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Abstract

In this study, differential transform method
(DTM) is applied to fuzzy integro-differential
equation. The concept of generalized H-
differentiability is used. If the equation has a so-
lution in terms of the series expansion of known
functions; this powerful method catches the exact
solution. Some numerical examples are also given to
illustrate the superiority of the method. All rights
reserved.
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1. Introduction

When a physical system is modeled under the dif-
ferential sense; It finally gives a fuzzy differen-
tial equation, a fuzzy integral equation or a fuzzy
integro-differential equation and hence, the solution
of integro-differential equations have a major role
in the fields of science and engineering. Nonlin-
ear integro-differential equations are usually hard
to solve analytically and exact solutions are scarce.
Therefore, they have been of great interest by sev-
eral authors. The technique that we used is the
fuzzy differential transform method ( FDTM ),
which is based on Taylor series expansion. Differ-
ential transform method is different from the tra-
ditional high order Taylor series method. When
requires symbolic computation of necessary deriva-
tives of the data function and is computationally
expensive for higher order. Intrinsically, the differ-
ential transformation method evaluates the approx-
imate solution by the finite Taylor series. But, in
the differential transform method the derivative is
not computed directly. Instead, the relative deriva-
tives are calculated by an iteration procedure. It
is introduced by Zhou [5] in a study about electri-
cal circuits. In this way, Allahviranloo et. al [1]
proposed FDTM for solving first order fuzzy dif-
ferential equation under strongly H-differentiability.
Moreover, Arikoglu et. al [2] has been proposed
differential transform method for solving integro-
differential equations . It gives exact values of
the nth derivative of an analytical function at a
point in a fast manner. DTM is a semi analytical-
numerical technique that depends on Taylor series.

In this study, DTM is applied to fuzzy integro-
differential equations.
The structure of paper is organized as follows:
In section 2, some basic definitions and results
which will be used later are brought. In sec-
tion 3, we shall propose fuzzy differential trans-
form method for solving fuzzy Volterra integro-
differential equation with separable kernels. Then
the proposed method is implemented to two
numerical-analytical examples in section 4 and fi-
nally, conclusion is drawn in section 5.

2. Preliminaries

An arbitrary fuzzy number ũ is represented by an
ordered pair of functions (u(r), u(r)); 0 ≤ r ≤ 1
which satisfy the following requirements is repre-
sented.

(i) u(r) is a bounded monotonic increasing left
continuous function;

(ii) u(r) is a bounded monotonic decreasing left
continuous function;

(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number k is simply represented by u(r) =
u(r) = k; 0 ≤ r ≤ 1, and called singleton. Let E
be the set of all upper semicontinuous normal con-
vex fuzzy numbers with bounded r-level intervals.
It means that if v ∈ E then the r-level set

[v]r = {s|v(s) ≥ r, 0 < r ≤ 1}

is a closed bounded interval which is denoted by

[v]r = [v(r), v(r)].

For arbitrary ũ = (u(r), u(r)) , ṽ = (v(r), v(r)) and
scalar k we define addition (ũ+ ṽ), subtraction and
scalar multiplication by k as

Addition:

(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v(r),

subtraction:

(u− v)(r) = u(r)− v(r), (u− v)(r) = u(r)− v(r),

scalar multiplication:

k̃u =

 (ku(r), ku(r)), k ≥ 0,

(ku(r), ku(r)), k < 0.
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For two arbitrary fuzzy numbers x̃ = (x(r), x(r))
and ỹ = (y(r), y(r)), x̃ = ỹ if and only if x(r) = y(r)
and x(r) = y(r). Since each y ∈ R can be regarded
as a fuzzy number ỹ defined by

ỹ(t) =

 1, ift = y,

0, ift 6= y.

The Hausdorff distance between fuzzy numbers
given by D : E × E → R+

⋃
{0}.

D(u, v) = supr∈[0,1]Max{|u(r)−v(r)|, |u(r)−v(r)|}

It is easy to see that D is a metric in E and has the
following properties (see [7]).

(i) D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E.
(ii) D(k � u, k � v) = |k|D(u, v),∀k ∈ R, u, v ∈ E.
(iii) D(u⊕v, u⊕e) ≤ D(u,w)+D(v, e),∀u, v, w, e ∈

E,
(iv) (D,E) is a complete metric space.

Definition 1 [4] Let f : R −→ E be a fuzzy valued
function. If for arbitrary fixed t0 ∈ R and ε > 0. a
δ > 0 such that |t − t0| < δ =⇒ D(f(t), f(t0)) < ε
f is said to be continuous.

