EUSFLAT-LFA 2011

July 2011

Aix-les-Bains, France

All-Pairs Evolving Fuzzy Classifiers for On-line Multi-Class

Classification Problems *

Edwin Lughofer!

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, A-4040 Linz, Austria

Abstract

In this paper, we propose a novel design of evolv-
ing fuzzy classifiers in case of multi-class classifi-
cation problems. Therefore, we exploit the concept
of all-pairs aka all-versus-all classification using bi-
nary classifiers for each pair of classes, which has
some advantages over direct multi-class as well as
one-versus-rest classification variants. Regression-
based as well as singleton class label fuzzy classifiers
are used as architectures for the binary classifiers,
which are evolved and incrementally trained based
on the concepts included in the FLEXFIS family
(a connection of eVQ and recursive fuzzily weighted
least squares). The classification phase considers
the preference levels of each pair of classes stored
in a preference relation matriz and uses a weighted
voting scheme of preference levels, including reli-
ability aspects. The advantage of the new evolv-
ing fuzzy classifier concept over single model (using
direct multi-class classification concept) and multi
model (using one-versus-rest classification concept)
architectures will be underlined by empirical evalua-
tions and comparisons at the end of the paper based
on high-dimensional real-world multi-class classifi-
cation problems.

Keywords: multi-class problems, all-pairs classifi-
cation, evolving fuzzy classifiers, preference relation
matrix, reliability

1. Introduction

1.1. Motivation and State-of-the-Art

Evolving classifiers are serving as powerful data-
driven design tool in today’s real-world decision
support and classification systems in order to cope
with on-the-fly modeling scenarios in on-line envi-
ronments and building models from huge data bases
which cannot be loaded at once into the memory.
Single-pass incremental learning capability, where
models are built up in a step-wise fashion by using
single data samples or blocks of data [13] [1], plays
an important role in evolving classifiers in order to
keep the update time and the virtual memory usage
at a low level [22]. Evolving classifiers are not only
able to adapt their parameters, but also to extend
their structures and expand their memory on-the-fly

*This work was funded by the Austrian fund for pro-
moting scientific research (FWF, contract number 1328-N23,
acronym IREFS). This publication reflects only the authors’
views.

© 2011. The authors - Published by Atlantis Press

372

in order to account for varying, expanding system
states/behaviors. A specific type of evolving classi-
fiers are evolving fuzzy classifiers|22], which exploit
the concepts of fuzzy sets in order to account for a
possibilistic evolving modeling approach for any un-
certainty in the (classification) data. Furthermore,
as using a non-linear fuzzy classifier structure in
rule-based form, they are able to represent classi-
fiers with high accuracy [15], to express reliability
in a natural way [11] and to allow some sort of in-
terpretability [5].

In [4], evolving fuzzy classifiers are demonstrated
which exploit single and multi model architectures
(SM and MM) and whose learning engines for the
rule evolution and antecedent learning part rely on
the concepts of FLEXFIS [20] and eTS [3]. The SM
variant is based on the classical fuzzy classification
models using singleton consequent class labels, the
MM variant uses K Takagi-Sugeno fuzzy models for
the K classes based on indicator entries in the fea-
ture vectors. FLEXFIS-Class MM is successfully
applied as evolving image classifiers for surface in-
spection purposes in [21] and extended in [23] to
account for dynamic soft dimensionality reduction.
The approach in [2] uses an extended fuzzy classifier
structure where each rule consequent part captures
the representativeness degree of the corresponding
rule to each class (in this sense, each rule maps to
all classes, at least to some extent). In [16], and
evolving fuzzy classifier approach is proposed which
is trained based on the concepts of ePL = evolv-
ing Participatory Learning [17], deduced from R.
Yager’s participatory learning concept [28], and uses
a classical classifier architecture with consequent la-
bels, where the classes represent different operation
modes which may arise at fault diagnosis systems.
In case of multi-class (polychotomous) classification
scenarios (i.e. the number of classes into where each
instance may fall is greater than 2), the above vari-
ants perform either a direct mapping of new sam-
ples to any of the K classes (through one or several
rules) or they are using a one-versus-rest classifi-
cation approach (in case of multi-model variant).
The later tries to find (binary) classifiers for dis-
criminating each class from all other classes in one
sweep (achieving K classifiers for K classes). Usu-
ally, the maximal supported classes from all classi-
fiers is taken as overall classification response.



