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Abstract

Dealing with classification problems in practice of-
ten has to cope with uncertain information, ei-
ther in the training or in the operation phase or
both. Modeling these uncertainties allows to en-
hance the robustness or performance of the clas-
sifier. In this paper we focus on the operation
phase and present a general, but simple extension
to rule based fuzzy classifier to do so. Therefor un-
certain features are gradually and dimension wise
faded out of the classification process. An arti-
ficial two–dimensional dataset is used to visualize
the effectiveness of this approach. Investigations on
three benchmark datasets shows the performance
and gain in robustness.

Keywords: fuzzy classifier, uncertainty, trust man-
agement

1. Motivation and Background

In complex technical systems, the likelihood of data
being uncertain increases due to disturbances like
noise or anomalies, uncertain system properties
and/or the combination of uncertain information in
multi-staged signal processing. Typical examples
are automotive driver assistant systems which rely
on camera, laser or radar data to perceive their en-
vironment in order to identify other traffic partici-
pants and to figure out the current traffic situation.
But the sensors themself and the processing of input
signals introduce uncertainty, e.g. due to occlusion
and/or glaring of a sensor. The decision the driver
assistant system has to come to is thus based on
these uncertain data. And what is more, these un-
certainties vary over time, depending on the current
situation at runtime.

The sources of these uncertainties can be classi-
fied in general as follows:

• physical effects, e.g. sensor-noise, outliers,
drift, faults

• informational uncertainties, e.g. unknown or
conflicting information

• insufficient specification, e.g. suboptimal or in-
complete parametrization

• interaction or actuator faults, e.g. unforesee-
able interaction patterns of actuators with the
environment

This point of view covers and complements consid-
erations of the classical fault tolerance community,
e.g. [1].

In this paper we focus on technical systems that
perform a classification algorithm. The features,
which serve as the inputs of the classifier, hence
transfer all these uncertainties to the classifier. For
classification tasks, the first three categories of
uncertainty-sources are important, in closed loop
applications also the fourth.

Fortunately, varying degrees of uncertainty are
known for example for many sensor systems and
data sources. E.g., the spatial resolution of stereo
camera images depends on the distance of an object.
The accuracy of a calculated object position hence
varies over its relative position. Or, the degree of
certainty of sensor readings may vary dynamically
due to ageing or de- and re-calibration. Even in
pure offline applications the degree of certainty may
vary, e.g. depending on the source or maturity of
the data.

Also the classification algorithm itself has to be
seen as a source of uncertainty. Decision making
by classification of data is generally associated with
some ambiguity if a pattern falls to a certain ex-
tent between two (or more) classes. Most classifi-
cation algorithms hence calculate similarity or dis-
tance measures to clusters (or cluster centers) in or-
der to find the most appropriate one. These (inter-
nal) distance and/or additional discriminance mea-
sures can be used to determine a confidence mea-
sure, or a degree of certainty, respectively, for a de-
cision.

In critical classification tasks, classifiers are often
used with a reject option. If the discriminant mea-
sure gets too low, the classifier assigns no class to
the input feature vector. This is especially crucial in
embedded systems and safety critical applications,
where the costs of a misclassification are too high.

Additionally, the knowledge which is incorpo-
rated in the classifier may be incomplete because the
feature space was not completely covered by train-
ing data, or uncertain, because the training data
were uncertain or conflicting.

As the design of dependable complex systems is a
challenge today, these uncertainties need to be tack-
led explicitly. This should not reduce engineerabil-
ity on the one hand. On the other hand, it is impor-
tant to still achieve the best possible performance
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under the given circumstances without sacrificing a
dependable, trustworthy system operation.

In [2] we therefor introduced a generic framework
called trust management. One main focus of trust
management is to deal with (dynamic) uncertain-
ties explicitly and to make them as comprehensible
as possible. The knowledge about uncertainties is
represented by complementing system variables and
components with attributes, which are called trust

level. They indicate the trustworthiness of a signal
value or of a module by a scalar measure ϑ. In this
way, modules can explicitly consider the trustwor-
thiness of inputs and internal information and fade
adaptively between a high performance behaviour
in case of trustworthy information and a robust be-
haviour for low trust.

