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Abstract

We explore the relationship between p-boxes on totally
preordered spaces and possibility measures. We start by
demonstrating that only those p-boxes who have 0–1-
valued lower or upper cumulative distribution function
can be possibility measures, and we derive expressions
for their natural extension in this case. Next, we estab-
lish necessary and sufficient conditions for a p-box to
be a possibility measure. Finally, we show that almost
every possibility measure can be modelled by a p-box.
Whence, any techniques for p-boxes can be readily ap-
plied to possibility measures. We demonstrate this by
deriving joint possibility measures from marginals, un-
der varying assumptions of independence, using a tech-
nique known for p-boxes.

Keywords: Possibility measures, maxitive measures, p-
boxes, coherent upper previsions, natural extension.

1. Introduction

Possibility measures [1] are supremum preserving set
functions, and are widely applied in many fields, in-
cluding data analysis [2], cased-based reasoning [3], and
psychology [4]. In this paper we are concerned with
quantitative possibility theory [5], where degrees of pos-
sibility range in the unit interval. Their interpretation as
upper probability [6, 7] fits our purpose best.

Probability boxes [8], or p-boxes for short, are pairs of
lower and upper cumulative distribution functions, and
are often used in risk and safety studies, in which cumu-
lative distributions play an essential role. P-boxes have
been connected to info-gap theory [9], random sets [10],
and also, partly, to possibility measures [11]. P-boxes
can be defined on arbitrary finite spaces [12], and, more
generally, even on arbitrary totally preordered spaces
[13]—we will use this extensively.

This paper aims to consolidate the connection be-
tween possibility measures and p-boxes, making as few
assumptions as possible. We prove that almost every
possibility measure can be interpreted as a p-box. Con-
versely, we provide necessary and sufficient conditions
for a p-box to be a possibility measure.

To study this connection, we use imprecise proba-
bilities [14], of which both possibility measures and p-
boxes are particular cases. Possibility measures are ex-
plored as imprecise probabilities in [6, 7, 15], and p-
boxes are studied as imprecise probabilities briefly in

[14, Section 4.6.6] and [16], and in much more detail in
[13].

The paper is organised as follows: in Section 2, we
give the basics of the behavioural theory of imprecise
probabilities, and recall some facts about p-boxes and
possibility measures; in Section 3, we first determine
necessary and sufficient conditions for a p-box to be
maximum preserving, before determining in Section 4
necessary and sufficient conditions for a p-box to be a
possibility measure; in Section 5, we show that almost
any possibility measure can be seen as particular p-box,
and that many p-boxes can be seen as a couple of possi-
bility measures; some special cases are detailed in Sec-
tion 6. Finally, in Section 7 we apply the work on mul-
tivariate p-boxes from [13] to derive multivariate possi-
bility measures from given marginals, and in Section 8
we give a number of additional comments and remarks.

Note that proofs are omitted for brevity, whence be-
ware that results are presented in the order that they ap-
pear most logical, and not in the order that they are most
easily proven.

2. Preliminaries

2.1. Imprecise Probabilities

We briefly introduce imprecise probabilities; see [17, 18,
14, 19] for more details.

Let Ω be a possibility space. A subset of Ω is called
an event. Denote the set of all events by ℘(Ω), and the
set of all finitely additive probabilities on ℘(Ω) by P .

An upper probability is any real-valued function P de-
fined on an arbitrary subset K of ℘(Ω). With P, we
associate a lower probability P on {A : Ac ∈ K } via
P(A) = 1−P(Ac). Consider the set

M (P) = {P ∈P : (∀A ∈K )(P(A)≤ P(A))}.

The upper envelope E of M (P) is called the natural
extension [14, Thm. 3.4.1] of P:

E(A) = sup{P(A) : P ∈M (P)}

for all A ⊆ Ω. The corresponding lower probability is
denoted by E, so E(A) = 1−E(Ac). Clearly, E is the
lower envelope of M (P).

We say that P is coherent (see [14, Sec. 3.3.3]) when,
for all A ∈K ,

P(A) = E(A).

P is called coherent whenever P is.
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Figure 1: Example of a p-box on [0,1].