1.2. Our Approach

In this paper, we are going beyond the state-the-art
by using the concept of all-pairs (aka one-versus-
one) classification technique within the scope of
evolving fuzzy classifiers. All-pairs classification
is characterized by setting up classifiers for each
pair of classes, achieving m(m — 1)/2 classifiers
or m(m — 1) classifiers in case of ordered pairs of
classes. The output of each binary classifier, e.g.
for class k and [, represents the preference degree of
class k over [, spanning up a (upper right) prefer-
ence relation matrix, see Section 2.1 for a detailed
description. One reason for the choice of this clas-
sifier architecture is that in [7] or [24] it could be
shown that it is able to out-perform one-versus-rest
as well as direct multi-class classification in terms of
classification accuracy. Another reason is the more
efficiency regarding computation times in the (in-
cremental) training phase (see Section 2.2). Fur-
thermore, we will introduce a novel concept how to
integrate the reliability of the binary classifiers into
the classification stage of the FFC-AP approach.
This is done by exploiting the concepts of conflict
and ignorance [10] [12] and adopting their meaning
to the all-pairs classifier structure (Section 4) by
calculating ignorance and conflict degrees accord-
ing to the structure used in the binary classifiers
and integrating these degrees when producing the
final classification response based on the preference
relation matrix (note that a variant of such a com-
bination is presented in [26] with the help of belief
functions for batch off-line multi-class classification
tasks). Based on several high-dimensional multi-
class data sets (5 from the UCT repository, 2 real-
world from industrial processes in own projects),
it will be empirically verified that 1.) EFC-AP
= Fvolving Fuzzy Classifiers using All Pairs tech-
nique can in fact out-perform EFC-MM = EFC one-
versus-rest and EFC-SM = EFC direct mapping in
terms of accuracy and computation time and 2.) im-
prove accuracy further when taking into account the
reliability in the final classification decision (Section
5).

2. Classifier Structure

2.1. Definition

The classifier structure of all-pairs learning in multi-
class classification scenarios is based on a decom-
position of the whole problem into several binary
sub-problems. Formally, this can be expressed by a
classifier C,; which is induced by a training proce-
dure T, ; when using (only) the class samples falling
into classes k and I:

(Clc,l — Tk:,l(ch,l) Xk,l = {{f|L(.’Z") = k\/L({f) = l}

(1)
with L(Z) the class label associated with feature
vector . This means that Cj; is a classifier for

separating samples belonging to class k from those
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belonging to class . Note that we do not handle any
single-class classifiers (e.g. for representing convex
hulls etc.), therefore we only obtain Cy; for k # .
This means that in sum we have to train K(K —1)
binary classifiers with K the number of classes in or-
der to obtain a full representation of class relations.
When classifying a new sample Z, each classifier out-
puts a confidence level confj; which denotes the
degree of preference of class k over class [ for this
sample. This degree lies in [0, 1] where 0 means no
preference, i.e. a crisp vote for class [ and 1 means
a full preference, i.e. a crisp vote for class k. This is
conducted for each pair of classes and stored into a
preference relation matrix R (assuming to have K
classes in the classification problem):

1 confia confis confi k
con fa 1 1 confa 3 con fa
R= .
confrg1 confxo confrksz .. 1

If we assume reciprocal preferences, i.e. confi; =
1—confi i, then we can omit the training of half of

the classifiers, hence finally obtain @ binary
classifiers.