Our work also shows how trust management can
be incorporated into a continuous signal process-
ing task [2]. Complementary to that, the work pre-
sented here is intended to show how to balance the
performance and trustworthiness of classification al-
gorithms, i.e. a discrete operation. Because we aim
at complex systems, a classification algorithm with
trust management must be easy to engineer and the
incorporation of uncertainty processing has to be
understood easily. In order to be suited for embed-
ded systems (e.g. automotive systems), operation
speed and costs also matters. Finally, (hard) real-
time capabilities may be required.

2. Related Work

2.1. Classification and Uncertainty

When dealing with uncertainty in classification sys-
tems, one has to distinguish when and how the un-
certainty comes into play, namely in the training or
in the operation phase. During the operation phase,
the source of uncertainty can be an external one,
i.e. the feature vector or a part of it is uncertain,
or an internal one, i.e. the classifier itself is uncer-
tain. During the training phase uncertainty can be
present within the training feature vectors or in the
assignment of a feature vector to a class. In addi-
tion, uncertainty can be present during the whole
phase to the same degree, but also to a varying de-
gree.

In all major classification algorithms a discrimi-
nant value of the class assignment at the output can
be obtained. This is derived e.g. based on internal
distance measures. A classifier is then less certain
the larger the distance or the less the discriminance
is in the operation phase.

An approach to get a more significant discrimi-
nance measures is the concept of conflict and igno-
rance [3] . For a given feature vector, the ignorance
is a measure for the distance to any class, the con-
flict a measure for the degree of overlap between
classes at the feature vector. In [3] this is used to
monitor the reliability of a fuzzy rule-based classifi-
cation.

Another method to deal with uncertain classifica-
tions is to combine different classifiers [4] and to use
the discriminant measures of different classification
algorithms to determine, which result is the most
trustworthy.

There are different approaches to incorporate
knowledge about the uncertainty of the training
data. In a rule based classifier, the assignment of
the rules to the classes can be handled with evi-
dential reasoning [5]. This yields a better measure
of the classification uncertainty in the presence of
static, known uncertainty in the training data.

Given statistical properties of the uncertain train-
ing data, one can reformulate the support vector
machine (SVM) training problem to accommodate
this additional information offline at training time,
which results in an optimization problem of the sec-
ond order cone program type [6]. It can be shown
that one obtains more robust solutions by this ap-
proach.

The problem is that these approaches work stat-
ically, i.e., the uncertainty is only either used dur-
ing training, or assumed to be known but constant.
Hence the same degree of certainty is applied in
both phases. Because of this, these approaches are
not capable to adapt to dynamically changing un-
certainties of the input data in the operation phase.

A totally uncertain input can be viewed as a
missing input. The problem is similar then to the
well studied task of classification with missing fea-
tures [7], but only for this borderline case. It is
hence not gradually applicable.

A gradual fade out of input dimensions for rule-
based fuzzy classifiers is shown in [8]. The weights
for each feature dimension are determined by mea-
sures for its importance.

For neural networks with Gaussian basis func-
tions, [9] employs a weighted integration over the
missing or uncertain input. This can be done during
training as well as operation phase, but requires an
approximation of the local probability distribution
of the input. This (weighted) integration approach
is a general solution to the problem of a missing or
uncertain input feature, but it is a very expensive
operation. One has to sample over all dimensions,
that are missing or uncertain. It further requires a
priori knowledge about the probability distribution.