It is well-known that the H-derivative (differentia-
bility in the sense of Hukuhara) for fuzzy mappings
was initially introduced by Puri and Ralescu [6]. It
is based on the H-difference of sets:

Definition 2 Let x, y ∈ E. If there exists z ∈ E
such that x = y+z, then z is called the H-difference
of x and y and it is denoted by x	 y.

In this paper, the following definition which was
introduced by Chalco-Cano et. al [3]is considered.

Definition 3 Let f : (a, b)→ E and x0 ∈ (a, b).We
say that f is differentiable at x0. If there exists an
element f ′(x0) ∈ E, such that
(1) for all h > 0 sufficiently near to 0, ∃f(x0 +h)	
f(x0),∃f(x0)	f(x0−h) and the limits (in the met-
ric D)

limh→0+
f(x0+h)	f(x0)

h

= limh→0+
f(x0)	f(x0−h)

h = f ′(x0)

or
(2) for all h < 0 sufficiently near to 0, ∃f(x0 +h)	
f(x0), ∃f(x0) 	 f(x0 − h) and the limits (in the
metric D)

limh→0−
f(x0+h)	f(x0)

h

= limh→0−
f(x0)	f(x0−h)

h = f ′(x0).

In the special case, when f is a fuzzy-valued func-
tion, we have the following result:

Theorem 1 [3] Let f : R → E be a function and
denote f(t) = (f(t, r), f(t, r)). For each r ∈ [0, 1],

(1) if f is differentiable in the first form (1) in Def-
inition 3, then f(t, r) and f(t, r) are differen-
tiable functions and f ′(t) = (f ′(t, r), f ′(t, r))

(2) if f is differentiable in the second form
(2) in Definition 3, then f(t, r) and f(t, r)
are differentiable functions and f ′(t) =
(f ′(t, r), f ′(t, r)).

Moreover, we can consider the second order of later
type of H-differentiability as following:

Theorem 2 Let f : R → E be a function and de-
note f(t) = (f(t, r), f(t, r)). For each r ∈ [0, 1],
then

(A1) if f and f ′ are differentiable in the first form
(1) or if f and f ′ are differentiable in the sec-
ond form (2) in Definition 3, then f(t, r) and
f(t, r) are differentiable functions and f ′′(t) =
(f ′′(t, r), f ′′(t, r))

(A2) if f is differentiable in the first form (1) and
f ′ is differentiable in the second form (2)or if
f is differentiable in the second form (2) and f ′
is differentiable in the first form (1) in Defini-
tion 3, then f(t, r) and f(t, r) are differentiable
functions and f ′′(t) = (f ′′(t, r), f ′′(t, r)).

Proof :It is straightforward.

Definition 4 The transformation of the nth
derivative of a function in one variable is as
follows:

F (k) = 1
k! [

dk

dxk
f(x)]x=x0

and the inverse transformation is defined as

f(x) =
∞∑

k=0
F (k)(x− x0)k

3. Fuzzy Volterra Integro-Differential
Equation With Separable Kernels

In this section, we will investigate solution of fuzzy
Volterra integro-differential equations with separa-
ble kernels. Let u(x) be a fuzzy-valued function
to be solved for, f(x) is given known function and
k(x, t) is a known real-valued integral kernel. The
fuzzy Volterra integro-differential equation explain
in the form

u′(x) = f(x) +
∫ x

0
k(x, t)u(x)dt (1)

where f(x) : R→ E and x ∈ [a, b], b <∞.
In addition, FDTM is used for solving Eq.(1)

with separable kernels i.e

k(x, t) =
n∑

j=0
Qj(x)Pj(t)

.
Let us consider u′(x) = F (x, t) where
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u(x) = u(x0) +
∫ x

x0
F (x, t)dx,

u(x) = u(x0) +
∫ x

x0
F (x, t)dx

Definition 5 Let us consider x(t) is differentiable
of order k over time domain T , then

Xi(k, r) = dkx(t,r)
dtk ]t=ti

∀k ∈ K = 0, 1, . . .
Xi(k, r) = dkX(t,r)

dtk ]t=ti
,

(2)
when x(t) is (1)-differentiable and

when k is odd

Xi(k, r) = dkx(t,r)
dtk ]t=ti , Xi(k, r) = dkx(t,r)

dtk ]t=ti

when k is even

Xi(k, r) = dkx(t,r)
dtk ]t=ti

, Xi(k, r) = dkx(t,r)
dtk ]t=ti

(3)
when x(t) is (2)-differentiable.

