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Abstract

In this paper we reason about the usefulness of two
recent trends in fuzzy methods in machine learning.
That is, we discuss both fuzzy support vector ma-
chines (FSVMs) and the extraction of fuzzy rules
from SVMs. First, we show that an FSVM is iden-
tical to a special type of SVM. Second, we catego-
rize and analyze existing approaches to obtain fuzzy
rules from SVMs. Finally, we question both trends
and conclude with more promising alternatives.
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1. Introduction

Kernel-based methods, and support vector ma-
chines (SVMs) in particular [1], play one of the most
important roles in machine learning today. They
are announced to both generalize considerably on
unseen data and perform well on high-dimensional
input spaces. Nonetheless, the application of these
methods is not popular compared to intuitive learn-
ing machines.

Especially in automation and control, the appli-
cation of models based on fuzzy set theory (FST) [2]
became substantive. The vague expressions that are
used by human beings to describe processes can be
modeled gracefully by FST. Fuzzy classifiers (FCs)
based on linguistic rules provide a comprehensive
way to illustrate underlying concepts of complicated
systems. Nowadays, they can be found in many
real-world applications [3].

Several attempts have been made to find connec-
tions between fuzzy models and SVMs. Essentially,
two directions can be distinguished in the research
community. First of all, we find approaches that try
to incorporate FST directly into SVMs, i.e. Fuzzy
Support Vector Machines (FSVMs) [4, 5]. The main
motivation is the fact that SVMs are quite sensitive
to outliers and noise. FST provides an appropriate
toolbox of methods to tackle those problems.

The second direction focuses on the generation of
fuzzy classifiers based on the output of an SVM. In
essence, we encounter methods to extract fuzzy-rule
based classifiers from SV machines for both settings,
i.e. classification [6, 7] and regression [8]. The ob-
jectives are different compared to the first direction.
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Fuzzy models become cumbersome in complex sys-
tems with dozens of input variables since they suffer
from “the curse of dimensionality”. Thus combining
the generalization of SVMs with the interpretability
of FCs might be a striking idea to overcome these
difficulties.

Whereas we originally thought that these two di-
rections can be unified [9], we see things more real-
istic now having studied most existing approaches.
To get started, we will briefly introduce SVMs in
Section 2. Afterwards we will give an overview of
fuzzy SVMs in Section 3. Then in Section 4 we
present four different ways to extract fuzzy rules
from an SVM. Section 5 will discuss major draw-
backs of both research trends. Furthermore, we
question the usefulness of some presented ideas
based on reasonable facts. Practical alternatives
to both trends will be given. Finally, we will con-
clude with by summarizing the main thoughts in
Section 6.

2. Support Vector Machines

Suppose we are given an input space X (not nec-
essarily a vector space) and an output space Y.
Since we deal with a binary classification prob-
lem, Y = {±1}. We observe l training patterns
(xi, yi) ∈ S ⊆ X × Y where i = 1, . . . , l. They have
been drawn i.i.d. from an unknown distribution. If
X ⊂ IRn, then xi 7→ xi. Our goal is to separate the
data with a linear hyperplane {x | 〈w, x〉 + b = 0}
where w ∈ IRn and b ∈ IR are the norm vector and
the bias of the hyperplane, respectively. The deci-
sion function of a hyperplane classifier which shall
predict y′ for any x corresponds to

f(x) = sgn (〈w, x〉 + b) . (1)

We are looking for the hyperplane that maxi-
mizes the margin between every training pattern
and the hyperplane. Such a hyperplane is called
optimal since it is unique and has the best gener-
alization performance on unseen data. If all points
(xi, yi) ∈ S can be separated linearly by a hyper-
plane, we can obtain the optimal hyperplane by
solving a quadratic optimization problem with lin-
ear inequality constraints. Usually not all training
patterns can be separated perfectly. Therefore we
introduce slack variables ξi with i = 1, . . . , l in order
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to relax the optimization problem to

minw,b,ξ τ(w, ξ) = 1
2 ‖w‖ + C

∑l

i=1 ξi (2)

subject to yi(〈w, xi〉 + b) ≥ 1 − ξi (3)

and ξi ≥ 0, ∀i = 1, . . . , l. (4)

Here, ξ = (ξ1, . . . , ξl) corresponds to the slack
variables ξi and C is a global parameter that has to
be determined by the user. The bigger C, the eas-
ier training patterns may violate the constraint (3).
By introducing the Lagrangian of the primal prob-
lem (2), we end up solving the dual

maxα

∑l

i=1 αi − 1
2

∑l

i,i′=1 yiyi′αiαi′ 〈xi, xi′〉 (5)

s.t.
∑l

i=1 yiαi = 0 (6)

and 0 ≤ αi ≤ C, ∀i = 1, . . . , l. (7)

