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Abstract

A new method to construct aggregation functions is
introduced. These aggregation functions are called
biconic aggregation functions with a given diago-
nal (resp. opposite diagonal) section and their con-
struction method is based on linear interpolation
on segments connecting the diagonal (resp. oppo-
site diagonal) of the unit square and the points (0, 1)
and (1, 0) (resp. (0, 0) and (1, 1)). Special classes of
biconic aggregation functions such as biconic semi-
copulas, quasi-copulas and copulas are studied in
detail.

Keywords: Aggregation function, Quasi-copula,
Copula, Diagonal section, Opposite diagonal sec-
tion, Linear interpolation

1. Introduction

A binary aggregation function A is a [0, 1]2 → [0, 1]
function satisfying the following conditions:

(i) A(0, 0) = 0 and A(1, 1) = 1;
(ii) for any x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and

y ≤ y′, it holds that A(x, y) ≤ A(x′, y′).

Aggregation functions are of great importance in
many fields of application. Their most prominent
uses is as logical connectives in fuzzy set theory [2].
To increase modelling flexibility, new methods to
construct aggregation functions are being proposed
continuously in the literature [6, 18].
Special classes of aggregation functions are of par-

ticular interest, such as semi-copulas [15, 16], trian-
gular norms [1, 22], quasi-copulas [17, 24] and cop-
ulas [1, 25]. They are all conjunctors, in the sense
that they extend the classical Boolean conjunction.
Recall that an aggregation function is a semi-

copula if it has 1 as neutral element, i.e. A(x, 1) =
A(1, x) = x for any x ∈ [0, 1]. Evidently, any
semi-copula S has 0 as annihilator, i.e. S(0, x) =
S(x, 0) = 0 for any x ∈ [0, 1]. A semi-copula S is
a triangular norm (t-norm for short) if it is com-
mutative and associative. The aggregation func-
tions TM and TD given by TM(x, y) = min(x, y)
and TD(x, y) = min(x, y) whenever max(x, y) = 1,

and TD(x, y) = 0 elsewhere, are examples of t-
norms. Moreover, for any semi-copula S the in-
equality TD ≤ S ≤ TM holds. A semi-copula S is a
quasi-copula if it is 1-Lipschitz continuous, i.e. for
any x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′,
it holds that

|S(x′, y′)− S(x, y)| ≤ |x′ − x|+ |y′ − y| .
A semi-copula S is a copula if it is 2-increasing,
i.e. for any x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and
y ≤ y′, it holds that VS([x, x′]× [y, y′]) :=

S(x′, y′) + S(x, y)− S(x′, y)− S(x, y′) ≥ 0 .

VS is called the volume of the rectangle [x, x′] ×
[y, y′]. Any copula is a quasi-copula since the
2-increasingness of a semi-copula implies its 1-
Lipschitz continuity. The (quasi-)copulas TM and
TL with TL(x, y) = max(x + y − 1, 0), are respec-
tively the greatest and the smallest (quasi-)copulas,
i.e. for any (quasi-)copula C, it holds that TL ≤
C ≤ TM.
The diagonal section of a [0, 1]2 → [0, 1] func-

tion F is the function δF : [0, 1] → [0, 1] defined
by δF (x) = F (x, x). A diagonal function [13] is a
function δ : [0, 1] → [0, 1] satisfying the following
conditions:

(D1) δ(0) = 0, δ(1) = 1;

(D2) δ is increasing;

(D3) for all x ∈ [0, 1], it holds that δ(x) ≤ x;
(D4) δ is 2-Lipschitz continuous, i.e. for all x, x′ ∈

[0, 1] it holds that

|δ(x′)− δ(x)| ≤ 2|x′ − x| .