2.2. P-Boxes

In this section, we revise p-boxes defined on totally pre-
ordered (not necessarily finite) spaces. For further de-
tails, see [13].

Start with a totally preordered space (Ω,�). So, � is
transitive, reflexive and any two elements are compara-
ble. As usual, we write x ≺ y for x � y and x 6� y, x � y
for y ≺ x, and x ' y for x � y and y � x. For any two x,
y ∈ Ω exactly one of x ≺ y, x ' y, or x � y holds. We
also use the following common notation for intervals in
Ω:

[x,y] = {z ∈Ω : x� z� y}
(x,y) = {z ∈Ω : x≺ z≺ y}

and similarly for [x,y) and (x,y].
We assume that Ω has a smallest element 0Ω and a

largest element 1Ω—we can always add these two ele-
ments to the space Ω.

A cumulative distribution function is a non-
decreasing map F : Ω → [0,1] for which F(1Ω) = 1.
For each x ∈ Ω, F(x) is interpreted as the probability
of [0Ω,x].

The quotient set of Ω with respect to ' is denoted by
Ω/':

[x]' = {y ∈Ω : y' x} for any x ∈Ω

Ω/'= {[x]' : x ∈Ω}.

Because F is non-decreasing, F is constant on elements
[x]' of Ω/'.

Definition 1. A probability box, or p-box, is a pair
(F ,F) of cumulative distribution functions from Ω to
[0,1] satisfying F ≤ F .

A p-box is interpreted as a lower and an upper cumu-
lative distribution function (see Fig. 1), or more specifi-
cally, as an upper probability PF ,F on the set of events

{[0Ω,x] : x ∈Ω}∪{(y,1Ω] : y ∈Ω}

defined by

PF ,F([0Ω,x]) = F(x) and PF ,F((y,1Ω]) = 1−F(y).

We denote by EF ,F the natural extension of PF ,F to all
events. To simplify the expression for natural extension,
we introduce an element 0Ω− such that:

0Ω−≺ x for all x ∈Ω

F(0Ω−) = F(0Ω−) = F(0Ω−) = 0.

Note that (0Ω−,x] = [0Ω,x]. Now, let Ω∗ = Ω∪{0Ω−},
and define

H = {(x0,x1]∪ (x2,x3]∪·· ·∪ (x2n,x2n+1] :
x0 ≺ x1 ≺ ·· · ≺ x2n+1 in Ω

∗}.

Proposition 2. [13, Prop. 4] For any A∈H , that is A=
(x0,x1]∪ (x2,x3]∪·· ·∪ (x2n,x2n+1] with x0 ≺ x1 ≺ ·· · ≺
x2n+1 in Ω∗, it holds that EF ,F(A) = PH

F ,F(A), where

PH
F ,F(A) = 1−

n+1

∑
k=0

max{0,F(x2k)−F(x2k−1)}, (1)

with x−1 = 0Ω− and x2n+2 = 1Ω.

To calculate EF ,F(A) for an arbitrary event A ⊆ Ω,

use the outer measure [14, Cor. 3.1.9] PH
F ,F
∗

of the upper

probability PH
F ,F defined in Eq. (1):

EF ,F(A) = PH
F ,F
∗
(A) = inf

C∈H ,A⊆C
PH

F ,F(C). (2)

For intervals, we immediately infer from Proposi-
tion 2 and Eq. (2) that (‘i.p.’ stands for ‘immediate pre-
decessor’)

EF ,F((x,y]) = F(y)−F(x) (3a)

EF ,F([x,y]) = F(y)−F(x−) (3b)

EF ,F((x,y)) =

{
F(y)−F(x) if y has no i.p.
F(y−)−F(x) if y has an i.p.

(3c)

EF ,F([x,y)) =

{
F(y)−F(x−) if y has no i.p.
F(y−)−F(x−) if y has an i.p.

(3d)

for any x ≺ y in Ω,1 where F(y−) denotes supz≺y F(z)
and similarly for F(x−). If Ω/' is finite, then one can
think of z− as the immediate predecessor of z in the quo-
tient space Ω/' for any z ∈Ω. We also have that

EF ,F({x}) = F(x)−F(x−) (4)

for any x ∈Ω.