In practice, only few problems can be solved by a
linear classifier. Hence the problem has to be refor-
mulated in a nonlinear way. This is done by map-
ping the input space X to some high-dimensional
feature space H by Φ : X 7→ H where Φ satisfies
Mercer’s condition [10]. We can thus solve our non-
linear optimization problem linearly in H by com-
puting the scalar product K(x, x′) = 〈Φ(x), Φ(x′)〉
which is called kernel. We simply replace the oc-
currence of the scalar product in (5) with a chosen
kernel function. Finally, the discrimination func-
tion (1) becomes

f(x) = sgn

(

l
∑

i=1

yiαiK(x, xi) + b

)

.

Hence only points xi with a positive weight αi will
contribute to the above equation. Such a point is
called support vector (SV).

To give some examples, let us have a look at the
following two kernel functions1. First of all, we can
apply the linear kernel

K(x, x′) = 〈x, x′〉 =

n
∑

d=1

[x]d[x′]d.

which performs the identical mapping Φ : X 7→ X .
Second, kernel functions K(x, x′) = K(‖x − x′‖)
generate radial basis functions, e.g. the Gaussian
kernel

K(x, x′) = exp
(

−γ ‖x − x′‖
2
)

.

3. Fuzzy support vector machines

A fuzzy SVM has been proposed as extension to
standard SVM. But before we actually come to the
definition of an FSVM, let us mention that the
term “fuzzy SVM” came up one year before the real
FSVM formulation. In 2001, Inoue and Abe [11] al-
ready used the normalized distance 〈w, x〉 + b of a

1See [10] for a collection of kernel functions and further
details on SVMs.

point x to the hyperplane expressed by w and b.
Since this distance of a point inside of the margin
lies in [0, 1], it can be used to express a vague classifi-
cation2. This is especially useful when dealing with
more than two classes. This kind of fuzzy SVM [11]
does have a right to exist. We will now introduce
another kind of fuzzy SVM [4, 5] for which we are
absolutely not sure about its usefulness.

The acquisition of data in most real-world ap-
plications is usually vague, uncertain and/or not
complete. Therefore it might be good to embody
the abstracted information by fuzzy sets. Especially
SVMs seem to be quite sensitive to noise and points
that were rather improbably drawn from the under-
lying data generating distribution. The only free
parameter of an SVM is C which regularizes the
penalty term in (2) and hence the classification er-
ror. This parameter is usually fixed for every input
pattern during the training process. Prior to train-
ing, all patterns are treated the same. That might
be crucial for the SVM due to outliers and noise. So,
the learning machine may suffer from overfitting.

As a consequence, the concept of a fuzzy support
vector machine (FSVM) has been introduced inde-
pendently from two different research groups at the
same time [4, 5]. In particular, a membership value
µi is assigned to every training pattern xi. Thus
the training sample S is mapped to a fuzzy training
sample

Sf = {(x1, y1, µ1), . . . , (xl, yl, µl)}

where the membership values for positive and neg-
ative class are denoted as µ+

i and µ−

i , respectively.
Both values are assigned independently.

Similar to the constrained optimization problem
of (2), FSVM tries to optimize the same variables.
However, it fuzzifies the penalty term containing the
regularizer C. The optimal hyperplane using FSVM
can obtained solving

minw,b,ξ,µτ(w, ξ, µ)=
1

2
‖w‖ + C

l
∑

i=1

µm
i ξi (8)

subject to constraints (3) and (4) where µ =
(µ1, . . . , µl) and m regularizes the fuzziness of the
fuzzified penalty term. The dual problem for FSVM
can be obtained by deriving the Lagrangian of (8)
and hence only differs in constraining the αi’s: Max-
imize (5) subject to (6) and

0 ≤ αi ≤ Cµm
i , ∀i = 1, . . . , l.

In order to apply FSVM, the membership values
µ have to be defined. In [4], the authors suggested
to learn these values as follows. First they removed
outliers and then fuzzified the remaining positive
and negative instances independently by some mem-
bership functions. Finally, both sets were combined
to Sf .

