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Abstract

Recently, in [4], we have discussed the following dis-
tributive equation of implications I(x, T1(y, z)) =
T2(I(x, y), I(x, z)) over t-representable t-norms,
generated from strict t-norms, in interval-valued
fuzzy sets theory. In this work we continue these
investigations, but with the assumption that T1 is
generated from nilpotent t-norms, while T2 is gen-
erated from strict t-norms. As a byproduct re-
sult we show all solutions for the following func-
tional equation f(min(u1 +v1, a),min(u2 +v2, a)) =
f(u1, u2) + f(v1, v2) related to this case.

Keywords: Interval-valued fuzzy sets, intuitionis-
tic fuzzy sets, fuzzy implication, triangular norm,
distributivity equations, functional equations.

1. Introduction

Distributivity of fuzzy implications over different
fuzzy logic connectives has been studied in the re-
cent past by many authors (see [2], [26], [7], [23],
[24], [6],[3]). These equations have a very impor-
tant role to play in efficient inferencing in approxi-
mate reasoning, especially in fuzzy control systems.
Since all the rules of an inference engine are exer-
cised during every inference cycle, the number of
rules directly affects the computational duration of
the overall application. To reduce the complexity
of fuzzy “IF-THEN” rules, Combs and Andrews [9]
required of the following classical tautology

(p ∧ q)→ r = (p→ r) ∨ (q → r).

Subsequently, there were many discussions (see [10],
[11], [16], [22]), most of them pointed out the need
for a theoretical investigation required for employ-
ing such equations, as concluded by Dick and Kan-
del [16], “Future work on this issue will require
an examination of the properties of various com-
binations of fuzzy unions, intersections and impli-
cations”. An overview of the most important meth-
ods that reduce the complexity of different inference
systems can be found in [5, Chapter 8].
Recently, in [4], we have discussed the distributive

equation of implications

I(x, T1(y, z)) = T2(I(x, y), I(x, z)),

over t-representable t-norms, generated from strict
t-norms, in interval-valued fuzzy sets theory. In
this work we continue these investigations, but with
the assumption that T1 is generated from nilpotent
t-norms, while T2 is generated from strict t-norms.
In [4], as a byproduct result, we have obtained the
solutions of the following functional equation:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2),

satisfied for all (u1, u2), (v1, v2) ∈ L∞, where L∞ =
{(u1, u2) ∈ [0,∞]2 | u1 ≥ u2} and f : L∞ → [0,∞]
is an unknown function. In this article we will
present all solutions of the following equation:

f(min(u1 + v1, a),min(u2 + v2, a))
= f(u1, u2) + f(v1, v2),

satisfied for all (u1, u2), (v1, v2) ∈ La, where a > 0
is fixed real number, f : La → [0,∞] is an unknown
function and La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}.
This equation is related to the case with nilpo-
tent and strict t-norms. Such theoretical develop-
ments connected with solutions of different func-
tional equations can be also useful in other topics
like fuzzy mathematical morphology (see [12]) or
similarity measures (cf. [8]).

2. Intuitionistic and interval-valued fuzzy
sets theories

Intuitionistic fuzzy sets theory introduced by
Atanassov [1] assign to each element of the uni-
verse not only a membership degree, but also a non-
membership degree (for the discussion connected
with the proposed terminology see [17]).

Definition 2.1. An intuitionistic fuzzy set A on X
is a set

A = {(x, µA(x), νA(x)) : x ∈ X},

where µA, νA : X → [0, 1] are called, respectively,
the membership function and the non-membership
function. Moreover they satisfy the condition

µA(x) + νA(x) ≤ 1, x ∈ X.

Let us define

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2.
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One can easily observe that L∗ = (L∗,≤L∗) is a
complete lattice with units 0L∗ = (0, 1) and 1L∗ =
(1, 0). Moreover, an intuitionistic fuzzy set A on
X can be represented by the L∗-fuzzy set given by
A : X → L∗.
Another extension of fuzzy sets theory is interval-

valued fuzzy sets theory introduced, independently,
by Sambuc [25] and Gorzałczany [19], in which to
each element of the universe a closed subinterval of
the unit interval is assigned – it can be used as an
approximation of the unknown membership degree.
Let us define

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2},
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x =
[x1, x2]. One can easily observe that LI = (LI ,≤LI )
is also a complete lattice with units 0LI = [0, 0] and
1LI = [1, 1].