2.3. Possibility and Maxitive Measures

Brevity is stipulated; see [1, 5, 6, 7] for details.

Definition 3. A maxitive measure is an upper probabil-
ity P on ℘(Ω) satisfying P(A∪B) = max{P(A),P(B)}
for every A and B⊆Ω.

Proposition 4. [16, Def. 3.22, Thm. 3.46] A maxitive
measure P is coherent whenever P( /0)= 0 and P(Ω)= 1.

Possibility measures are a particular case of maxitive
measures.

1In case x = 0Ω, evidently, 0Ω− is the immediate predecessor.
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Definition 5. A (normed) possibility distribution is a
mapping π : Ω→ [0,1] satisfying supx∈Ω π(x) = 1. A
possibility distribution π induces a possibility measure
Π on ℘(Ω), given by:

Π(A) = sup
x∈A

π(x) for all A⊆Ω.

If we write EΠ for the conjugate lower probability of
the upper probability Π, then:

EΠ(A) = 1−Π(Ac) = 1− sup
x∈Ac

π(x).

A possibility measure is maxitive, but not all maxitive
measures are possibility measures.

As an imprecise probability model, possibility mea-
sures are not as expressive as for instance p-boxes. This
poor expressive power is also illustrated by the fact that,
for any event A:

Π(A)< 1 =⇒ EΠ(A) = 0, and
EΠ(A)> 0 =⇒ Π(A) = 1,

meaning that every event has a trivial probability bound
on at least one side. Their main attraction is that cal-
culations with them are very easy: to find the upper (or
lower) probability of any event, a simple supremum suf-
fices.

In the following sections, we characterize the circum-
stances under which a possibility measure Π is the nat-
ural extension of some p-box (F ,F). In order to do so,
we first characterise the conditions under which a p-box
induces a maxitive measure.

3. P-boxes as Maxitive Measures

3.1. Necessary and Sufficient Condition for
Maxitivity

Let us begin by characterising under which conditions
the natural extension of a p-box is maxitive:

Theorem 6. The natural extension EF ,F of a p-box
(F ,F) is maximum preserving if and only if at least one
of F or F is 0–1-valued.

Hence, for the purposes of this paper we can restrict
our attention to p-boxes (F ,F) where at least one of F
or F is 0–1-valued. Next, we provide expressions for the
natural extensions of such p-boxes, and determine under
which conditions these are possibility measures.

3.2. Natural Extension of Maxitive P-Boxes

In case of 0–1-valued F , we arrive at the following ex-
pression:

Proposition 7. Let (F ,F) be a p-box with 0–1-valued F,
and let B = {x ∈Ω∗ : F(x) = 0}. Then, for any A⊆Ω,

EF ,F(A) = min
y∈Bc

inf
x∈Ω∗ : A∩[0Ω,y]�x

F(x).

Here, A � x means z � x for all z ∈ A, and similarly
y ≺ A means y ≺ z for all z ∈ A. Thus, /0 � x and y ≺ /0
for all x and y.

An important special case is summarized in the fol-
lowing corollary:

Corollary 8. Let (F ,F) be a p-box with 0–1-valued F,
and let B = {x ∈Ω∗ : F(x) = 0}. If Ω/' is order com-
plete, then, for any A⊆Ω,

EF ,F(A) = min
y∈Bc

F(supA∩ [0Ω,y]).

If, in addition, Bc has a minimum, then

EF ,F(A) = F(supA∩ [0Ω,minBc]).

If, in addition, F = I[1Ω]' , then

EF ,F(A) = F(supA). (5)

Note that Eq. (5) is essentially due to [7, paragraph
preceeding Theorem 11]—they work with chains and
multivalued mappings, whereas we work with total pre-
orders. The case of order complete Ω/ ' is applicable
for instance when Ω is a finite space, or when it is an
interval of real numbers.

In case of 0–1-valued F , we arrive at the following
expression:

Proposition 9. Let (F ,F) be a p-box with 0–1-valued F,
and let C = {x ∈Ω∗ : F(x) = 0}. Then, for any A⊆Ω,

EF ,F(A) = 1−max
x∈C

sup
y∈Ω∗ : y≺A∩(x,1Ω]

F(y).