The choice of the model architecture for each bi-
nary classifier depends strongly on the concept to
be learned. We are dealing with fuzzy classifiers, as
they can resolve any degree of non-linearity in the
decision boundary between classes and also provide
a natural and meaningful way how to represent con-
flict and ignorance in the preference relation (this
will be handled in more detail in Section 4). In
this paper, we are concentrating on two fuzzy clas-
sification architectures, singleton class labels and
regression-based classifiers based on Takagi-Sugeno
type models (note the former is used as direct multi-
class classification architectures in FLEXFIS-Class
SM and eClassA approach [4], the later in the
one-versus-rest classification scheme as exploited
by multi-model evolving fuzzy classifiers FLEXFIS-
Class MM and eClassM [4], allowing a direct com-
parison of novel all-pairs classifier structure in EFC
with former used structures possible — see Section
5).

The ith rule of a binary fuzzy classifier for class
pair (k,l) with singleton class labels is defined in
the following way:

Rule; : IF 21 IS s AND...AND z, IS p;p

THEN [; = L, (2)
with fp;; the jth membership function (fuzzy set)
in the jth antecedent part of the ith rule, p the
dimensionality of the feature space and AND a con-
junction operator, usually represented by a t-norm
[14]. L; is the crisp output class label from the set
of two classes (k and [). In case of regression-based
classifiers, regression is conducted on {0, 1} for each
class pair (k,1), where 0 belongs to class k and 1 to



class [ using the Takagi-Sugeno model architecture,
where the ith rule is defined by:

Rule; :  IF z1 IS p;1 AND...AND w,, IS 4

THEN I; = wio + wj1x1 + ... + WipTp (3)

This means that the TS model type represents a
mixture of completely linguistic antecedent part
and functional consequent parts (in form of hyper-
planes), achieving a tradeoff between accuracy and
linguistic interpretability. The rules are combined
by a weighted inference scheme to produce a regres-
sion output value [0, 1], upon which a binary classi-
fication statement can be obtained, see Section 4.

2.2. Comparison with other Structures

The likelihood of balanced learning problems is
higher in case of all-pairs fuzzy classifiers, compared
to the one-versus-rest classification scheme based on
indicator entries, where K TS models for K classes
using the whole data set are trained. This is because
when training the kth model for the kth class, all
samples not belonging to this class are assigned the
value of 0, whereas the samples falling into class
k are assigned to 1. This means that for the usual
classes (classes with not an extraordinary high num-
ber of representatives) much more regression target
values are 0 than 1. On the other hand, imbal-
anced learning problems often cause significant bias
towards under-represented classes [9] (no matter if
used in batch or incremental training mode). In
[7] [6] it was shown that pairwise classification is
not only more accurate than one-versus-rest tech-
nique, but also more efficient regarding computa-
tion times. The reason for this is basically that
binary classification problems contain significantly
lower number of samples, as each sub-problem uses
only a small subset of samples (belonging to class k
and [ for the class pair (k,l)). Often, the training
of a fuzzy classifier requires a polynomial, at least
a quadratic complexity with the number of sam-
ples O(N?): in case of n selected samples n << N
this leads to a complexity of O(@rﬂ), whereas
the one-versus-rest classification approach requires
O(KN?) complexity, usually K << N. For the
on-line learning mode, the efficiency is even more
clear, as for each new incoming sample K —1 classi-
fiers need to be updated (e.g. for class #1 samples
the classifiers for pairs (1,2), (1,3), ..., (1,K) are
updated), whereas for one-versus-rest classification
the update of K classifiers is necessary (one with
indicator entry 1, the other K — 1 with indicator
entry 0).