The set of all diagonal functions will be denoted by
D. The set of all [0, 1]→ [0, 1] functions that satisfy
conditions D1 and D2 (resp. D1, D2 and D3) will
be denoted by DA (resp. DS). The diagonal section
of a copula C is a diagonal function. Conversely,
for any diagonal function δ, there exists at least
one copula C with diagonal section δC = δ. For
instance, the copula

Cδ(x, y) = min
(
x, y,

δ(x) + δ(y)
2

)

67

EUSFLAT-LFA 2011 July 2011 Aix-les-Bains, France

© 2011. The authors - Published by Atlantis Press



is the greatest symmetric copula with diagonal sec-
tion δ [12, 14, 26]. Similarly, the opposite diagonal
section of a [0, 1]2 → [0, 1] function F is the function
ωF : [0, 1] → [0, 1] defined by ωF (x) = F (x, 1 − x).
An opposite diagonal function [7] is a function ω :
[0, 1]→ [0, 1] satisfying the following conditions:
(OD1) for all x ∈ [0, 1], it holds that ω(x) ≤

min(x, 1− x);
(OD2) ω is 1-Lipschitz continuous, i.e. for all

x, x′ ∈ [0, 1], it holds that

|ω(x′)− ω(x)| ≤ |x′ − x| .

The set of all opposite diagonal functions will
be denoted by O. The set of all [0, 1] → [0, 1]
functions that satisfy condition OD1 will be
denoted by OS . The opposite diagonal section ωC
of a copula C is an opposite diagonal function.
Conversely, for any opposite diagonal function
ω, there exists at least one copula C with op-
posite diagonal section ωC = ω. For instance,
the copula Fω defined by Fω(x, y) = TL(x, y) +
min {ω(t) | t ∈ [min(x, 1− y),max(x, 1− y)]} is
the greatest copula with opposite diagonal section
ω [7, 23]. Note that Fω is opposite symmetric [7],
i.e. Fω(x, y) − Fω(1 − y, 1 − x) = x + y − 1, for
any (x, y) ∈ [0, 1]2. Diagonal and opposite diagonal
functions have been used recently to construct
several subclasses of aggregation functions such as
quasi-copulas and copulas [5, 7, 11, 12, 13, 14, 20].
Characteristic for the aggregation function TM is

that its surface is constituted from linear segments
connecting its diagonal section to the points (0, 1, 0)
and (1, 0, 0). Also characteristic for TM is that
its surface is constituted from linear segments con-
necting its opposite diagonal section to the points
(0, 0, 0) and (1, 1, 1). Inspired by the above inter-
pretation, we introduce a new method to construct
aggregation functions. These aggregation functions
are constructed by linear interpolation on segments
connecting the diagonal (resp. opposite diagonal) of
the unit square to the points (0, 1) and (1, 0) (resp.
(0, 0) and (1, 1)).
This paper is organized as follows. In the next

section we introduce the definition of a biconic func-
tion with a given diagonal section and characterize
the class of biconic aggregation functions, as well as
the classes of biconic semi-copulas, biconic quasi-
copulas, biconic copulas and singular biconic copu-
las. The class of biconic functions with a given op-
posite diagonal section is introduced in Section 3.
Finally, some conclusions are given.

2. Biconic functions with a given diagonal
section

2.1. Biconic aggregation functions with a
given diagonal section

In this subsection we introduce biconic functions
with a given diagonal section. Their construction is

based on linear interpolation on segments connect-
ing the diagonal of the unit square and the points
(0, 1) and (1, 0). Throughout this paper the conven-
tion 0

0 = 0 is assumed. For any (x, y) ∈ [0, 1]2, we
introduce in this subsection the following notations

u = x

1 + x− y , v = y

1 + y − x .

Let δ ∈ DA and α, β ∈ [0, 1]. The function Aα,βδ :
[0, 1]2 → [0, 1] defined by

Aα,βδ (x, y) =





α(x− y) + y
δ(v)
v

, if y ≤ x ,

β(y − x) + x
δ(u)
u

, otherwise
(1)

is well defined. This function is called a biconic
function with a given diagonal section.

Proposition 1 Let δ ∈ DA. The function Aα,βδ
defined in (1) is an aggregation function if and only
if

(i) the functions µδ,α, µδ,β : ]0, 1]→ R, defined by

µδ,α(x) = δ(x)− α
x

, µδ,β(x) = δ(x)− β
x

,

are increasing;
(ii) the functions λδ,α , λδ,β : [0, 1[→ R, defined by

λδ,α(x) = δ(x)− α
1− x , λδ,β(x) = δ(x)− β

1− x ,

are increasing.

Inspired by the above proposition, the biconic func-
tion Aα,βδ is called a biconic aggregation function
with a given diagonal section.