Again, we summarize an important special case in the
following corollary:

Corollary 10. Let (F ,F) be a p-box with 0–1-valued
F, and let C = {x ∈ Ω∗ : F(x) = 0}. If Ω/ ' is order
complete, and C has a maximum, then, for any A⊆Ω,

EF ,F(A) =


1−F(infA∩Cc) if A∩Cc has

no minimum
1−F((minA∩Cc)−) if A∩Cc has

a minimum.

If, in addition, F = 1, then

EF ,F(A) =

{
1−F(infA) if A has no minimum
1−F(minA−) if A has a minimum.

4. P-Boxes as Possibility Measures.

In this section, we identify when p-boxes coincide ex-
actly with a possibility measure. All results in this sec-
tion rely on the following trivial, yet important, lemma:

Lemma 11. For a p-box (F ,F) there is a possibility
measure Π such that EF ,F = Π if and only if

EF ,F(A) = sup
x∈A

EF ,F({x}) for all A⊆Ω

and in such a case, π(x) = EF ,F({x}).
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We say that a p-box (F ,F) is a possibility measure
when the conditions of Lemma 11 are satisfied.

Taking into account that every possibility measure is
maxitive, we deduce from Theorem 6 that, for a p-box
to be a possibility measure, it is necessary that at least
one of F or F is 0–1-valued. The next corollary char-
acterizes the additional regularity conditions to arrive at
necessity and sufficiency:

Corollary 12. Assume that Ω/' is order complete and
let (F ,F) be a p-box. Then (F ,F) is a possibility mea-
sure if and only if either

(L1) F is 0–1-valued,

(L2) F(x) = F(x−) for all x∈Ω that have no immediate
predecessor, and

(L3) {x ∈Ω∗ : F(x) = 1} has a minimum,

or

(U1) F is 0–1-valued,

(U2) F(x) = F(x+) for all x∈Ω that have no immediate
successor, and

(U3) {x ∈Ω∗ : F(x) = 0} has a maximum.

Note that, in case F = I[1Ω]' , condition (L2) is essen-
tially due to [7, Observation 9]. Also note that, for EF ,F
to be a possibility measure, the conditions are still nec-
essary even when Ω/' is not order complete: the proof
in this direction does not require order completeness.

As a special case, when Ω/' is finite, EF ,F is a pos-
sibility measure with possibility distribution

π(x) =

{
F(x) if x�min{y : F(y) = 1}
0 otherwise.

when F is 0–1-valued, and

π(x) =

{
1−F(x−) if F(x) = 1
0 otherwise.

when F is 0–1-valued.
We now characterise when, conversely, possibility

measures can be represented as p-boxes. We shall see
that this is possible for almost all of them.

5. From Possibility Measures to P-Boxes

5.1. Possibility Measures as Specific P-Boxes

[11] already discuss the link between possibility mea-
sures and p-boxes defined on the real line with the usual
ordering. They show that any possibility measure can be
approximated by a p-box, however at the expense of los-
ing some information. We substantially strengthen their
result, and even reverse it: we prove that any possibility
measure with compact range can be exactly represented
by a p-box with vacuous lower cumulative distribution
function, that is, with F = I[1Ω]' . In other words, gener-
ally speaking, possibility measures are a special case of
p-boxes on totally preordered spaces.

Theorem 13. For every possibility measure Π on Ω with
possibility distribution π such that π(Ω) = {π(x) : x ∈
Ω} is compact, there is a preorder� on Ω and an upper
cumulative distribution function F such that the p-box
(F = I[1Ω]' ,F) is a possibility measure with possibility
distribution π . In fact, one may take the preorder � to
be the one induced by π (so x� y whenever π(x)≤ π(y))
and F = π .

The representing p-box is not necessarily unique:

Example 14. Let Ω = {x1,x2} and let Π be the possibil-
ity measure determined by the possibility distribution

π(x1) = 0.5 π(x2) = 1.