Compared to the direct multi-class classification
structure, the training time for all-pairs classifier
structures can be expected higher, as in the multi-
class case only one single model is trained. Al-
though K= (lassifiers are trained, this does
not imply an increase of quadratic complexity in
training time (due to same the consideration made
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above: the single sub-problems contain significantly
less number of samples); usually, the increase is lin-
early, as the total number of samples used in the
training (over all class pairs) increases linearly (i.e.
by a factor of K) as shown in [7]. On the other hand,
the decision boundaries between the classes are eas-
ier to learn for the all-pairs classifier than for the
direct multi-class classification structure. This is es-
pecially the case with increasing number of classes.

3. Training Phase

For incremental training and evolving the single bi-
nary classifiers Cy; for all £ = 1,..., K and | =
1,..., K, in principle each evolving fuzzy classifier
technique can be applied (see [22] for an overview).
In this paper, we use FLEXFIS-Class SM method
[4] in case of classifier architecture with single-
ton consequents (rules defined in (2)) and origi-
nal FLEXFIS method [20] in case of regression-
based classifiers (rules defined in (3)), denoted as
FLEXFIS-Class AP-SC and FLEXFIS-Class AP-
TS, resp. EFC AP-SC and EFC AP-TS in general.
In both cases, clusters are associated with rules
as both are representing local regions in the high-
dimensional feature space and the rules are evolved
by an evolving version of vector quantization (eVQ)
[19], which, upon new incoming samples, decides
whether they fit into the current cluster structure
or not (based on a vigilance parameter and distance
measure). If they do not fit, new rules are evolved
by setting their centers to the current sample and
the ranges of influence to a small value (not to 0 in
order to avoid numerical instabilities); if they do,
the nearest cluster to the current sample is moved
towards this sample and its range of influence is up-
dated with a modified version of recursive variance
formula (including rank-one modification, see [25]).

The incremental learning of the consequent parts
is different, as in case of EFC AP-SC singleton
class labels of the rules need to be updated, while
in case of EFC AP-TS hyper-planes including lin-
ear weights for each dimension need to be adapted.
Thus, in case of EFC' AP-SC, we introduce a hit
matrix H whose entry h;; is giving rise how much
samples from class j € {0,1} are falling into clus-
ter (rule) k. Ideally, the hit matrix contains one
positive entry in each row, while all other entries
are 0. Tmhis would be the case when extracting
‘clean’ clusters from the feature space, i.e. each
cluster contains only samples from one class. How-
ever, in real-world data streams usually the classes
show some overlap in different regions of the feature
space, leading to 'unpurified’ clusters. In fact, such
clusters can be omitted in large parts in case of low-
dimensional problems when including the label en-
try as additional column during clustering (tearing
apart nearby lying samples with different classes),
however for high-dimensional problem this effect is
weakened due to the curse of dimensionality effect



[8]: adding one single column to the learn space
will only slightly change the distance between two
vectors. The hit matrix can be simply evolved by
incrementing the count h;; if a new sample falls into
cluster ¢ and class j. If a new cluster /rule is evolved,
a new line (the C'th) in the hit matrix is appended
and heo; = 1 with [ the class the current sample
belongs to and hoy = 0 for the other class k. The
singleton class label L; € {0,1} for the ith rule is
obtained by taking the column index of the maximal
entry of the ith row in H:

(4)

In case of FLEXFIS-Class AP-TS, the binary
models are regression-based classifiers and the con-
sequent parts are defined through hyper-planes
(here for the ith):

Li = argma:cjzoylhij

(5)

Therefore, linear parameters need to be updated in
a regression setting. This is achieved by using local
learning instead of global one (due to several advan-
tages with respect to numerical stability, computa-
tion time and flexibility when joining new rules on
demand, see [4]) and exploiting the fuzzily weighted
recursive least squares estimator [3] for each rule
separately (here for the ith updating from time in-
stance N to N + 1):

li = W0 + Wi1X1 + Wizxo + ... + WipTp

wi(N+1) = thz-(N)ﬂ(N)(y(NH)—?T(NH)@((N)))
6
Py(N)#(N +1)
saovy T (N + DR(N)T(N + 1)
(7)
P(N+1)= (I —~v(N)F(N+1)P(N) (8)

with U;(Z(N+1)) the normalized membership func-
tion value for the (N + 1)th data sample, P;(N)
the weighted inverse Hessian matrix, #(N + 1) =
1 z1(N+1) zo(N +1) z,(N + 1)]7 the re-
gressor values of the (N + 1)th data sample and
y(N + 1) the target value from {0,1} (0 when the
sample belongs to the first class & and 1 when it
belongs to the second one ).