Example 1 Consider the diagonal section δM of
TM, i.e. δM(x) = x for any x ∈ [0, 1]. Obviously,
conditions (i) and (ii) of Proposition 1 are satis-
fied. The resulting biconic aggregation function is a
Choquet integral [4, 10], i.e.

Aα,βδM (x, y) =





αx+ (1− α)y , if y ≤ x ,

(1− β)x+ βy , otherwise .

Taking β = 1−α, the resulting biconic aggregation
function is the weighed arithmetic mean, i.e.

Aα,1−αδM
(x, y) = αx+ (1− α)y .

Proposition 2 Let Aα,βδ be a biconic aggregation
function. Then the inequality

max(αx, βx) ≤ δ(x) ≤ min(α+(1−α)x, β+(1−β)x) ,
(2)

holds for any x ∈ [0, 1].
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Now we identify the functions in DA which char-
acterize the extreme biconic aggregation functions
with fixed α and β. Let α, β ∈ [0, 1] and consider
the functions δα,β , δα,β : [0, 1]→ [0, 1], defined by

δα,β(x) =





max(αx, βx) , if x < 1 ,

1 , if x = 1 ,

δ
α,β(x) =





min(α+ (1− α)x, β + (1− β)x)
, if x > 0 ,

0 , if x = 0 .

Obviously, δα,β , δα,β ∈ DA and the conditions of
Proposition 1 are satisfied. Note also that for any
two biconic aggregation functions Aα,βδ1 and Aα,βδ2 , it
holds that Aα,βδ1 ≤ Aα,βδ2 if and only if δ1 ≤ δ2. The
following proposition is then obvious.

Proposition 3 Let Aα,βδ be a biconic aggregation
function. Then it holds that

Aα,β
δα,β
≤ Aα,βδ ≤ Aα,β

δ
α,β .

Example 2 The functions δ0,0 and δ0,0 are given
by

δ0,0(x) =





0 , if x < 1 ,

1 , if x = 1 ,

and δ0,0(x) = x for any x ∈ [0, 1]. The correspond-
ing biconic aggregation functions are respectively the
smallest t-norm, i.e. A0,0

δ0,0
= TD, and the greatest

t-norm, i.e. A0,0
δ
0,0 = TM.

Example 3 The functions δ1,1 and δ1,1 are given
by δ1,1(x) = x for any x ∈ [0, 1] and

δ
1,1(x) =





1 , if x > 0 ,

0 , if x = 0 .

The corresponding biconic aggregation func-
tions are respectively the smallest t-conorm, i.e.
A1,1
δ1,1

(x, y) = max(x, y), and the greatest t-conorm,
i.e. A1,1

δ
1,1(x, y) = max(x, y) whenever min(x, y) = 0,

and A1,1
δ
1,1(x, y) = 1 elsewhere.

Example 4 The functions δ1,0, δ
1,0, δ0,1 and

δ
0,1 all coincide with δM. The corresponding bi-
conic aggregation functions coincide with the pro-
jection to the first and second coordinate [2, 3], i.e.
A1,0
δ1,0

(x, y) = A1,0
δ
1,0(x, y) = x and A0,1

δ0,1
(x, y) =

A0,1
δ
0,1(x, y) = y.

Evidently, any biconic function Aα,βδ is continuous if
and only if δ is continuous. The functions δα,β and
δ
α,β need not to be continuous in general. In fact,
the only case in which they are both continuous is
when

max(α, β) = 1 and min(α, β) = 0 .

However, as Example 4 shows, it then holds that

δα,β = δ = δ
α,β = δM ,

and Aα,βδ coincides with one of the projections.

Proposition 4 Let δ ∈ DA. The function Aα,βδ
defined in (1)

(i) is symmetric, i.e. Aα,βδ (x, y) = Aα,βδ (y, x) for
any (x, y) ∈ [0, 1]2 if and only if α = β;

(ii) has 0 as annihilator if and only if α = β = 0;
(iii) has 1 as neutral element if and only if α =

β = 0.

From here on, we will only consider biconic func-
tions with a given diagonal section that have 1 as
neutral element, i.e. α = β = 0. We then abbrevi-
ate A0,0

δ as Aδ. In this case, Aδ is symmetric and is
given by

Aδ(x, y) =





y
δ(v)
v

, if y ≤ x ,

x
δ(u)
u

, otherwise .