Notice that Xi(t, r) and Xi(t, r) are called the
lower and upper spectrum of x(t) at t = ti, respec-
tively. So, if x(t) be (1)-differentiable then x(t) can
be represented as follows:

x(t, r) =
∑∞

k=0
(t−ti)k

k! X(k, r), k ∈ K, 0 ≤ r ≤ 1

x(t, r) =
∑∞

k=0
(t−ti)k

k! X(k, r), k ∈ K, 0 ≤ r ≤ 1

and if x(t) be (2)-differentiable then x(t) can be
represented as follows:

x(t, r) =
∑∞

k=0
(t−ti)k

k! X(k, r)

+
∑∞

k=0
(t−ti)k

k! X(k, r), 0 ≤ r ≤ 1

x(t, r) =
∑∞

k=0
(t−ti)k

k! X(k, r)

+
∑∞

k=0
(t−ti)k

k! X(k, r), 0 ≤ r ≤ 1

The mentioned equations are known as the inverse
transformation of X(k, r). If X(k, r) is defined as

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0 ,

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0

when is x(t) is (1)-differentiable and

for k is odd

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0 ,

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0

for k is even

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0 ,

X(k, r) = M(k)[ dk(x(t,r))
dtk ]t=t0

(4)

when x(t) is (2)-differentiable then, the function
x(t) can be represented as follows:

x(t, r) =
∑∞

k=0
(t−t0)k

k!
X(t,r)
M(k) ,

k ∈ K, 0 ≤ r ≤ 1
x(t, r) =

∑∞
k=0

(t−t0)k

k!
X(t,r)
M(k) ,

(5)
when x(t) is (1)-differentiable and if x(t) be (2)-
differentiable we get the following:

x(t, r) = (
∑∞

k=0,odd
(t−t0)k

k!
X(t,r)
M(k)

+
∑∞

k=0,even
(t−t0)k

k!
X(t,r)
M(k) ),

x(t, r) = (
∑∞

k=0,odd
(t−t0)k

k!
X(t,r)
M(k)

+
∑∞

k=0,even
(t−t0)k

k!
X(t,r)
M(k) ),

(6)

where M(k) > 0, M(k) is called the weighting
factor and in this paper, is applied M(k) = Hk

k! ,
where H is the time horizon on interest. So, if x(t)
be (1)-differentiable. Then,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,

k ∈ K, 0 ≤ r ≤ 1

and if x(t) be (2)-differentiable,

k is odd,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,

k is even,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,

X(k, r) = Hk

k!
dkx(t,r)

dtk ,
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Using the fuzzy differential transform, a fuzzy dif-
ferential equation in the domain of interest can be
transformed to an algebraic equation in the domain
k and x(t) can be obtained as the finite-term Taylor
series plus a reminder as following k ∈ K, 0 ≤ r ≤ 1:

x(t, r) =
N∑

k=0

(t− t0)k

k!
X(t, r)
M(k) +RN+1(t)

=
N∑

k=0
( t− t0
H

)kX(t, r) +RN+1(t),

x(t, r) =
N∑

k=0

(t− t0)k

k!
X(t, r)
M(k) +RN+1(t)

=
N∑

k=0
( t− t0
H

)kX(t, r) +RN+1(t),

when is x(t) is (1)-differentiable and k ∈ K, 0 ≤ r ≤
1

x(t, r) = (
N∑

k=1,odd

(t− ti)k

k!
X(t, r)
M(k)

+
N∑

k=0,even

(t− ti)k

k!
X(t, r)
M(k) ) +RN+1(t)

=
N∑

k=1,odd

( t− ti
H

)kX(t, r)

+
N∑

k=0,even

( t− ti
H

)kX(t, r) +RN+1(t),

x(t, r) = (
N∑

k=1,odd

(t− ti)k

k!
X(t, r)
M(k)

+
N∑

k=0,even

(t− ti)k

k!
X(t, r)
M(k) ) +RN+1(t)

=
N∑

k=1,odd

( t− ti
H

)kX(t, r)

+
N∑

k=0,even

( t− ti
H

)kX(t, r) +RN+1(t),

when is x(t) is (2)-differentiable.
The objective of this section is to find the so-

lution of Eq. (1) at the equally spaced grid points
[t0, . . . , tN ] where ti = a+ih for each i = 0, 1, . . . , N
and h = b−a

N . That is, the domain of interest is
divided to N sub-domain and the fuzzy approxima-
tion functions in each sub-domain are xi(t, r) for
i = 0, 1, . . . , N − 1, respectively. From the initial
conditions the following can obtained:

X(0, r) = x(0, r), X(0, r) = x(0, r), 0 ≤ r ≤ 1

In the first sub-domain, x(t, r) and x(t, r) can be
described by x(0, r) = x0(r) and x(0, r) = xo(r)
respectively. They can be represented in terms of
their n-th order Taylor series with respect to do.
That is

x(t0, r) = X0(0, r) +X0(1, r)(t− t0)
+ X0(2, r)(t− t0)2 + . . .+X0(N, r)(t− t0)N

x(t0, r) = X0(0, r) +X0(1, r)(t− t0)
+ X0(2, r)(t− t0)2 + . . .+X0(N, r)(t− t0)N

Additionally, using Taylor series for x(t1, r) leads to
obtain:

x(t1, r) = X0(0, r) +X0(1, r)(t1 − t0) +X0(2, r)(t1 − t0)2

+ . . .+X0(N, r)(t1 − t0)N

=
N∑

j=0
X0(j, r)hj ,

x(t1, r) = X0(0, r) +X0(1, r)(t1 − t0) +X0(2, r)(t1 − t0)2

+ . . .+X0(N, r)(t1 − t0)N

=
N∑

j=0
X0(j, r)hj .

The final value x0(t1) of the first sub-domain
is the initial value of the second sub-domain ,i.e.
x1(t1, r) = X1(0) = x0(t1, r). In a similar manner
x(t2, r) can be represented as

x(t2, r) ≈ x1(t2, r) = X1(0, r)
+ X1(1, r)(t2 − t1) +X1(2, r)(t2 − t1)2

+ . . .+X1(N, r)(t2 − t1)N

=
N∑

j=0
X1(j, r)hj ,

x(t1, r) ≈ x1(t2, r) = X1(0, r)
+ X1(1, r)(t2 − t1) +X1(2, r)(t2 − t1)2

+ . . .+X1(N, r)(t2 − t1)N

=
N∑

j=0
X1(j, r)hj .

Hence, the solution on the gird points ti+1 can be
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obtained as follows:

x(ti+1, r) ≈ xi(ti+1, r) = Xi(0, r) +Xi(1, r)(ti+1 − ti)
+ Xi(2, r)(ti+1 − ti)2

+ . . .+Xi(N, r)(ti+1 − ti)N

=
N∑

j=0
Xi(j, r)hj ,

x(ti+1, r) ≈ xi(ti+1, r) = Xi(0, r) +Xi(1, r)(ti+1 − ti)
+ Xi(2, r)(ti+1 − ti)2

+ . . .+Xi(N, r)(ti+1 − ti)N

=
N∑

j=0
Xi(j, r)hj .

Now, we investigate the important properties of
fuzzy transform of fuzzy-valued functions.

Theorem 3 Let us consider u(t) and v(t) are
fuzzy-valued functions, then

1. If f(t) = u(t) ± v(t) then F (k) = U(k) ±
V (k), k ∈ K

2. If f(t) = u(t) 	 v(t) then F (k) = U(k) 	
V (k), k ∈ K

3. If f(t) = (dmz(t)/dtm) then

F (k) = (m+ k)!
k! Z(k +m)

4. If f(t) = αw(t) then F (k) = αW (k)
5. If f(t) = tm then F (k) = δ(k −m)
6. If f(t) = exp(λt) then F (k) = λk/k!
7. If f(t) = (1 + t)m then

F (k) = m(m− 1)− (m− k − 1)
k!

8. If f(t) = sin(wt+ α) then

F (k) = wk

k! sin(π k2! + α)

9. If f(t) = cos(wt+ α) then

F (k) = wk

k! cos(π k2! + α)

Proof :Using definition 5 the proofs are obvious.

Theorem 4 Suppose that U(t) and G(t) are differ-
ential transformations of the functions u(t) and g(t)
( is real-values function), respectively, then we have
the following:

1. If f(x) =
∫ x

x0
u(t)dt then, F (k, r) = U(k−1,r)

k ,
where k ≥ 1.

2. If f(x) =
∫ x

x0
g(t)u(t)dt then

F (k; r) =
∑k−1

l=0 G(l) U(k−l−1;r)
k ,

F (0) = 0, 0 ≤ r ≤ 1, (7)

3. If f(x) = g(x)
∫ x

x0
u(t)dt then

F (k; r) =
∑k−1

l=0 G(l) U(k−l−1;r)
k−1 ,

F (0) = 0, 0 ≤ r ≤ 1
(8)

4. If f(x) = g(x)u(x) then

F (k; r) =
k∑

l=0
G(l)U(k − l; r), 0 ≤ r ≤ 1 (9)

Proof :The proofs using definition 5 are obvious.