By Theorem 13, this possibility measure can be obtained
if we consider the order x1 ≺ x2 and the p-box (F1,F1)
given by

F1(x1) = 0 F1(x2) = 1

F1(x1) = 0.5 F1(x2) = 1.

However, we also obtain it if we consider the order x2 ≺
x1 and the p-box (F2,F2) given by

F2(x1) = 1 F2(x2) = 0.5

F2(x1) = 1 F2(x2) = 1.

Indeed, by Corollary 12, EF2,F2
is a possibility measure.

By Eq. (4), its associated possibility distribution is

EF2,F2
(x2) = F(x2)−F(x2−) = 1

EF2,F2
(x1) = F(x1)−F(x1−) = 0.5,

i.e., π , as with the given ordering, x2− = 0Ω− and
x1−= x2. �

Moreover, a p-box may be maximum preserving even
if neither the lower nor the upper distribution function is
vacuous, as we have shown in Corollary 12.

Also, there are possibility measures which cannot be
represented as p-boxes when π(Ω) is not compact:

Example 15. Let Ω = [0,1], and consider the possibil-
ity distribution given by π(x) = (1+ 2x)/8 if x < 0.5,
π(0.5) = 0.4 and π(x) = x if x > 0.5; note that π(Ω) =
[0.125,0.25)∪{0.4}∪ (0.5,1] is not compact. The or-
dering induced by π is the usual ordering on [0,1]. Let
Π be the possibility measure induced by π . We show
that there is no p-box (F ,F) on ([0,1],�), regardless of
the ordering � on [0,1], such that EF ,F = Π.

By Corollary 12, if EF ,F = Π, then at least one of F
or F is 0-1–valued. Assume first that F is 0-1–valued.
By Eq. (4), EF ,F({x}) =F(x)−F(x−) = π(x). Because
π(x) > 0 for all x, it must be that F(x−) = 0 for all x,
so F = π . Because F is non-decreasing, x � y if and
only if F(x) ≤ F(y); in other words, � can only be the
usual ordering on [0,1] for (F ,F) to be a p-box. Hence,
F = I{1}.

For (F ,F) to induce the possibility measure Π, we
know from Corollary 12 that F(x) = F(x−) for every
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x that has no immediate predecessor, that is, for every
x > 0. But, F(0.5) = 0.4 6= 0.25 = F(0.5−).

Similarly, if F would be 0–1-valued, then we deduce
from Eq. (4) that F(x) = 1 for every x, again because
π(x)> 0 for all x. Therefore, F(x−) = 1−π(x) for all x.
But, because F is non-decreasing, one can easily show
that � can only be the inverse of the usual ordering on
[0,1] for (F ,F) to be a p-box.

Now, for (F ,F) to induce the possibility measure Π,
we know from Corollary 12 that F(x) =F(x+) for every
x that has no immediate successor in with respect to �,
that is, for every x ≺ 0, or equivalently, for every x > 0.
Whence,

F(x) = F(x+) = inf
y�x

F(y−) = 1− sup
y<x

π(y)

for all x > 0. This leads to a contradiction: by the defi-
nition of π , we have on the one hand,

F(0.5−) = sup
x>0.5

(1− sup
y<x

π(y)) = 0.5

and on the other hand,

F(0.5−) = 1−π(0.5) = 0.6.

Hence, EF ,F coincides with Π in neither case. �

Another way of relating possibility measures and p-
boxes goes via random sets (see for instance [10] and
[12]).

5.2. P-boxes as Conjunction of Possibility Measures

In [12], where p-boxes are studied on finite spaces, it is
shown that a p-box can be interpreted as the conjunction
of two possibility measures, in the sense that M (PF ,F)
is the intersection of two sets of additive probabilities
induced by two possibility measures. The next propo-
sition extends this result to arbitrary totally preordered
spaces.

Proposition 16. Let (F ,F) be a p-box such that (F , IΩ)
and (I[1Ω]' ,F) are possibility measures (see Corol-
lary 12). Then, (F ,F) is the intersection of two pos-
sibility measures defined by the distributions

πF(x) = F(x) and πF(x) = 1−F(x−),

in the sense that M (PF ,F) = M (ΠπF
)∩M (ΠπF ).