(3)

Suppose that the diagonal section of a biconic ag-
gregation function Aδ contains a (linear) segment
with endpoints (x1, δ(x1)) and (x2, δ(x2)). From
the definition of a biconic function with a given di-
agonal section, it follows that Aδ is linear on the
triangle T1 := ∆{(x1,x1),(x2,x2),(1,0)} as well as on
the triangle T2 := ∆{(x1,x1),(x2,x2),(0,1)}. This situa-
tion is depicted in Figure 1. For any (x, y) ∈ T1, it

Figure 1: Illustration for the triangles T1 and T2.

holds that

Aδ(x, y) = ax+ by + c . (4)
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Furthermore,

ax1 + bx1 + c = δ(x1)
ax2 + bx2 + c = δ(x2)

a+ c = 0 .

Solving this system of equations and using the sym-
metry of Aδ, we obtain

Aδ(x, y) =





rx+ sy − r
t

, if (x, y) ∈ T1 ,

sx+ ry − r
t

, if (x, y) ∈ T2 ,

(5)

where

r = x1δ(x2)− x2δ(x1)
s = (1− x1)δ(x2)− (1− x2)δ(x1)
t = x2 − x1 .

2.2. Biconic semi-copulas with a given
diagonal section

In this subsection we characterize the set of func-
tions in DS for which the corresponding biconic
function is a semi-copula.

Lemma 1 Let δ ∈ DS. The function λδ : [0, 1[→
[0,∞[ , defined by λδ(x) = δ(x)

1−x , is increasing;

Proposition 5 Let δ ∈ DS. Then the function
Aδ : [0, 1]2 → [0, 1] defined in (3) is a semi-copula if
and only if the function µδ : ]0, 1]→ [0,∞[ , defined
by µδ(x) = δ(x)

x , is increasing.

Example 5 Consider the diagonal functions δM
and δL with δL being the diagonal section of TL, i.e.
δL(x) = max(2x − 1, 0) for any x ∈ [0, 1]. Clearly,
the functions µδM and µδL , defined in Proposition 5,
are increasing. The corresponding biconic semi-
copulas are respectively TM and TL.

Example 6 Consider the diagonal function δ(x) =
x1+θ with θ ∈ [0, 1]. Clearly, the function µδ, de-
fined in Proposition 5, is increasing for any θ ∈
[0, 1]. The corresponding family of biconic semi-
copulas is given by

Aθ(x, y) =





y1+θ

(1 + y − x)θ , if y ≤ x ,

x1+θ

(1 + x− y)θ , otherwise .

Proposition 6 Let Aδ be a biconic semi-copula
and suppose that δ(x0) = x0 for some x0 ∈ ]0, 1[ .
Then it holds that δ(x) = x for any x ∈ [x0, 1].

2.3. Biconic quasi-copulas with a given
diagonal section

An interesting class of aggregation functions is the
class of quasi-copulas. Quasi-copulas are of increas-
ing importance in various studies in fuzzy set theory,
such as preference modelling and similarity mea-
surement [8, 9].
Next we characterize the diagonal functions for

which the corresponding biconic function is a quasi-
copula.

Lemma 2 Let δ ∈ D. Then it holds that

(i) the function νδ : ]0, 1] → [2,∞[ , defined by
νδ(x) = 1+δ(x)

x , is decreasing;
(ii) the function φδ : [0, 1/2[∪ ]1/2, 1]→ R, defined

by φδ(x) = δ(x)
1−2x , is increasing on the interval

[0, 1/2[ and on the interval ]1/2, 1].

Proposition 7 Let δ ∈ D. Then the function Aδ :
[0, 1]2 → [0, 1] defined in (3) is a quasi-copula if and
only if

(i) the function µδ, defined in Proposition 5, is in-
creasing;

(ii) the function ξδ : [0, 1[→ [0, 1[ , defined by
ξδ(x) = x−δ(x)

1−x , is increasing.

Example 7 Consider the diagonal function in Ex-
ample 6. Clearly, the functions µδ and ξδ, defined
in Propositions 5 and 7, are increasing. The corre-
sponding family of biconic semi-copulas is a family
of biconic quasi-copulas.