4. Numerical Examples

In this section, we will investigate the solution of
fuzzy Volterra integro-differential equations using
fuzzy differential transform method to show the util-
ity of proposed method.

Example 1 Let us consider the following fuzzy
Volterra integro-differential equation:

ú(x) = (1 + x)(r + 1, r − 2) +
∫ x

0 u(t)dt,
u(0) = (0, 0), u

′(0) = (r + 1, r − 2), (10)

based on Theorem 4 and using properties of
FDTM . We have the following for all 0 ≤ k ≤
1, k ≥ 1 :

U(k+1; r) = [(δ(k)+δ(k−1))(r+1)+U(k − 1, r)
k

] k

(k + 1)!

and

U(k+1; r) = [(δ(k)+δ(k−1))(r−2)+U(k − 1, r)
k

] k

(k + 1)!

where U(0; r) = 0, U(1, r) = r + 1, U(0, r) = 0
and U(1, r) = r − 2. Consequently, we obtain:

U(2; r) = r+1
2! , U(3; r) = r+1

3! , U(4; r) = r+1
4! ,

U(5; r) = r+1
5! , U(6; r) = r+1

6! , U(7; r) = r+1
7! ,

U(8; r) = r+1
8! , U(9; r) = r+1

9! , U(10; r) = r+1
10! ,

...

and

U(2; r) = r−2
2! , U(3; r) = r−2

3! , U(4; r) = r−2
4! ,

U(5; r) = r−2
5! , U(6; r) = r−2

6! , U(7; r) = r−2
7! ,

U(8; r) = r−2
8! , U(9; r) = r−2

9! , U(10; r) = r−2
10! ,

...

therefore, the solution of fuzzy Volterra integro-
differential equation (10) will be as following

u(x) = (r + 1, r − 2)(x+ x2/2! + x3/3! + x4/4!
+ x5/5! + x6/6! + x7/7! + x8/8! + . . .)
= (r + 1, r − 2)(ex − 1)

which is the exact solution of fuzzy Volterra integro-
differential equation (10).

895



Example 2 We consider the following fuzzy
integro-differential equation:

u
′(x) = (r − 1, 1− r) +

∫ x

0 u(t)dt,
u(0) = (0, 0), u

′(0) = (r − 1, 1− r)
(11)

By applying Theorem (4) and using properties of
FDTM, the following relation is obtained for 0 ≤
r ≤ 1:

U (k + 1, r) =
[
(r − 1) δ (k) + U (k − 1, r)

k

]
k!

(k + 1)!

and

U (k + 1, r) =
[
(1− r) δ (k) + U (k − 1, r)

k

]
k!

(k + 1)!

By using Theorem 3.1 and problem condition, we
have

U (0, r) = 0, U (1, r) = (r − 1) ,
U (0, r) = 0, U (1, r) = (1− r) .

Utilizing the above relation, we obtain:

U (2, r) = 0, U (3, r) = r−1
3! , U (4, r) = 0,

U (5, r) = r−1
5! , U (6, r) = 0, U (7, r) = r−1

7! ,
U (8, r) = 0, U (9, r) = r−1

9! , U (10, r) = 0,

and

U (2, r) = 0, U (3, r) = 1−r
3! , U (4, r) = 0,

U (5, r) = 1−r
5! , U (6, r) = 0, U (7, r) = 1−r

7! ,
U (8, r) = 0, U (9, r) = 1−r

9! , U (10, r) = 0,

Then, the following series solution is evaluated:

u (x) = (r − 1, 1− r)
(
x+ x3

3! + x5

5! + x7

7! + . . .

)
= (r − 1, 1− r) sinh x

Which is the exact solution of the fuzzy integro-
differential equation

5. Conclusion

In this paper, FDTM is proposed for solving fuzzy
Volterra integro-differential equation with separa-
ble kernels. Differential transform method is dif-
ferent from the traditional high order Taylor se-
ries method, which requires symbolic computation
of necessary derivatives of the data function and
is computationally expensive for higher order. We
introduced new theorems for FDTM to solve the
fuzzy integro-differential equations. We first gave
their proofs and then applied to fuzzy integro-
differential equations. Also, we used the concept
of H-derivatives for fuzzy mappings. Some exam-
ples were examined using FDTM and the results
have shown remarkable performance.
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