Definition 2.2. An interval-valued fuzzy set on X
is a mapping A : X → LI .

It is important to notice that in [13] it is shown
that intuitionistic fuzzy sets theory is equivalent,
from the mathematical point of view, to interval-
valued fuzzy sets theory. In fact, we can see the
point (x1, x2) ∈ L∗ as the interval [x1, 1− x2] ∈ LI
(and vice-verse). Since we are limited in number of
pages, in this article we will discuss main results in
the language of interval-valued fuzzy sets, but they
can be easily transformed to the intuitionistic case.

3. Basic fuzzy connectives

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-
tives, but we briefly mention some of the results
employed in the rest of the work.

Definition 3.1. Let L = (L,≤L) be a complete
lattice. An associative, commutative operation
T : L2 → L is called a t-norm if it is increasing
and 1L is the neutral element of T .

Definition 3.2. A t-norm T on ([0, 1],≤) is said to
be nilpotent, if it is continuous and if each x ∈ (0, 1)
is a nilpotent element of T , i.e., if there exists n ∈ N
such that x[n]

T = 0, where

x
[n]
T :=

{
x, if n = 1,
T (x, x[n−1]

T ), if n > 1.

Definition 3.3. A t-norm T on ([0, 1],≤) is said to
be strict, if it is continuous and strictly monotone,
i.e., T (x, y) < T (x, z) whenever x > 0 and y < z.

The following characterizations of nilpotent and
strict t-norms are well-known in the literature.

Theorem 3.4 ([20]). A function T : [0, 1]2 → [0, 1]
is a nilpotent t-norm if and only if there exists a
continuous, strictly decreasing function t : [0, 1] →
[0,∞) with t(1) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].

Theorem 3.5 ([20]). A function T : [0, 1]2 → [0, 1]
is a strict t-norm if and only if there exists a contin-
uous, strictly decreasing function t : [0, 1] → [0,∞]
with t(1) = 0 and t(0) =∞, which is uniquely deter-
mined up to a positive multiplicative constant, such
that

T (x, y) = t−1(t(x) + t(y)), x, y ∈ [0, 1].

In our article we shall consider the following spe-
cial class of t-norms.

Definition 3.6 (see [14]). A t-norm T on LI is
called t-representable if there exist t-norms T1 and
T2 on ([0, 1],≤) such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)],

for all [x1, x2], [y1, y2] ∈ LI .

It should be noted that not all t-norms on LI are
t-representable (see [14]).

One possible definition of an implication on LI is
based on the well-accepted notation introduced by
Fodor and Roubens [18] (see also [5], [15] and [21]).

Definition 3.7. Let L = (L,≤L) be a complete
lattice. A function I : L2 → L is called a fuzzy
implication on L if it is decreasing with respect
to the first variable, increasing with respect to
the second variable and fulfills the following con-
ditions: I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L
and I(1L, 0L) = 0L.

4. Some new results pertaining to
functional equations

In this section we show one new result related to
functional equations, which will be crucial in ob-
taining main results.

Proposition 4.1 ([3, Proposition 3.6]). Fix real
a > 0. For a function f : [0, a]→ [0,∞] the follow-
ing statements are equivalent:

(i) f satisfies the functional equation

f(min(x+ y, a)) = f(x) + f(y),

for all x, y ∈ [0, a].
(ii) Either f = 0, or f =∞, or

f(x) =
{

0, if x = 0,
∞, if x > 0,

for all x ∈ [0, a].
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Proposition 4.2. Fix real a > 0. Let La =
{(u1, u2) ∈ [0, a]2 : u1 ≥ u2}. For a function
f : La → [0,∞] the following statements are equiv-
alent:

(i) f satisfies the functional equation

f(min(u1 + v1, a),min(u2 + v2, a)) (A)
= f(u1, u2) + f(v1, v2),

for all (u1, u2), (v1, v2) ∈ La.
(ii) Either

f = 0, (S1)

or
f =∞, (S2)

or

f(u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0,

(S3)

or

f(u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0,

(S4)

for all (u1, u2) ∈ La.

Proof. (ii) =⇒ (i) It is a direct calculation that all
the above functions satisfy (A).