Y(N)

4. Classification Phase

The classification phase is divided into two stages:

e The first stage produces the output confidence
levels (preferences) for each class pair and
stores it in the preference relation matrix as
defined in (2).

e The second stage uses the whole information
of the preference matrix and produces a final
class response.

4.1. Classification Outputs

For each binary singleton class label classifier, the
confidences in preferring class k over [ is calculated
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by a normalized weighted sum:

_pahoky g +pohxo g

con = 9
Y 1 T o2 9)
with
hik ha k
hx = ——  hx = — 10
L hik 4+ hiy 2k har + hay (10)

the relative frequency (weight) of class k in the two
nearest rules supporting the two classes (hx; be-
longs to the nearest rule supporting class k, hxo
belongs to the nearest rule supporting class 1), p;
the membership degree of the current sample to the
nearest rule supporting class k, i.e. in which the kth
class is most frequent one and po the membership
degree of the current sample to the nearest rule sup-
porting class [, i.e. in which the lth class is the most
frequent one. If one of the two classes has no major-
ity in any rule, that rule is taken which supports the
minor class most. The reason for this strategy resp.
the advantage over conventional winner-takes-it-all
classification (as used in the direct multi-class EFC
approaches, see [4]) will be highlighted below in the
reliability aspects when dealing with conflict situ-
ations, see Section 4.2. In case when using binary
regression-based classifiers, the confidences in pre-
ferring class k over [ is simply calculated by using
the defuzzified output of the Takagi-Sugeno model
y(k,1). As the target values were all defined to be
either 0 or 1 (belonging to one of the two classes),
the output usually lies in [0,1]. If it is lying outside
this interval (extrapolation cases), we round it to-
wards the nearest integer in {0, 1}. Then, we obtain

confr; =1—y(k,1) (11)

In the second stage, the information obtained
from the preference relation matrix as defined in (2)
is exploited in a meaningful way in order to achieve
high classification performance. An obvious way for
doing so is to apply a weighted voting procedure
[12], where the score for each class k is given by:

scorey, = E con fr i

K>i>1

(12)

i.e. the score for class k is simply the sum of the
single confidences for preferring class k over all the
other classes, and outputting the class with highest
score as final decision:

Lest = argmaxy=1,... kscorey (13)

4.2. Reliability Aspects in Classification

Another central aspect in classification is the re-
liability of classification outputs, i.e. how reliable
the classifier itself sees its preference degree of one
class over the other for new query points to be pre-
dicted. There are two basic concepts for express-
ing classifier’s reliability, namely conflict and igno-
rance [11]. Conflict corresponds to that part of the



FeatureY

Consequent Label:

New query point near
center of unpurified rule
(rule with mixed classes)

2 classes mixed in 1 rule => Conflict (0.54 conf)

Feature X
(a)

FeatureY Decision Boundary

Rule #1 - Consequent label [
o
o
o od
ofo

2 classes, 2 clean rules

New query point

inbetween classes =>
Conflict

Rule #2 - Consequent abel %

FeatureX
(b)

Target (0 or 1)

New query point falling
inbetween classes
Q0 => Conflict

Pred. d 0.5,
FeatureY {fred:aroun )

0 Gt

. Ho

Feature X

(c)