In [10] we extended a SVM in order to increase the
robustness by explicitly modeling the uncertainty of
the input data at runtime, i.e., dynamically during
the operation phase. In terms of engineerability and
interpretability, a fuzzy classifier is superior to the
SVM. The rules can be parameterized in detail and
learned rules can be investigated easily. The uncer-
tainty of the training data can be assumed to be
stored implicitly within the fuzzy rules considered
here. Thus, the aim of this work is to extend a
fuzzy-classifier to handle dynamic uncertainties of
in the operation phase, i.e. within the feature vec-
tor.
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2.2. Uncertainty Representation

The information about the trustworthiness of a part
of a technical system can be determined in different
ways. For sensors often a sensor model or addi-
tional information from other sensors is used. For
example, a sensor reading near to the end of a mea-
surement range often is not very trustworthy due to
non-linear sensor effects. In the further processing
steps the results can not be better then the data
they rely on, except there was redundancy in the
source data or additional information is provided
e.g. by a system model.

In the framework of trust management [2], a trust

signal is a meta-information to a normal signal, e.g.
a sensor-reading, or to an internally generated sig-
nal, which depends on uncertain information. Also
system components or functional modules can be
attributed with a trust signal. In our case, all these
uncertainty information is reflected by trust signals.

A trust signal has a scalar value from the inter-
val [0, 1], called the trust level, and indicates the
trustworthiness of the signal/component it is asso-
ciated with.Two rules generally apply here: If the
trust level is 0.0, the value has not to influence the
output. If it is 1.0 the data can be fully trusted,
hence it can be handled as normal. It is important
to note that the trust signal is not a probabilistic
representation, hence it does not declare anything
about the statistical properties of the data assigned
to.

The module, which receives the trust signal af-
flicted data, has to decide, in which way it incor-
porates the regular and the trust level data into
the processing of its output. If the input data are
not trustworthy enough, it can switch to a fall back
strategy or gradually fade out the influence of the
affected input(s). From its processing, a module can
again make a statement about the trustworthiness
of its output.

3. Extended Fuzzy Classifier Approach

3.1. Fuzzy Classifiers

In fuzzy rule-based classifiers, classes are associated
to fuzzy partitions of the feature space by the rule
antecedents. For a given feature vector x ∈ R

D, the
rules are evaluated according to the FITA scheme.
I.e., for a given feature vector x the input mem-
bership functions of the rules determine their firing
strengths. Then the inference is done by a t-norm
and the consequent parts of the rules are aggregated
by a s-norm. This yields the class label confidences,
or a compatibility measure µc(x) for any class c,
respectively. In case of N classes, the result of
the classification procedure is a compatibility vector
with N entries.

µ(x) = (µ1(x), µ2(x), . . . , µN (x))

Because this is a very general inference scheme,
many different forms of fuzzy classifier systems exist
[11]. They differ in the type of membership func-
tions [12], in the applied t- and s-norms as well as
in pre and post processing methods [13, 14].

The final decision is determined out of these com-
patibility measures µc(x), e.g. by choosing the class
which fits best to the given feature vector x, i.e.
which has the highest compatibility measure µm1

because it is most likely to be the right class for a
given feature vector.

In cases where a misclassification is too expen-
sive and has thus to be avoided, a classification is
only accepted if additional constraints are met. E.g.
the compatibility measure µm1 of the chosen class
has to exceed a certain threshold. In order to im-
prove the trustworthiness of a classification, addi-
tional measures can be calculated [3]. E.g. the dif-
ference to the second largest compatibility measure
µm2, should also be greater than another threshold .
Otherwise the classification is rejected. This avoids
classifications in areas of the feature space where
classes are conflictiong.

Rejecting a classification is important for us be-
cause we are aiming at safety-critical applications.
Due to the same reason ease of engineering and in-
terpretability of the classifier’s behavior come also
into play. We thus design our classifiers such that
their behavior can be controlled and interpreted eas-
ily in the training phase as well as in the operation
phase and that the number of rules is limited. Hence
trapezoidal membership functions are used because
of their limited support, and the rules are evalu-
ated according to the max-min-inference scheme.
But the following extensions are not limited to this
choice. The important point is now how a classi-
fier can be incorporated into the trust management
framework such that a good classification perfor-
mance is achieved, misclassifications are avoided as
far as possible and a safe and trustworthy operation
of the overall system is supported.