2A Bayesian interpretation of a probabilistic SVM output
is given in [12].
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It is important to note that the same optimiza-
tion problem has been obtained in practice [13].
Here, the author neglected the global regularizer
C in Equation (2). Instead, a set C of individual
Ci ∈ [0, C] with i ∈ {1, . . . , l} have been used which
leads to

minw,b,ξ,Cτ(w, ξ, C)=
1

2
‖w‖ +

l
∑

i=1

Cm
i ξi. (9)

Hence the training instances were weighted by some
user preferences. Thus prior knowledge about the
importance of data points was included into the
learning process. Setting each membership value
µm

i to Ci/C, Equations (8) and (9) become identi-
cal. So, for Ci = C Equation (9) is equivalent to
Equation (2). With Ci = C and µm

i = Ci/C, we
conclude that µi = 1. Yet every standard C-SVM
implementation can be extended to an FSVM by
moving C into the sum of Equation 2 as Ci. So, we
naturally question the usefulness of FSVMs. Why
to fuzzify the slack variables ξi?! They anyway ex-
press the fuzziness of the hard border C through
ξi/C ∈ [0, 1].

4. Fuzzy rule extraction from SVM

The second issue we are going to talk about relates
to the extraction of fuzzy rules from an SVM. As
far as we know, there are four different ways to
obtain fuzzy rules from an SVM. Grid-based ap-
proaches use predefined fuzzy partitions to define
a fuzzy grid over the complete input-output space.
The final rule base will consist of a subset of possible
combinations of linguistic values. Approaches based
on local granules do not use any predefined grid.
The fuzzy rules are directly induced by the set of
SVs. Hybrid approaches typically exploit clustering
algorithms to reduce the number of possible rules.
Last not least, the sets of positive and negative SVs
might be viewed as one fuzzy rule, respectively. We
call these approaches kernel-independent since the
choice of the kernel is subordinate.

4.1. Grid-based approaches

The most prominent approach named FREx by
Chaves et al. [14, 15, 16] selects the grid cells with
maximum membership degree for every SV. Every
SV thus corresponds to one fuzzy rule. FREx re-
sults in many fuzzy rules with the same antecedent.
If the consequent is always consistent, then only one
rule is stored. If not, then such conflict is resolved
by choosing the rule with the highest coverage of
data points. FREx usually leads to few rules.

Another grid-based algorithm can be found in
[17]. Again, every SV represents one rule. The
key idea is the same as it is for FREx. However,
only fuzzy sets having a membership degree greater
than β ∈ [0, 1] are considered in a rule’s antecedent.
It is assumed that fuzzy rules should represent the

prototypical points of the data distribution. The
problem is that SVs are by nature very far away
from any prototypes. They might be even located
on the “wrong side”. Thus the obtained rules do
not reflect the underlying data density. This can be
shown by a simple thought experiment.

Consider the XOR problem and random data
points generated from [−1, 1]2 as it is discussed
in [17]. Using three membership functions low,
medium, high for both dimensions, it actually turns
out that the SVs will activate medium absolutely the
most in both dimensions. The obtained rules would
thus model the most uninteresting part of the XOR
distribution.

The chosen fuzzy partition is crucial to the suc-
cess of all grid-based approaches. If the grid is
chosen fine enough, then the approximation will be
arbitrarily good (but at very high computational
costs). A wrong choice of the grid may skip ex-
trema. Also, with an increasing number of dimen-
sions the number of possible rules is growing expo-
nentially. That is why Chaves et al. suggest to use
feature selection methods [16].

4.2. Local granulation

In high-dimensional input spaces, a global gran-
ulation leads to an exponential rule growth with
increasing dimensionality. Individual fuzzy rules
based on local granulation avoid this circumstance.
Chen and Wang [18, 6, 19] were the first who showed
that certain SVMs can be interpreted as zero-order
TSK fuzzy rule-based classifiers (FRBCs). Simply,
every SV relates to one fuzzy rule with individual
membership functions. In general, we expect a bet-
ter modeling of local system properties. Also, the
number of rules is only bounded by the number of
SVs, which is nice in high dimensions. However, the
interpretability of fuzzy sets suffers severely since
many overlapping membership functions are pro-
duced. Furthermore only certain types of fuzzy sets
can be used, i.e. positive definite reference func-
tions.

An attempt to use arbitrary fuzzy sets such as
trapezoids or asymmetric triangles has been per-
formed by the authors [20]. The trick is to use a
generalized SVM [21] that can be solved by suc-
cessive overrelaxation [22, 23]. Solving a different
optimization problem, however, leads to worse clas-
sification accuracies [20].

Nevertheless, local granulation always lacks inter-
pretation. Projecting all fuzzy sets onto one variable
will usually not lead to meaningful linguistic values.

4.3. Hybrid approaches using clustering

Hybrid approaches are based on different learning
algorithms. Juang et al. [24, 25, 26] proposed a self-
organizing Takagi-Sugeno-type fuzzy network with
support vector learning (SOTSFN-SV). They suc-
cessfully applied it to several real-world datasets.
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The rule antecedents are constructed through an on-
line clustering method [27]. The original data space
is transformed to a space of membership degrees
that x belongs to the clusters 1, . . . , k. A linear
SVM is used to determine the optimal consequent
parameters. Although the number of rules k can be
very low, clustering needs to be applied first.