This suggests a simple way (already mentioned
in [12]) to conservatively approximate EF ,F by using the
two possibility distributions: it holds that

max{EπF
(A),EπF

(A)} ≤ EF ,F(A)

≤ EF ,F(A)≤min{EπF
(A),EπF (A)}.

This approximation is computationally attractive, as it
allows us to use the supremum preserving properties of
possibility measures. However, as next example shows,
the approximation will usually be very conservative, and
hence not likely to be helpful.

Example 17. Consider x≺ y∈Ω. The distance between
EF ,F and its approximation min{EπF

,EπF } on the inter-
val (x,y] is given by

min{EπF
((x,y]),EπF ((x,y])}−E((x,y])

= min{F(y),1−F(x)}− (F(y)−F(x))

= min{F(x),1−F(y)}.

Therefore, the approximation will be close to the exact
value only when either F(x) is close to zero or F(y) is
close to one. �

In general, the set M (Π1)∩M (Π2) associated with
two possibility distributions π1 and π2 is not a p-box. In-
deed, it may be empty (take for instance Ω = {1,2} and
the possibility measures determined by the distributions
π1(1) = 1,π1(2) = 0.25,π2(1) = 0.25,π2(2) = 1), or re-
sult in another uncertainty model, such as a cloud [20].
In particular, when M (Π1)∩M (Π2) is non-empty, the
resulting coherent upper probability is in general not
a possibility measure. An interesting open problem is
then to characterise under which conditions some of the
properties (i.e., maxitivity, complete monotonicity) of
Π1 and Π2 still hold for the coherent upper probability
determined by M (Π1)∩M (Π2).

6. Natural Extension of 0–1-Valued P-Boxes

From Proposition 7, we can derive an expression for the
natural extension of a 0–1-valued p-box:

Proposition 18. Let (F ,F) be a p-box where F =
ICc ,F = IBc for some C ⊆ B⊆Ω. Then for any A⊆Ω,

EF ,F(A) =


0 if there are x ∈C and y ∈ Bc s.t.

A∩C � x,A∩B∩Cc = /0,y≺ A∩Bc

1 otherwise.

Moreover, Corollary 12 allows us to determine when
this p-box is a possibility measure:

Proposition 19. Assume that Ω/ ' is order complete.
Let (F ,F) be a p-box where F = ICc ,F = IBc for some
C ⊆ B⊆Ω. The following statements are equivalent:

1. (F ,F) is a possibility measure.

2. Bc has a minimum and C has a maximum.

In particular, we can characterise under which condi-
tions a precise p-box, i.e., one where F = F := F , in-
duces a possibility measure. The natural extension of
precise p-boxes on the unit interval was considered in
[21, Section 3.1]. From Theorem 6, the natural exten-
sion of F can only be a possibility measure when F is
0–1-valued. If we apply Propositions 18 and 19 with
B =C we obtain the following:

Corollary 20. Let (F ,F) be a precise p-box where F =
F is 0–1-valued, and let B = {x ∈Ω∗ : F(x) = 0}. Then,
for every subset A of Ω,

EF ,F(A) =


0 if there are x ∈ B,y ∈ Bc

s.t. A∩B� x and y≺ A∩Bc

1 otherwise.
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If moreover Ω/ ' is order complete, then (F ,F) is a
possibility measure if and only if B has a maximum and
Bc has a minimum.

As a consequence, we deduce that a precise 0–1-
valued p-box never induces a possibility measure in case
(Ω,�) = ([0,1],≤), except if F = I[0,1].

7. Constructing Multivariate Possibility Measures
from Marginals

In [13], multivariate p-boxes were constructed from
marginals. We next apply this construction together with
the p-box representation of possibility measures, given
by Theorem 13, to build a joint possibility measure from
some given marginals. As particular cases, we consider
the joint,

(i) either without any assumptions about dependence
or independence between variables, that is, using
the Fréchet-Hoeffding bounds [22],

(ii) or assuming epistemic independence between all
variables, which allows us to use the factorization
property [23].