(i) =⇒ (ii) Let a function f : La → [0,∞] satisfy
equation (A) for all (u1, u2), (v1, v2) ∈ La. Setting
u1 = v1 = a in (A) we get

f(min(a+a, a),min(u2+v2, a)) = f(a, u2)+f(a, v2),

for all u2, v2 ∈ [0, a]. Let us denote fa(x) := f(a, x),
for x ∈ [0, a]. Therefore, we get

fa(min(u2 + v2, a)) = fa(u2) + fa(v2),

for all u2, v2 ∈ [0, a]. For this equation we can use
solutions from Proposition 4.1. We have 3 possible
cases for the function fa.

1. If fa = 0, then putting u1 = u2 = a in (A) we
have

f(min(a+ v1, a),min(a+ v2, a))
= f(a, a) + f(v1, v2),

for all (v1, v2) ∈ La, so

f(a, a) = f(a, a) + f(v1, v2),

thus 0 = f(v1, v2) for all (v1, v2) ∈ La and we
get first solution f = 0, i.e., (S1).

2. If fa(x) =
{

0, if x = 0
∞, if x > 0

, then putting u1 = a

in (A) we have

f(a,min(u2 + v2, a)) = f(a, u2) + f(v1, v2),

for all (v1, v2) ∈ La. If we take u2 = v2 = 0
above, then we get

f(a, 0) = f(a, 0) + f(v1, 0), v1 ∈ [0, a],

thus f(v1, 0) = 0 for all v1 ∈ [0, a].
If we take u2 = 0 and v2 > 0 above, then we
get

f(a, v2) = f(a, 0) + f(v1, v2),
for all v1 ∈ [0, a], therefore ∞ = 0 + f(v1, v2),
i.e., f(v1, v2) = ∞. In summary, we get the
solution (S3).

Therefore, we need to solve our equation with the
last possible assumption that fa =∞. Setting now
u2 = v2 = 0 in (A) we get

f(min(u1 + v1, a), 0) = f(u1, 0) + f(v1, 0),

where u1, v1 ∈ [0, a]. Let us denote f0(x) := f(x, 0),
for all x ∈ [0, a]. Hence, we obtain the following
functional equation

f0(min(u1 + v1, a)) = f0(u1) + f0(v1),

satisfied for all u1, v1 ∈ [0, a]. For this equation we
again can use solutions described in Proposition 4.1.
We have 3 possible cases for the function f0.
1. If f0 = 0, then f(a, 0) = 0, which contradicts

our assumption fa =∞.
2. If f0 =∞, then putting u1 = u2 = 0 in (A) we

have

f(v1, v2) = f(0, 0) + f(v1, v2),

for all (v1, v2) ∈ La, thus f(v1, v2) =∞, hence
we get next possible solution f =∞, i.e., (S2).

3. If f0(x) =
{

0, if x = 0
∞, if x > 0

, then putting u2 = 0

in (A) we have

f(min(u1 + v1, a), v2) = f(u1, 0) + f(v1, v2).

Let us assume that u1 > 0 and v1 = v2 above.
Then we get

f(min(u1 + v2, a), v2) =∞+ f(v2, v2),

hence

f(min(u1 + v2, a), v2) =∞,

for all u1 ∈ (0, a], v2 ∈ [0, a]. Observe that
min(u1 + v2, a) ∈ (v2, a] and v2 ∈ [0, a], thus
we have obtained the result that f(x1, x2) =∞
for any (x1, x2) ∈ La such that x1 > x2.
Let us take now u2 = u1 and v2 = v1 in (A).
Then we have

f(min(u1 + v1, a),min(u1 + v1, a))
= f(u1, u1) + f(v1, v1),

for all u1, v1 ∈ [0, a]. Let us denote by g(x) :=
f(x, x), for x ∈ [0, a]. Therefore we obtain the
following functional equation

g(min(u1 + v1, a)) = g(u1) + g(v1),

satisfied for all u1, v1 ∈ [0, a]. For this equation
we again can use solutions described in Propo-
sition 4.1. We have 3 possible cases for the
function g.
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(a) If g = 0, then f(a, a) = 0, which contra-
dicts our assumption fa =∞.

(b) If g =∞, then f(0, 0) =∞, which contra-
dicts our assumption 3. on function f0.

(c) If g(x) =
{

0, if x = 0
∞, if x > 0

, then taking into

account previous calculations we get the
solution (S4) in this case.