Example 8 Consider the diagonal function δ de-
fined by

δ(x) =





0 , if x ≤ 1
6 ,

2x− 1
3 , if 1

6 ≤ x ≤ 1
4 ,

2
3x , if 1

4 ≤ x ≤ 3
4 ,

2x− 1 , otherwise .

Clearly, the function µδ, defined in Proposition 5,
is increasing. Note also that the function ξδ, de-
fined in Proposition 7, is not increasing. Hence, the
corresponding biconic semi-copula is a proper semi-
copula. Consequently, the class of biconic quasi-
copulas with a given diagonal section is a proper
subclass of the class of biconic semi-copulas with a
given diagonal section.

Proposition 8 Let Aδ be a biconic quasi-copula.
Then it holds that

(i) if δ(x0) = x0 for some x0 ∈ ]0, 1[ , then Aδ =
TM;

(ii) if δ(x0) = 2x0 − 1 for some x0 ∈ [1/2, 1[ , then
δ(x) = 2x− 1 for any x ∈ [x0, 1].
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Figure 2: The diagonal function and the corre-
sponding biconic semi-copula of Example 8.

2.4. Biconic copulas with a given diagonal
section

Another relevant class of aggregation functions is
the class of copulas. Due to Sklar’s theorem [27],
copulas have received increasing attention from re-
searchers in statistics and probability theory [19].
We denote the (linear) segment with endpoints
x,y ∈ [0, 1]2 as

〈x,y〉 = {θx + (1− θ)y | θ ∈ [0, 1]} .

Proposition 9 Let δ be a piecewise linear diagonal
function. Then the function Aδ : [0, 1]2 → [0, 1]
defined in (3) is a copula if and only if δ is convex.

Lemma 3 Let Cδ be a biconic copula and m1,m2 ∈
]−∞, 0[ such that m1 > m2. Consider three points
b1 := (x1, x1), b2 := (x2, x2) and b3 := (x3, x3)
such that 0 ≤ x1 < x2 < x3 ≤ 1 and the segments
〈b1, (1, 0)〉, 〈b2, (1, 0)〉 and 〈b3, (1, 0)〉 have slopes
m1, −√m1m2 and m2, respectively. Then it holds
that

(i) there exists a rectangle [x, x′]× [y, y′] such that
the segment connecting the points (x, y′) and
(x′, y) is a subset of the segment 〈b2, (1, 0)〉
and the points (x, y) and (x′, y′) are located on
the segments 〈b1, (1, 0)〉 and 〈b3, (1, 0)〉 respec-
tively.

(ii) the point (x2, δ(x2)) lies below or on the seg-
ment 〈(x1, δ(x1)), (x3, δ(x3))〉.

Lemma 3 and Proposition 9 are used to show that
for any convex diagonal function, the function Aδ
defined in (3) is a copula.

Proposition 10 Let δ ∈ D. Then the function
Aδ : [0, 1]2 → [0, 1] defined in (3) is a copula if
and only if δ is convex.

Example 9 Consider the diagonal function in Ex-
ample 6. Clearly, δ is convex for any θ ∈ [0, 1].
The corresponding family of biconic semi-copulas is
a family of biconic copulas.

Example 10 Consider the diagonal function given
by δ(x) = x2

1−θ(1−x)2 with θ ∈ [−1, 1] . Clearly, δ
is convex for any θ ∈ [−1, 1] . The corresponding
family of biconic copulas is given by

Cθ(x, y) =





y2(1 + y − x)
(1 + y − x)2 − θ(1− x)2 , if y ≤ x ,

x2(1 + x− y)
(1 + x− y)2 − θ(1− y)2 , otherwise .

Example 11 Consider the diagonal function δ
given by

δ(x) =





0 , if x ≤ 1
4 ,

1
3(4x− 1) , if 1

4 ≤ x ≤ 2
5 ,

1
2x , if 2

5 ≤ x ≤ 2
3 ,

2x− 1 , otherwise .

Clearly, the functions µδ and ξδ, defined in Propo-
sitions 5 and 7, are increasing. Note also that δ is
not convex. Hence, Aδ is a proper biconic quasi-
copula. Consequently, the class of biconic copulas
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Figure 3: The diagonal function and the corre-
sponding biconic quasi-copula of Example 11.

with a given diagonal section is a proper subclass of
the class of biconic quasi-copulas with a given diag-
onal section.