One first step is that the high compatibility mea-
sure µm1 as well as the discriminant measure

∆µ(x) = µm1 − µm2

can be treated as trust signals of (ordinary) fuzzy
classifiers. The important point is now how to incor-
porate dynamic uncertainties of the feature vector
into a fuzzy classifier.

3.2. CLARISSA-Approach

The CLARISSA-approach (CLAssification by a
Rule-based Inference System for Safety-critical Ap-
plications) extends rule-based classifier approaches
as follows.

Because the fuzzy classifier is embedded in the
trust management framework, we can assume a
trust signal ϑd is given for every feature xd in
the feature vector x. In order to incorporate
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the classifier consistently into this framework, our
approach is to fade out the influence of uncer-
tain/untrustworthy features on the classification re-
sult. The respective class membership functions
µc,d(xd) are adjusted dimension wise if they have
a ϑd < 1.0 in order to take the uncertainty of the
particular feature into account.

To do so, the respective membership functions are
raised according to the trust level of each feature by
a s-norm depending on the degree of membership to
a class c in each dimension d ∈ [1, D] and its trust
level ϑd by:

∀xd ∈ x : µ′

c,d(xd) = s(µc,d(xd), 1 − ϑd) (1)

As the calculation of the µ′

c,d is done dynamically at
runtime individually for each incoming feature vec-
tor, the membership functions are kept unchanged.

This fairly simple, but general approach has sev-
eral consequences. At first, the usage of an s-norm
assures that the degree of membership is limited
to [0, 1]. Additionally, the degree a rule fires and
hence its support is getting higher over the whole
dimension if the trust signal of a feature xd is get-
ting lower. This behavior causes that a rule applies
to a certain degree over the whole universe of dis-
course of a feature xd for a ϑd < 1.0. This models
the desired behavior that a given value of a feature
can only be trusted to a lesser extend the lower it
trust level is.

For the borderline case of a ϑd = 0, the feature xd

is not used anymore to determine firing strength of a
rule. This corresponds a projection, as the degree of
membership over the whole dimension is one. This
way only the remaining dimensions contribute to
the firing strength of a rule. As shown in [8] this
mechanism can also be used to cope with the curse
of dimensionality.

By the selection of a particular s-norm one can
easily select the wariness of the generalization in
presence of gradual uncertain features. E.g. the
maximum norm results in a slow fade out of the
uncertain dimension, whereas the use of the co-
Łukasiewicz norm results in quickly discarding the
respective feature.

The second main consequence is that the discrim-
inant measure ∆µ(x), which is used as the output
trust signal, automatically distinguishes the case
of a single and multiple classes being affected by
ϑd < 1.0. In case of a single class, the compatibil-
ity vector µ(x) remains unchanged. The result is
thus as trustworthy as without trust management
because the respective feature is not relevant for
separation for the current feature vector x.

If multiple classes are affected, all their firing
strengths are increased and yet the discriminant
measure ∆µ(x) is reduced. Hence the trust level
of the classification result gets reduced. It is im-
portant to note that the discriminant measure is
dependent on the specific local class distribution in
the feature space.

Hence, the third and most important consequence
is that this treatment of uncertainty does not im-
ply any information about the class distributions
and also of the value distribution of the uncertain
feature along its dimension. In contrast,if one for
example, would just enlarge the support of rules in
the feature space, this would imply that uncertainty
means a gradual deviation from the given feature
value. As this is not intended in the framework
of trust management, our approach yields the most
general treatment of uncertainties.