5. Distributive equation for t-representable
t-norms

In this section we will show how we can use solu-
tions presented in Proposition 4.2 to obtain all solu-
tions, in particular fuzzy implications, of our main
distributive equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)), (D1)

satisfied for all x, y, z ∈ LI , where I is an unknown
function, T1 is a t-representable t-norm on LI gen-
erated from nilpotent t-norms T1, T2 and T2 is a
t-representable t-norm on LI generated from strict
t-norms T3, T4.
Assume that projection mappings on LI are de-

fined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2,

for [x1, x2] ∈ LI . In [4] we have shown that if T1
and T2 on LI are t-representable, then

g1
[x1,x2]([T1(y1, z1), T2(y2, z2)])

= T3(g1
[x1,x2]([y1, y2]), g1

[x1,x2]([z1, z2])),
g2

(x1,x2)([T1(y1, z1), T2(y2, z2)])
= T4(g2

[x1,x2]([y1, y2]), g2
[x1,x2]([z1, z2])),

where [x1, x2] ∈ LI is arbitrarily fixed and functions
g1

[x1,x2], g
2
[x1,x2] : LI → LI are defined by

g1
[x1,x2](·) := pr1 ◦ I([x1, x2], ·),
g2

[x1,x2](·) := pr2 ◦ I([x1, x2], ·).

Let us assume that T1 = T2 is a nilpotent t-norm
generated from additive generator t1 and T3 = T4
is a strict t-norm generated from additive generator
t3. Using the representations of nilpotent t-norms
(Theorem 3.4) and strict t-norms (Theorem 3.5) we
can transform our problem to the following equation
(for a simplicity we deal only with g1 now):

g1
[x1,x2]([t

−1
1 (min(t1(y1) + t1(z1), t1(0))),

t−1
1 (min(t1(y2) + t1(z2), t1(0)))])
= t−1

3 (t3(g1
[x1,x2]([y1, y2]))

+ t3(g1
[x1,x2]([z1, z2]))).

Hence

t3 ◦ g1
[x1,x2]([t

−1
1 (min(t1(y1) + t1(z1), t1(0))),

t−1
1 (min(t1(y2) + t1(z2), t1(0)))])
= t3 ◦ g1

[x1,x2]([y1, y2])
+ t3 ◦ g1

[x1,x2]([z1, z2]).

Let us put t1(y1) = u1, t1(y2) = u2, t1(z1) = v1
and t1(z2) = v2. Of course u1, u2, v1, v2 ∈ [0, t1(0)].
Moreover [y1, y2], [z1, z2] ∈ LI , thus y1 ≤ y2 and
z1 ≤ z2. The generator t1 is strictly decreasing, so
u1 ≥ u2 and v1 ≥ v2. If we put

f[x1,x2](u, v) := t3 ◦pr1 ◦I([x1, x2], [t−1
1 (u), t−1

1 (v)]),

where u, v ∈ [0, t1(0)], u ≥ v, then we get the fol-
lowing functional equation

f[x1,x2](min(u1 + v1, t1(0)),min(u2 + v2, t1(0)))
= f[x1,x2](u1, u2) + f[x1,x2](v1, v2), (1)

satisfied for all (u1, u2), (v1, v2) ∈ Lt1(0). Of course
function f[x1,x2] : Lt1(0) → [0,∞] is unknown above.
In a same way we can repeat all the above calcula-
tions, but for the function g2, to obtain the following
functional equation

f [x1,x2](min(u1 + v1, t1(0)),min(u2 + v2, t1(0)))
= f [x1,x2](u1, u2) + f [x1,x2](v1, v2), (2)

satisfied for all (u1, u2), (v1, v2) ∈ Lt1(0), where

f [x1,x2](u, v) := t3 ◦ pr2 ◦ I([x1, x2], [t−1
1 (u), t−1

1 (v)])

is an unknown function. Observe that (1) and (2)
are exactly our functional equation (A). There-
fore, using solutions of Proposition 4.2, we are able
to obtain the description of the vertical section
I([x1, x2], ·) for a fixed [x1, x2] ∈ LI . Since in this
proposition we have 4 possible solutions, we should
have 16 different solutions of (D1). Observe now
that some of these solutions are not good, since the
range of I is LI . Now, we will check all possibilities.
Let us fix arbitrarily [x1, x2] ∈ LI and consider 16
different cases:

1. f[x1,x2] = 0 and f [x1,x2] = 0.
This implies that

t3 ◦ pr1 ◦ I([x1, x2], [t−1
1 (u1), t−1

1 (u2)]) = 0,

for all u1, u2 ∈ [0, t1(0)], u1 ≥ u2, thus

pr1 ◦ I([x1, x2], [y1, y2]) = 1, [y1, y2] ∈ LI .