In the following lemma the opposite symmetry
property of a biconic copula with a given diagonal
section is studied.

Proposition 11 A biconic copula Cδ is opposite
symmetric if and only if the function f(x) = x−δ(x)
is symmetric with respect to the point (1/2, 1/2), i.e.
δ(x)− δ(1− x) = 2x− 1 for any x ∈ [0, 1/2].

Next we characterize the class of singular biconic
copulas with a given diagonal section. The support
of a copula C is the complement of the union of all
non-degenerated open rectangles of the unit square
such that the C-volume of the closed rectangle is
equal to zero. A copula C is called singular if its
support has Lebesgue measure zero.
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Proposition 12 Let Cδ be a biconic copula. Then
it holds that Cδ is singular if and only if δ is piece-
wise linear.

Example 12 The family of biconic copulas given
in (7) is a family of singular biconic copulas.

We focus now on associative biconic copulas with
a given diagonal section and conclude that the only
two associative biconic copulas with a given diag-
onal section are TM and TL. Every 1-Lipschitz t-
norm is a copula, while every associative copula is
a t-norm (the commutativity can be obtained from
the continuity of a copula [22]).

Proposition 13 TM and TL are the only biconic
associative copulas (1-Lipschitz t-norms) with a
given diagonal section.

We conclude this subsection by finding the inter-
section between the set of biconic copulas with a
given diagonal section and the set of conic copulas.
Conic copulas were introduced in [21] and their con-
struction was based on linear interpolation on seg-
ments connecting the upper boundary curve of the
zero-set and the point (1, 1). In other words, the
surface of any conic copula is constituted from its
zero-set and segments connecting the upper bound-
ary curve of its zero-set to the point (1, 1, 1). The
zero-set ZC of a copula C is the inverse image of the
value 0, i.e.

ZC := C−1({0}) =
{
(x, y) ∈ [0, 1]2 | C(x, y) = 0

}
.

Lemma 4 Let δ ∈ D and suppose that θ = 1 −
2−

1
θ1 , with θ1 ∈ [1,∞[, is the maximum value such

that δ(θ) = 0. Then the biconic copula Cδ has the
zero set ZCδ given by

ZCδ = {(x, y) ∈ [0, 1]2 | y ≤ fθ1(x)}

where the function fθ1 : [0, 1]→ [0, 1] is given by

fθ1(x) =





(1− 2
1
θ1 )−1x+ 1 , if x ≤ 1− 2−

1
θ1 ,

(1− 2
1
θ1 )(x− 1) , if x ≥ 1− 2−

1
θ1 .

(6)

Due to the above lemma and the definition of a conic
copula, the following proposition is obvious.

Proposition 14 Let Cδ be a biconic copula and
suppose further that Cδ is a conic copula. Then
it holds that
Cδ(x, y) =




max(y + (1− x)(1− 2
1
θ1 ), 0) , if y ≤ x ,

max(x+ (1− y)(1− 2
1
θ1 ), 0) , otherwise ,

(7)

with θ1 ∈ [1,∞[ . This family of copulas was intro-
duced in [21].

3. Biconic functions with a given opposite
diagonal section

In this section we introduce biconic functions with a
given opposite diagonal section. Their construction
is based on linear interpolation on segments con-
necting the opposite diagonal of the unit square and
the points (0, 0) and (1, 1). For any (x, y) ∈ [0, 1]2,
we introduce in this section the following notations

u′ = x

x+ y
, v′ = 1− y

2− x− y .

Let ω : [0, 1]→ [0, 1] and α, β ∈ [0, 1]. The function
Aα,βω : [0, 1]2 → [0, 1] defined by Aα,βω (x, y) =




α(1− x− y) + x
ω(u′)
u′

, if x+ y ≤ 1 ,

β(x+ y − 1) + (1− y) ω(v′)
v′

, otherwise .
(8)

is well defined. This function is called a biconic
function with a given opposite diagonal section. Ev-
idently, the boundary conditions of an aggregation
function imply that α = 0 and β = 1. We then
abbreviate A0,1

ω as Aω with Aω(x, y) =




x
ω(u′)
u′

, if x+ y ≤ 1 ,

x+ y − 1 + (1− y) ω(v′)
v′

, otherwise .