4. Investigation Examples

4.1. Common Setup

This section investigates two scenarios in order to
demonstrate the feasibility of the approach and its
effectiveness. For the sake of clarity, the first one is a
simple, artificial two-dimensional test scenario that
can easily be visualized. The second scenario com-
pares the fuzzy classifier with CLARISSA to the ba-
sic version without any trust management concern-
ing the effect of randomly scattered input data. The
classification quality is compared for three bench-
mark datasets. In both cases trapezoidal member-
ship functions are used. The influence of the trust
signals is realized according to (1) by the co-sum
s-norm, which results in a medial fading behavior
which is given by:

µ′

c,d(xd) = µc,d(xd) · ϑd + (1 − ϑd)

4.2. Two–dimensional Test Scenario

The simple, artificial scenario consists of a two–
dimensional input space with three classes and five
training vectors for each class (dot, square and star
in Figure 1). The rules are created with a core size
of 0.8 and a support of 1.3. In Figure 1, the in-
put space is sampled after training to get the ap-
proximate class regions in order to demonstrate the
effect of considering the trust signal. These class
regions are shown in Figure 1 from the left to the
right for a a gradual degradation of the trustwor-
thiness of feature 2 for decreasing values of its trust
level (ϑ2 ∈ {1.0, 0.7, 0.4, 0.0}). The first feature is
assumed to be certain (ϑ1 = 1.0).

With a decreasing value of ϑ2, the classification
result depends less on the uncertain input. The re-
gions of the classes hence grow, if there is no other
class region in the uncertain dimension. Otherwise
the classifier rejects the classification of a feature
vector due to a too low discriminant measure ∆µ(x)
in order to avoid any misclassification. As soon as
the second feature has a trust level of ϑ2 = 0.0, i.e.,
no trust, it is completely ignored for the classifica-
tion.

Two important properties of the approach can al-
ready be seen: A classification is still possible for
regions of the feature space where any value of the
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Figure 1: Training vectors (dot, square, star) and class regions (red, blue, green) for different trust levels ϑ2

of the second feature in the extended fuzzy classifier approach (white area: classification rejected due to a
discriminant measure ∆µ(x) smaller than 0.3).

uncertain feature would not change the classifica-
tion result (e.g. around a value of 5 for feature 1).
Additionally, the gradual fading of the more and
more uncertain feature x2 does not result in a lin-
ear scaling of the class region in its dimension.

4.3. Higher Dimensional Test Scenarios

4.3.1. Generating reproducible experimental setups

In order to test the extended fuzzy classifier on
higher dimensional benchmark data, uncertainty
has to be added in a controlled fashion to the feature
vectors which shall be classified. The most general
kind of uncertainty is replacing a value from the fea-
ture vector by a random one (i.e. not just adding
some noise to it). By using many combinations of
such randomly selected values, all kinds of noise,
faults and even the worst cases of changes in the
feature vector are covered. As uncertainty in gen-
eral means, a specific value may but must not be
wrong, our trust level in this scenario reflects the
probability of a value being drawn from an equal
distribution. To simplify matters and to distinguish
it from added noise, this procedure is called scatter-
ing in the following.

The investigation is done for three different
benchmark data sets from the UCI machine learning
repository [15] (Iris, Wine, Wisconsin Breast Can-
cer Diagnostic (WBCD)). The Iris dataset is based
on 4 features, Wine on 13 and WBCD on 30.

In order to incorporate the scattering of the in-
put data in a reproducible way, the different fea-
tures of the data sets are first scaled into the interval
[0; 100] in each dimension d ∈ [1, D]. For a feature
value from the feature vector xd, the scattering then
means, the respective value is replaced with a ran-
dom value from the interval [0; 100] according to the
following probability:

p(xd ∈ {[0, 100]/x̂d}) = 1 − ϑd

Consequently this means, it remains its original
value x̂d with probability

p(xd = x̂d) = ϑd.

This means, that the ϑd is the probability to mod-
ify the value of the feature. Consequently they serve
as the trust signals for the feature vector. For exam-
ple, for a value x0 with its a trust level ϑ0 = 0.8 this
means, with a probability of 80% x0 remais its orig-
inal value. With a probability of 20% it is replaced
with a random value.

To get an intuitive overall scalar measure, we in-
troduce a total trust Θ. I.e. the particular trust
levels ϑd of the feature vector are determined such
that

Θ =
∏

d∈[1,D]

ϑd.

