such situation does not give
the correct solution.

0, if Uy = O,
. T1,x ; = d
UEENICIEE) oo, ifug > 0. an
0 if ug =0
[z1,22] — ’ ’
/ (1, uz) oo, if ug > 0.

In this case we obtain the following correct
solution:

[1, ]7 if Yz = 17
Z(|x1, x2], (Y1, =
(21, @2, [y, o)) {[0,0], if o < 1.
0 if ug =0,
xT1,T b) ’ d
Tl (w1, u2) {oo, if ug > 0. an
0 ifup =0
[@1,22] _ ) 1 7.
/ (1, u2) oo, ifu; > 0.

One can check that such situation does not give
the correct solution. Indeed, when [y;,y2] =
[0.5,1], then we get

I([a)‘l,l’g], [0.5, 1]) = [1, O]

0, if Uy = O,
if u; > 0.

and

f[wl,wg] (u17u2) = {

floraal —
In this case we obtain the following correct
solution:

o0,

[171]a lfy = 1’
I([xth]v [ylayQ]) = {[0 1] if yi <1
O, lf Uy = 07
S wo) (U1, u2) = {Oo ifu; >0 and

f[fl'l ,sz] = 00.
One can check that such situation does not give
the correct solution.

0, if Uy = 0,
z1,20] (UL, U - and
Tt aa) (1, 2) oo, ifu; > 0.
0 if up =0
[3317332] _ I 2 a.
/ (1, u2) oo, if ug > 0.

In this case we obtain the following correct
solution:

[1?1]7 if Y1 = 1;
I([‘rlny]?[ylva}): [071]a lfyl <1&y2:17
0,0, if yo < 1.



O7 if Uy = 0,
16. fiz zo1(ur,u = and
Jia s (1, 02) {oo, if u; > 0.
0 ifu; =0
[xl’xz] — ) 1 7-
/ (11, uz) oo, ifu; >0.
In this case we obtain the following correct
solution:
[1v 1]7 if Y1 = ]-a
I x )x ) ) = .
([z1, z2], [y1, 92]) {[0’0]7 <1,

Therefore, we have obtained 10 correct vertical
sections in £!. Finally, we need to notice that it is
not possible to find at least one solution Z which
is a fuzzy implication on £! in the sense of Defini-
tion 3.7. The vertical sections 5), 6), 7) and 8) are
not correct in this situation since we need to have

I([mlaxﬂ» [1’ 1]) = [L 1]7

for all [z, 2] € LY. For all other possible solutions
1), 9), 11), 13), 15) and 16) we have

Z([0, 0}, [0, 00) # [1, 1],

S0 it is not possible to find vertical solution, which
is correct for [z1,x2] = [0, 0].

6. Conclusion

In this article we have discussed the following dis-
tributive equation

I(z, Ti(y, 2)) = T(Z(x,y),L(x, 2)),

when both t-norms are t-representable and such
that 77 is generated from nilpotent t-norms, while
75 is generated from strict t-norms. In our future
work we will concentrate on a dual situation, when
7, is generated from strict t-norms and 75 is gener-
ated from nilpotent t-norms.
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