Similarly we get

pr2 ◦ I([x1, x2], [y1, y2]) = 1, [y1, y2] ∈ LI .

In summary, we obtain the following correct
solution:

I([x1, x2], [y1, y2]) = [1, 1] = 1LI .
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2. f[x1,x2] = 0 and f [x1,x2] =∞.
This implies that

pr1 ◦ I([x1, x2], [y1, y2]) = 1, [y1, y2] ∈ LI ,

while

pr2 ◦ I([x1, x2], [y1, y2]) = 0, [y1, y2] ∈ LI .

In summary we get the following function

I([x1, x2], [y1, y2]) = [1, 0],

but this solution is not correct, since [1, 0] /∈ LI .
3. f[x1,x2] = 0 and f [x1,x2](u1, u2) ={

0, if u2 = 0,
∞, if u2 > 0.

Similarly as above one can check that such sit-
uation does not give the correct solution.

4. f[x1,x2] = 0 and f [x1,x2](u1, u2) ={
0, if u1 = 0,
∞, if u1 > 0.

One can check that such situation does not give
the correct solution.

5. f[x1,x2] =∞ and f [x1,x2] = 0.
This implies that

pr1 ◦ I([x1, x2], [y1, y2]) = 0, [y1, y2] ∈ LI ,

while

pr2 ◦ I([x1, x2], [y1, y2]) = 1, [y1, y2] ∈ LI .

In summary we obtain the following correct
solution:

I([x1, x2], [y1, y2]) = [0, 1].

6. f[x1,x2] =∞ and f [x1,x2] =∞.
In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) = [0, 0] = 0LI .

7. f[x1,x2] = ∞ and f [x1,x2](u1, u2) ={
0, if u2 = 0,
∞, if u2 > 0.

In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[0, 1], if y2 = 1,
[0, 0], if y2 < 1.

8. f[x1,x2] = ∞ and f [x1,x2](u1, u2) ={
0, if u1 = 0,
∞, if u1 > 0.

In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[0, 1], if y1 = 1,
[0, 0], if y1 < 1.

9. f[x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [x1,x2] = 0.
In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[1, 1], if y2 = 1,
[0, 1], if y2 < 1.

10. f[x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [x1,x2] =∞.
One can check that such situation does not give
the correct solution.

11. f[x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

.

In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[1, 1], if y2 = 1,
[0, 0], if y2 < 1.

12. f[x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

.

One can check that such situation does not give
the correct solution. Indeed, when [y1, y2] =
[0.5, 1], then we get

I([x1, x2], [0.5, 1]) = [1, 0].

13. f[x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [x1,x2] = 0.
In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[1, 1], if y1 = 1,
[0, 1], if y1 < 1.

14. f[x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0,

and

f [x1,x2] =∞.
One can check that such situation does not give
the correct solution.

15. f[x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [x1,x2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

.

In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =


[1, 1], if y1 = 1,
[0, 1], if y1 < 1 & y2 = 1,
[0, 0], if y2 < 1.
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16. f[x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [x1,x2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

.

In this case we obtain the following correct
solution:

I([x1, x2], [y1, y2]) =
{

[1, 1], if y1 = 1,
[0, 0], if y1 < 1.

Therefore, we have obtained 10 correct vertical
sections in LI . Finally, we need to notice that it is
not possible to find at least one solution I which
is a fuzzy implication on LI in the sense of Defini-
tion 3.7. The vertical sections 5), 6), 7) and 8) are
not correct in this situation since we need to have

I([x1, x2], [1, 1]) = [1, 1],

for all [x1, x2] ∈ LI . For all other possible solutions
1), 9), 11), 13), 15) and 16) we have

I([0, 0], [0, 0]) 6= [1, 1],

so it is not possible to find vertical solution, which
is correct for [x1, x2] = [0, 0].

6. Conclusion

In this article we have discussed the following dis-
tributive equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)),

when both t-norms are t-representable and such
that T1 is generated from nilpotent t-norms, while
T2 is generated from strict t-norms. In our future
work we will concentrate on a dual situation, when
T1 is generated from strict t-norms and T2 is gener-
ated from nilpotent t-norms.
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