This means, a feature vector with a given Θ consists
of D features with their individual trust levels ϑd

such that they multiply to Θ. With the given trust
levels the scattering is then applied to each value x̂d

to get the xd.
In order to eliminate random effects and to cover

many cases of scattering in a reproducible way, a
fixed set of random trust signal vectors are deter-
mined in such a way that one gets 1000 vectors
ϑ = (ϑ0, . . . , ϑD) for 100 different values of Θ, lin-
early distributed between 1 and 0. The test set
hence comprises 100,000 different trust signal vec-
tors. So this scenario can be interpreted as a sit-
uation in which there is a representative mixture
of different degrees of certainty. This covers cases,
where single features are very uncertain, as well as
cases where many features are moderately uncer-
tain.

The concrete procedure is then the following: For
training, 35 randomly selected training vectors per
class are used for each dataset without any arti-
ficially induced uncertainty. The rules are created
with a core size of 10 and a support of 28 in each di-
mension. Afterwards, the remaining vectors of the
dataset are used for testing after being scattered
according to the given a set of trust signal vectors.
Finally, the scattered values and their trust levels
are passed to the classifier.

Obviously, the number of correctly classified fea-
ture vectors will drop as scattering is increased.
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Figure 2: The percentage of correctly classified test vectors which have been scattered. The horizontal axis
shows the (decreasing) measure for the trustworthiness of the feature vector (total trust Θ) which corresponds
to the (increasing) uncertainty caused by the scattering (see the text for details). The extended fuzzy classifier
(upper row) performs better than the basic one (lower row) on all three benchmark datasets.
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Figure 3: Comparison of the average classification performance of the basic fuzzy classifier (without trust
management) to the minimal performance of the extended version (with trust management).
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Figure 4: Comparison of a basic fuzzy classifier to an extended one concerning the average number of mis-
classifications.
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This has three reasons. First, a feature vector
belonging to a class A might be changed, so that
it fits to no class. In this case (case I), the feature
vector will not be classified. Second, a feature vec-
tor belonging to a class A might be changed to fit to
class B. So in this case (case II), the sample will be
misclassified. And third, a feature vector might fit
to more than one class, so that it causes a conflict
and is rejected, hence not classified (case III).

4.3.2. Results

Figure 2 shows the results for the three data sets
for a gradually increasing degree of scattering in the
feature vector, or total trust, respectively. The fig-
ure shows the minimal, the average and the maxi-
mal performance on each dataset (the percentage of
correct classifications) for each of the 1000 investiga-
tions per degree of total trust. One can see that the
extended fuzzy classifier and the basic one perform
equally well on the test data as long as the trust is
high. But as the total trust decreases, the extended
fuzzy classifier quickly outperforms the basic one.
It can be seen that the maximal performance of
the extended fuzzy classifier stays at a high level
even for very low trust, while the maximal perfor-
mance of the basic fuzzy classifier drops to a rather
low level. The average performance of the extended
fuzzy classifier is also always better than the average
performance of the basic one.

The performance gain is due to different reasons
for each case of reduced classification quality (cases
I to III, see above). As the extended fuzzy classi-
fier adapts its classification boundaries dynamically
depending on the current trust levels of the features,
it is capable of reducing the effect of case I by still
classifying such samples correctly. In the cases II
and III, the extended fuzzy classifier is more likely
to reject a classification than the basic one because
of adapting the compatibility vector µ(x). This be-
havior is more cautious and thus avoids misclassi-
fications. As a consequence, samples of case I will
increase the number of correct classifications of the
extended fuzzy classifier, while samples of the cases
II and III will reduce it. So depending on the
characteristics of the data set, case I or cases II
and III will prevail, and accordingly, the extended
fuzzy classifier will outperform the basic one if case
I is dominant. This is more likely to be the case
in high dimensional data sets, as then the classes
tend to be further apart from each other within the
feature space. Figure 2 confirms this, as the ex-
tended classifier yields the strongest performance
gain for the dataset with the highest number of fea-
tures (WBCD).

In contrast to [10], where similar investigations
with gaussian noise (which is somewhat easier for
a classifier) instead of scattering were made , we
gain much better performance on the WINE dataset
and in case of high uncertainty also for the IRIS

data. For WBCD the performance is lower overall,
which would very likely be remedied by optimizing
the parameter of the fuzzy classifier for the dataset.