Let us consider n variables X1, . . . , Xn, and assume
that for each variable Xi we are given a possibility mea-
sure Πi with corresponding possibility distribution πi on
Xi. We assume that the range of all marginal possibil-
ity distributions is [0,1]; in particular, Theorem 13 ap-
plies, and each marginal can be represented by a p-box
on (Xi,�i), with vacuous F i, and F i = πi. Remember
that the preorder �i is the one induced by πi.

7.1. Multivariate Possibility Measures

The construction in [13, Sect. 7] employs the following
mapping Z, which induces a preorder � on Ω = X1×
·· ·×Xn:

Z(x1, . . . ,xn) =
n

max
i=1

πi(xi).

With this choice of Z, we can easily find the possibility
measure which represents the joint as accurately as pos-
sible, under any rule of combination of coherent lower
probabilities:

Lemma 21. Let � be any rule of combination of coher-
ent upper probabilities, mapping the marginals P1, . . . ,
Pn to a joint coherent upper probability

⊙n
i=1 Pi on all

events. If there is a continuous function u for which

n⊙
i=1

Pi

(
n

∏
i=1

Ai

)
= u(P1(A1), . . . ,Pn(An))

for all A1 ⊆X1, . . . , An ⊆Xn, then the possibility dis-
tribution π defined by

π(x) = u(Z(x), . . . ,Z(x))

induces the least conservative upper cumulative distri-
bution function on (Ω,�) that dominates the combina-
tion

⊙n
i=1 Πi of Π1, . . . , Πn.

This result is a consequence of [13, Lemma 22],
which gives the least conservative p-box that domi-
nates the natural extension of the combination of some
marginal p-boxes by�. Here we are considering the par-
ticular case where the marginal p-boxes represent possi-
bility measures, and approximating of the corresponding
p-box by a possibility measure.

7.2. Natural Extension: The Fréchet Case

The natural extension �n
i=1Pi of P1, . . . , Pn is the upper

envelope of all joint (finitely additive) probability mea-
sures whose marginal distributions are compatible with
the given marginal upper probabilities. So, the model is
completely vacuous (that is, it makes no assumptions)
about the dependence structure, as it includes all possi-
ble forms of dependence. See [24, p. 120, §3.1] for a
rigorous definition. In this paper, we only need the fol-
lowing equality, which is one of the Fréchet bounds (see
for instance [14, p. 122, §3.1.1]):

�n
i=1Pi

(
n

∏
i=1

Ai

)
=

n
min
i=1

Pi(Ai)

for all A1 ⊆X1, . . . , An ⊆Xn.

Theorem 22. The possibility distribution

π(x) =
n

max
i=1

πi(xi) (6)

induces the least conservative upper cumulative distri-
bution function on (Ω,�) that dominates the natural ex-
tension �n

i=1Πi of Π1, . . . , Πn.

In other words, if we consider the marginal credal sets
M (Π1), . . . , M (Πn) and consider the set M of all the
finitely additive probabilities on Ω whose Xi-marginals
belong to M (Πi) for i = 1, . . . ,n, then M is included in
the credal set of the possibility distribution π as defined
in Eq. (6).

Since it is based on very mild assumptions, it is
not surprising that the possibility distribution given by
Eq. (6) is very uninformative (that is, very close to a
vacuous model where π(x) = 1 for every x): we shall
have π(x) = 1 as soon as πi(xi) = 1 for some i, even if
π j(x j) = 0 for every j 6= i. In particular, if one of the
marginal possibility distributions is vacuous, then so is
π . This also shows that the corresponding possibility
measure Π may not have Π1, . . . , Πn as its marginals.

7.3. Independent Natural Extension

In contrast, we can consider joint models which satisfy
the property of epistemic independence between the dif-
ferent X1, . . . , Xn. This property means, roughly speak-
ing, that the conditional models that we can derive from
the joint coincide with the marginals. The most conser-
vative of these models is called the independent natural
extension ⊗n

i=1Pi of P1, . . . , Pn. See [23] for a rigorous
definition and properties, and [15] for a study of joint
possibility measures that satisfy epistemic independence
in the case of two variables. In this paper, we only need
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the following equality for the independent natural exten-
sion:

n⊗
i=1

Pi

(
n

∏
i=1

Ai

)
=

n

∏
i=1

Pi(Ai) (7)

for all A1 ⊆X1, . . . , An ⊆Xn.