Figure 1: (a): one rule, but mixed classes — con-
flict, also when query point is near the center (0.54
preference to rectangular class); (b) two ’clean’
rules, but query point appears very close to the de-
cision boundary — conflict; (¢) conflict in the case
of EFC AP-TS: new query point lies between two
rules containing different classes, hence is assigned
a value around 0.5

classifier’s uncertainty which is due to a close dis-
tance of a new query point to the decision boundary.
Figure 1 presents two conflict examples: in (a) the
classes are strongly overlapping inside one rule (de-
noted as cluster), so each query point falling into
this rule causes a conflict situation, also when it is
lying nearby the rule center; in (b) the classes are
falling exactly into two rules (clusters), and only
query points near the decision boundaries represent
conflict cases. In both cases, the conflict can be ex-
pressed by a preference degree con fi,; of 0.5 in the
preference relation matrix, which means, due to the
reciprocal scores (i.e. conf(l, k) also lying near 0.5),
no clear preference of one class over the other can
be made. When using the standard winner-takes-it-
all classification scheme in EFC' AP-SC (i.e. taking
the confidence of the output class in the most active
rule), the conflict of the first case can be indicated,
but not the conflict in the second case (the confi-

376

FeatureY Rule #1 - Consequent label

o
o
° o od

u]
oo
u]

New query point outside
covered region =>
Ignorance

Rule #2 - Consequent label

Feature X

Figure 2: New query point to be predicted falls in
unexplored feature space — ignorance as it is quite
uncertain to assign one of the two classes as output
label

dence in the output class of the closest rule is 1 as
both rules are ’clean’). This is one of the main rea-
sons why we used a different weighted classification
scheme which is defined in (9) and which is able
to indicate conflict in both cases. Regression-based
classifiers can indicate conflict in a quite natural
way as assigning samples from one class a target
value of 0 and samples from the other class a tar-
get value of 1 and performing regression inbetween;
an example is shown in (c), where the z-axis de-
notes the regression target values (0 or 1) and the
regression surface indicated with stripes. A query
point falling inbetween two rules will be assigned a
regression value of about 0.5, indicating a conflict.
Ignorance belongs to that part of classifier’s un-
certainty which is due to a query point falling into
the extrapolation region of the feature space as in-
dicated in Figure 2. In this case, the feature space
is simply not sufficiently crowded with samples such
that for a new query point falling into an unexplored
region it is hard to guess whether it belongs to one
of the two classes. This means that both, confy; as
well as conf; ; should be close to 0, depending on
the degree of ignorance. The nice thing is that fuzzy
classifiers can represent ignorance in a quite natural
way, see [11]. This is because in extrapolation cases
as shown in Figure 2, no rule in the fuzzy classi-
fier is really active with a significant firing degree
(1 > € with a small positive number €). Therefore,
we weight the classifier preference degrees of class
k over | by the maximal firing degree over all rules
in the corresponding classifier and obtain the new
confidences which we score through (12):
confr = confi *  max_ wi(Z)(k, 1) (14)

with )
pi(Z) (k. 1) = j-[lllij(xj)(k7 1) (15)
with T denoting a t-norm in general. Assuming
that the preference degrees are reciprocal and the
ignorance degree is the same for classifier on k over



[ as for classifier on [ over k, we obtain:
confir = (1 —confy,) * ll}axcm(f)(k‘, 1) (16)

i.e. the confidence of the preference of [ over k is
decreased by the same extent as the confidence of
the preference of k over .

5. Evaluation

This section is dedicated to the empirical evaluation
of the novel evolving fuzzy classifier schemes EFC-
AP-TS and EFC-AP-SC.