In order to compare the effect of the proposed
extension in more detail, Figure 3 shows a compar-
ison of the minimum quality of the extended fuzzy
classifier and the average quality of the basic fuzzy
classifier on the benchmark datasets. It shows that
for high uncertainties even the minimal quality of
the extended fuzzy classifier is at least as good as
the average basic one or even outperforms it. The
extended fuzzy classifier achieves a slightly lower
minimal quality only for small uncertainties.

In addition, Figure 4 shows the occurrence of mis-
classifications with a raising uncertainty. For the
Iris dataset the number of misclassifications grows.
This is due to relatively dense allocation of the fea-
ture space by the classes. Case II dominates the
classification quality.

In higher dimensional datasets like Wine or
WBCD the extension does not introduce a new ten-
dency towards misclassification Here our approach
provides a more robust solution to dealing with un-
certainties when there is an dynamic estimation of
the degree of uncertainty.

5. Discussion

The investigations show that incorporating an ex-
plicit treatment of uncertainties in the operation
phase improves the classification performance and
robustness of a fuzzy classifier under uncertain con-
ditions severely. No assumption about the concrete
influence of the uncertainty on a feature value has to
be made (e.g. probability distributions). It is only
stated how confident it is. This is coherent with the
fact that the approach does not scale the supporting
region of a class along an uncertain dimension.

The proposed extension allows to accommodate a
gradual decrease in trustworthiness without perma-
nently changing the membership functions. Because
of this, such an extended fuzzy classifier can deal
with dynamically changing uncertainties robustly.
This is complementary to other methods which only
deal with static uncertainties or uncertainties dur-
ing the training phase.

Within a conventional fuzzy classifier, one can
also determine a measure of the classification cer-

tainty by looking at the discriminant measure. The
same holds for the extended approach given in this
paper But there is an additional effect. Any de-
crease of the certainty of the feature vector keeps
the discriminant measure or decreases it. It thus
additionally reflects the effect of uncertainty of the
classifiers input on the classification certainty. Be-
cause of this, the approach given in this paper is ide-
ally suited for the integration into a more complex
system architecture, e.g. with multi–staged decision
processes. Any form of uncertainty, be it disturbed
features, missing data or classification uncertainties,

394



can be treated in a uniform way throughout the dif-
ferent system stages.

Hence, the presented extension of fuzzy classifiers
allows an explicit treatment of trustworthiness at
runtime, although it is fairly simple and easy to
compute. The approach presented here basically
acts similar to a gradual dynamic selection of the
most trustworthy input signals. It is thus easy to
understand as well as to engineer. And what is
more, with the proposed approach, the uncertainty
is handled in the most general way which is easy to
integrate into a fuzzy classifier. This contributes to
our idea of a system wide and easy to engineer trust
management in (complex) embedded systems.

6. Conclusion

To summarize, this paper has introduced a concept
for extending rule based fuzzy classifiers in order to
deal explicitly with dynamic uncertainties at run-
time. It is independent of specific kinds of member-
ship functions and inference methods. It hence can
be used as an addition to existing fuzzy classifier
methods. Its simplicity allows an easy understand-
ing of its effect in order to keep the classification sys-
tem transparent. The degree of certainty of the clas-
sification result expresses the uncertainty implied
in the classifier itself as well as the dynamic uncer-
tainty of the current feature vector. Thus it fits
well into the trust management framework, where
the trustworthiness of the output can be processed
further. This enables a trustworthy operation for
critical applications because misclassifications are
avoided as far as possible and the trustworthiness of
a made classification decision can be judged. Never-
theless, the approach is simple, easy to handle and
fast to engineer.

In future work we will take a more detailed look at
uncertainty induced by the training process. E.g.,
more detailed information about conflicting rules
will be incorporated into the trust level of a result
and thus be a valuable contribution towards a over-
all trustworthy classification.
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