(9)

Clearly, the function Aω defined in (9) has 1 as neu-
tral element. Therefore, if Aω is an aggregation
function then it is also a semi-copula.
In the next proposition, we characterize the func-

tions in OS for which the corresponding biconic
function is a biconic aggregation function.

Proposition 15 Let ω ∈ OS. Then the function
Aω : [0, 1]2 → [0, 1] defined in (9) is an aggregation
function if and only if
(i) the functions µω , ρω : ]0, 1] → [0, 1], defined by

µω(x) = ω(x)
x , ρω(x) = 1−ω(x)

x , are decreasing;
(ii) the functions λω, ξω : [0, 1[→ [0, 1], defined by

λω(x) = ω(x)
1−x and ξω = x−ω(x)

1−x , are increasing.

Let C be a quasi-copula (resp. copula) with op-
posite diagonal section ω. The function C ′, defined
by C ′(x, y) = x−C(x, 1−y), is again a quasi-copula
(resp. copula) whose diagonal section δC′ is given by
δC′(x) = x− ω(x). This transformation permits to
derive in a straightforward manner the conditions
that have to be satisfied by an opposite diagonal
function to obtain a biconic quasi-copula (resp. cop-
ula), which has that opposite diagonal function as
opposite diagonal section.

Proposition 16 Let ω ∈ O. Then the func-
tion Aω : [0, 1]2 → [0, 1] defined in (9) is a quasi-
copula if and only if the functions µω and λω, de-
fined in Proposition 15, are respectively decreasing
and increasing.
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Proposition 17 Let ω ∈ O. Then the function
Aω : [0, 1]2 → [0, 1] defined in (9) is a copula if and
only if ω is concave.

Example 13 Consider the opposite diagonal func-
tions ωM(x) = min(x, 1− x) and ωL(x) = 0. Obvi-
ously, ωM and ωL are concave functions. The cor-
responding biconic copulas are respectively TM and
TL.

Example 14 Consider the opposite diagonal func-
tion ωΠ(x) = x(1 − x). Obviously, ωΠ is concave.
The corresponding biconic copula is given by

CωΠ(x, y) =





x(1− u′) , if x+ y ≤ 1 ,

x− (1− y)v′ , otherwise .

We focus now on the symmetry and opposite sym-
metry properties of biconic copulas with a given op-
posite diagonal section.

Proposition 18 Let Cω be a biconic copula. Then
it holds that

(i) Cω is opposite symmetric;
(ii) Cω is symmetric if and only if ω is symmetric

with respect to the point (1/2, 1/2), i.e. ω(x) =
ω(1− x) for any x ∈ [0, 1/2] .

We conclude this section by finding the intersec-
tion between the class of biconic copulas with a
given opposite diagonal section and the class of bi-
conic copulas with a given diagonal section and the
class of conic copulas.

Proposition 19 Let C be a biconic copula with a
given opposite diagonal section and suppose further
that C is a biconic copula with a given diagonal sec-
tion. Then it holds that C is a member of the fol-
lowing family

θTM + (1− θ)TL with θ ∈ [0, 1] .

Let Cω be a biconic copula. Due to the definition
of Cω, the only possible zero-sets are

ZCω = ZTM = [0, 1]2\ ]0, 1]2

and

ZCω = ZTL = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1} .

Recalling that every conic copula is uniquely deter-
mined by its zero-set [21], the following proposition
is clear.

Proposition 20 Let Cω be a biconic copula with
given opposite diagonal section ω and suppose fur-
ther that Cω is a conic copula. Then it holds that
Cω = TM or Cω = TL.

4. Conclusion

We have introduced biconic aggregation functions
with a given diagonal (resp. opposite diagonal) sec-
tion. We have also characterized the classes of bi-
conic semi-copulas, quasi-copulas and copulas with
a given diagonal (resp. opposite diagonal) section.
The t-norms TM and TL turn out to be the only
1-Lipschitz biconic t-norms with a given diagonal
section. Moreover, a copula that is a biconic copula
with a given diagonal section as well as with a given
opposite diagonal section turns out to be a convex
combination of TM and TL.
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