4.4. Kernel-independent approach

In [28] a so-called λ-FRBC is directly formed from
an SVM. The authors show that every SVM with
f(x) = sgn (

∑m

i=1 αiyiK(x, xi) + b) = sgn(h(x))
equals a TSK FRBC

R1 : if h(x) is I(0,∞) then y = 1,

R2 : if h(x) is I∗

(0,∞) then y = −1

with

I(0,∞)(a) =

{

1 if 0 < x < ∞

0 if − ∞ < x < 0

I∗

(0,∞)(a) = 1 − I(0,∞)(a).

(10)

So, the set of positive and negative SVs represent
one fuzzy rule, respectively. Approximating (10)
leads to I(0,∞) ≈ 1

1+exp(−λx) and I∗

(0,∞) ≈ 1
1+exp(λx) .

For λ → ∞, the proposed FRBC is obtained. Ex-
periments with λ ≈ 20 showed good results [28].
The clue here is that every SV corresponds to a
fuzzy clause “distance between the SV and x” in
the antecedent. Depending on the kernel, the an-
tecedent might be, e.g. a disjunction or conjunction.
Naturally, all kernels are possible leading to only
two rules. However, the high number of SVs still
causes readability problems of both rules.

5. Recommendations

Regarding the FSVM, we generally recommend not
to use FSVM based on the ideas of [4, 5]. The rea-
son is simple. Statistical learning theory (includ-
ing SVM) and FST are well-defined theories. The
formulation of FSVM in (8), however, is somewhat
hard to motivate from a statistical learning point
of view. Fortunately, there exists a theoretically
nice approach to fuzzy SVM based on a weighted
margin [29]. Not surprisingly, Tao and Wang call
their approach new fuzzy support vector machine
(NFSVM). Their notion of a fuzzy support vector
(FSV) actually coincides with a prototypical point.
Whereas a standard SV is very close to the hyper-
plane and thus far from any prototype (or cluster
center), an FSV “may be not” [29].

The problem of finding prototypical points in the
data also counts when extracting fuzzy rules from
an SVM. Using SVs only to obtain fuzzy rules in-
stead of the complete training data imposes this
problem naturally. No matter which way is used to
obtain fuzzy rules by SV learning, SVs will never be
prototypical. A pure renaming of them into “fuzzy

Figure 1: Information loss by projection. The rule
shape of SVs is spherical. A projection of an SV
might lead to intersecting hypercubes which con-
tains the original hypersphere.

rules” or mapping onto a fuzzy partition will not
bring meaningful results. Reconstruction methods
such as in [30] for crisp rules could be used. Such
a heuristic method, however, would further compli-
cate the rule generation process.

This is in line with Vapnik’s idea of imperative
learning [31]:

“When solving a problem of interest, do
not solve a more general problem as an
intermediate step. Try to get the answer
that you really need but not a more general
one.”

Although FRBCs are universal approximators, a
practitioner in favor for FRBCs rather wants to un-
derstand data than being very accurate. On the
other hand, an SVM is not suitable to interpret
data. Its accuracy, however, is known to be out-
standing.

Naturally, we question the sense of extracting
fuzzy rules from SVs. We recommend to use simpler
methods that output prototypical points(e.g. clus-
tering approaches) or some kind of threshold-based
rules (see e.g. [32]). In general, all but the last pre-
sented approach in Subsection 4.4 have the same
disadvantage, i.e. the potential loss of information.
This becomes clear when first cylindrically extend
and then intersect the projected fuzzy sets to obtain
the fuzzy rules. An exemplary loss of information
is depicted in Figure 1. The additional information
corresponds to the set of points that has not been
covered by the SVM before. Another problem is
the fact that an SV uses all attributes and so does
its corresponding fuzzy rule. If certain clauses are
not necessary in the antecedent parts of the rules,
computationally costly feature selection methods or
other heuristics can be applied.

6. Conclusions

We presented two existing ways to use FST for
SVM. The former one relates to FSVM whereas the
latter one deals with fuzzy rule extraction from an
SVM. We discussed the usefulness of both recent
trends in fuzzy methods in machine learning. We

946



showed that an SVM is identical to a special type
of an FSVM with µi = 1. We categorized and crit-
ically analyzed many existing approaches to obtain
fuzzy rules from SVMs. Finally, we questioned both
trends and mentioned promising alternatives.
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