5.1. Experimental Setup

Hereby, we concentrated on the following data sets
(taken from real-world applications in own projects
and from UCI repository?):

e Inspection of CD Imprints: the classification
problem is to detect system failures (such as
color drift during offset print, a pinhole caused
by a dirty sieve, occurrence of colors on dirt,
palettes running out of ink) when printing the
upper-side of compact discs; the inspection is
done visually with high-resolution cameras in-
stalled directly along the production line. The
recorded images of CD imprints are compared
with a fault-free ideal reference image, also
called master image. This comparison results
in a grey-level contrast image, where pixels de-
note deviations to the master and potential
fault candidates. Once, regions of interest (=
pixels forming one deviation region are grouped
together) are found with a specific variant of
hierarchical clustering, object features are ex-
tracted for characterizing the outlook, shape,
tendency etc. of the objects. (see also [27] for
details and a list of features). These features
are used as basis for a classifier training process
(input) together with the labels of the objects
they characterize.

e Pitch circle plates: there the problem is to de-
tect various occurrences on the surface of these
plates, such as dirt, scratches, porosities or
splinters of glass; opposed to the CD imprint
data, here no master images are calculated, but
the original grey-level images are used; first,
the objects are found by algorithms being able
to put circumscribing ellipsoids over the regions
of interest (usually identified by light and in-
tensity indicators); second, object features (52
in sum) are extracted from these regions of in-
terest (e.g. statistical measures from the grey
level histograms, shape descriptors, size of cir-
cumscribing ellipsis, intensity features).

e Iris data set: contains samples from the species
of three different flowers (setosa, versicolor and

Lhttp://archive.ics.uci.edu/ml/
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Table 1: Characteristics of the applied data sets

# Samples | # Feat. | # of CL
CD Imprint 1534 57 12
Plates 7411 52 8
Iris 300 4 3
Steel 1940 27 7
Vehicle 846 18 4
Ecoli 332 7 6

virginica) based on some length and width cri-
teria of their blossoms; the goal is to distinguish
between these three flower classes.

e Four data sets from UCI repository: iris, steel,
vehicle, ecoli — due to space restriction we ne-
glect the detailed description and refer to the
corresponding data folders in the repository.

A summary of the characteristics of the data sets
(# of inputs, classes, samples etc. they contain)
is given in Table 1. For comparison purposes with
state-of-the-art methods, we, apart from our novel
algorithms, apply the following methods:

e EFC-SM [4]: evolving fuzzy classifier in single
model architecture with singleton class labels
and a winner-takes-it-all classification, which
directly maps a new feature vector onto one of
several classes.

o EFC-MM [21]: evolving fuzzy classifier exploit-
ing multi-model architecture which uses a TS
fuzzy regression model for each class based on
indicator entries and performs a one-versus-rest
classification scheme.

o cVQ-Class [18] [21]: an evolving clustering-
based classifier which directly acts on the high-
dimensional feature space including two vari-
ants: winner-takes-it-all classification (variant
A) and an enhanced weighted classification
strategy according to the distance of new sam-
ples to the decision boundary (variant B). This
also maps a feature vector directly onto one of
several classes.

The comparison with the first two variants is in con-
formity to check the advantage of the novel architec-
ture as outlined in Section 2 over direct multi-class
classification (as in EFC SM) and one-versus-rest
approach (as in EFC' MM), as in all cases we apply
FLEXFIS-Class as training engine. Furthermore, in
order to underline the impact of taking into account
reliability aspects of the classifiers as described in
Section 4.2, we include the degree of ignorance into
the classifications as defined in (16) and ignore con-
flicting samples when calculating the classification
accuracies, both indicating whether the inclusion of
classifier reliability in its prediction may finally in-
crease classification accuracy.



5.2. Results

In order to verify the performance of the classifiers
on an independent test set, we used 10 shuffles of
the data and for each shuffle split the whole data
set into three thirds, where the first two thirds are
used for incremental learning/evolving the classi-
fiers, and the third third used for calculating the
accuracies (test set as indicated in Table 1). We
take the mean accuracies over all shuffles as well as
the standard deviations over the shuffles in order to
obtain the sensitivity of the methods with respect to
the order of the data. Larger values correspond to
higher sensitivity and should be taken with caution.