Theorem 23. The possibility distribution

π(x) =
(

n
max
i=1

πi(xi)

)n

(8)

induces the least conservative upper cumulative distri-
bution function on (Ω,�) that dominates the indepen-
dent natural extension ⊗n

i=1Πi of Π1, . . . , Πn.

Note that the possibility measure determined Eq. (8)
is only an outer approximation of the independent natu-
ral extension: as shown in [15, Sec. 6], there is no least
conservative possibility measure that corresponds to the
independent natural extension of possibility measures.

One interesting consequence of Theorem 23 is that
we can also use the possibility distribution determined
by Eq. (8) under some other independence conditions
for imprecise probabilities, such as strong or Kuznetsov
independence [25, 26]. This is because the joint model
they determine also satisfies the factorization condition
given by Eq. (7), and as a consequence the least conser-
vative upper cumulative distribution that dominates the
strong or the Kuznetsov product of the marginal possi-
bility measures is also determined by Eq. (8). See [23]
for more information on the relationship between factor-
ization and independence.

We do not consider the minimum rule and the product
rule

n
min
i=1

πi(xi) and
n

∏
i=1

πi(xi),

as their relation with the theory of coherent lower pre-
visions is still unclear. However, we can compare the
above approximation with the following outer approxi-
mation given by [27, Proposition 1]:

π(x) =
n

min
i=1

(1− (1−πi(xi))
n). (9)

The above equation is an outer approximation in case of
random set independence, which is slightly more con-
servative than the independent natural extension [28,
Sec. 4], so in particular, it is also an outer approximation
of the independent natural extension. Essentially, each
distribution πi is transformed into 1− (1− πi)

n before
applying the minimum rule. It can be expressed more
simply as

1− n
max
i=1

(1−πi(xi))
n.

If for instance π(xi) = 1 for at least one i, then this
formula provides a more informative (i.e., lower) upper
bound than Theorem 23. On the other hand, when all
π(xi) are, say, less than 1/2, then Theorem 23 does bet-
ter.

Finally, note that neither Eq. (8) nor Eq. (9) are proper
joints, in the sense that, in both cases, the marginals

of the joint are outer approximations of the original
marginals, and will in general not coincide with the orig-
inal marginals.

8. Conclusions

Both possibility measures and p-boxes can be seen as
coherent upper probabilities. We used this framework
to study the relationship between possibility measures
and p-boxes. Following [13], we allowed p-boxes to be
defined on arbitrary totally preordered spaces, whence
including p-boxes on finite spaces, on real intervals, and
even multivariate ones.

We began by considering the more general case of
maxitive measures, and proved that a necessary and
sufficient condition for a p-box to be maxitive is that
at least one of the cumulative distribution functions of
the p-box must be 0–1 valued. Moreover, we deter-
mined the natural extension of a p-box in those cases and
gave a necessary and sufficient condition for the p-box
to be supremum-preserving, i.e., a possibility measure.
As special cases, we also studied p-boxes where both
the lower and the upper distribution functions are 0–1–
valued, and in particular precise 0–1 valued p-boxes.

Secondly, we showed that almost every possibility
measure can be represented as a p-box. Hence, in gen-
eral, p-boxes are more expressive than possibility mea-
sures, while still keeping a relatively simple representa-
tion and calculus [13], unlike many other models, such
as for instance lower previsions and credal sets, which
typically require far more advanced techniques, such as
linear programming.

Finally, we considered the multivariate case in more
detail, by deriving a joint possibility measure from given
marginals using the p-box representation established in
this paper and results from [13].

In conclusion, we established new connections be-
tween both models, strengthening known results from
literature, and allowing many results from possibility
theory to be embedded into the theory of p-boxes, and
vice versa.

As future lines of research, we point out the generali-
sation of a number of properties of possibility measures
to p-boxes, such as the connection with fuzzy logic [1]
or the representation by means of graphical structures
[29], and the study of the connection of p-boxes with
other uncertainty models, such as clouds and random
sets.
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