Table 2 visualizes the results obtained on the var-
ious data sets using the different data sets and vari-
ants of the all-pairs evolving fuzzy classifiers (the
method /variant with highest accuracy for each data
set shown in bold face); the rows including 'with ig-
norance’ in the method description correspond to
the down-weighting of preference degrees as out-
lined in (16), the rows including 'no res. on ign’
in the method description discards all samples hav-
ing maximal rule membership degree smaller than
0.1 (— high ignorance) in the classification response
(therefore also ignoring them when computing the
classification accuracy). In all cases, EFC-AP-TS
can mostly out-perform one-versus-rest counterpart
EFC MM (or at least perform equally), both using
Takagi-Sugeno fuzzy model architecture for the bi-
nary classifiers: in case of plates, steel, CD-Imprint
and vehicle the performance boost is quite distinct
(3% to 12%) as also lying significantly over the sen-
sitivity on the different data shuffles; for the other
three sets the increase is about 1% to 1.5%. This is
quite remarkable when taking into account that the
computational complexity is lower for EFC-AP-TS
than for EFC' MM, especially during the incremen-
tal update phase (as outlined in Section 2.2: small
K —1 classifiers need to be updated instead of large
K classifiers). The same is the case for EFC AP-
SC, which can clearly outperform EFC SM (both
using singleton consequent labels) for all data sets.
Furthermore, the integration of the ignorance levels
into the confidence levels after (16) (Rows #3 and
#7) and ignoring ignorance (Rows #4 and #8) and
conflict samples (Rows #5 and #9) (both serving as
parts of the whole reliability concept) increase the
accuracies over conventional all-pairs outputs fur-
ther, for both, FFC' AP-SC and EFC-AP-TS. The
(partially significant) increase of accuracy when ig-
noring conflict and ignorance samples is an inter-
esting point, as when abstaining randomly some
samples from the test set to be included in the cal-
culation of the classification accuracy (so not only
those for which the classifiers were uncertain), it
can be expected that the classification rates stay
approximately the same. This means that the re-
liability concepts (including conflict and ignorance)
discussed in Section 4.2 are in fact modeling the
uncertainty of all-pairs classifiers on predicting new
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samples in an appropriate way. Finally, EFC-AP-
TS performs equally or better than EFS AP-SC (ex-
cept for CD-imprint data set), no matter whether
the reliability concept is included or not. The stan-
dard deviations of the best performing methods (for
each data set) are not showing any really severe fluc-
tuations over the different shuffles.

6. Conclusion

In this paper, we extended state-of-the-art evolv-
ing fuzzy classifiers (EFC) with the concept of all-
pairs classification in case of multi-class classifica-
tion scenarios. The all-pairs model architecture re-
duces complexity for model updates compared to
the one-versus-rest concept and and causes decision
boundaries which are more easily to learn compared
to direct multi-class response architecture. Fur-
thermore, it allows some additional interpretation
of the binary classifier outputs as these are stored
in a preference relation matrix showing the pref-
erence degrees between all class pairs. The eval-
uation section shows that all-pairs evolving fuzzy
classifiers can significantly out-perform the conven-
tional state-of-the-art EFC techniques with respect
to classification rates. In fact, it is remarkable that
the regression-based variant FFC-AP-TS is the top-
ranked method for five out of six high-dimensional,
partly noisy real-world classification data sets. Fur-
thermore, it is also remarkable that by including the
classifiers’ reliability concepts in the preference de-
grees (matrix), the accuracies of the EFC-AP classi-
fiers can be significantly increased. This also shows
the plausibility of the conflict and ignorance concept
models described in Section 4.2. Future work in-
cludes the integration of the degree of non-linearity
of the binary fuzzy classifiers into the ignorance lev-
els and enhanced strategies for producing overall
classification responses from the preference relation
matrix including a more funded analysis from fuzzy
relational point of view.
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