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Abstract

It is well-known that the residual IT of a left-
continuous t-norm T satisfies the exchange princi-
ple (EP), viz., IT (x, IT (y, z)) = IT (y, IT (x, z)) for
all x, y, z ∈ [0, 1]. However, the left-continuity of
T is only sufficient and not necessary, as many ex-
amples in the literature illustrate. In this work we
study the necessary conditions on a t-norm T for its
residual to satisfy (EP). The work presents a com-
plete characterization of the class of t-norms whose
residuals satisfy (EP).

Keywords: R-implication, t-norm, exchange prin-
ciple, fuzzy implication.

1. Introduction

The family of R-implications is one of the most
established classes of fuzzy implications. In fact,
one of the earliest methods for obtaining implica-
tions was from conjunctions as their residuals, when
no additional logical connectives are given. In this
way Gödel extended the three-valued implication of
Heyting, while discussing the possible relationships
between many-valued logic on the one hand, and in-
tuitionistic logic on the other. Residuals of conjunc-
tions on a lattice L, be it from t-norms, uninorms,
t-subnorms, copulas, etc., have attracted the most
attention from researchers, since they can transform
the underlying lattice L into a residuated lattice.
In this article we will consider only R-implications
generated from t-norms.

Definition 1.1. A function I : [0, 1]2 → [0, 1] is
called an R-implication, if there exists a t-norm T
(see Definition 2.3) such that

I(x, y) = sup {t ∈ [0, 1] | T (x, t) ≤ y} ,

for all x, y ∈ [0, 1]. If an R-implication is generated
from a t-norm T , then we will often denote it by IT .

R-implications also have a parallel origin other
than its logical foundations. They were also ob-
tained from the study of solutions of systems of
fuzzy relational equations and have been known un-
der different names, for example, as a Φ-operator in
Pedrycz [9], as T -relative pseudocomplement and
αT -operator in [8].

1.1. A first characterization of

R-implications generated from

left-continuous t-norms

Sanchez [10] showed that the greatest solution of
sup−min composition of fuzzy relations is the re-
lation obtained from the residual of min. In fact,
Miyakoshi and Shimbo [8] generalized this result to
any left-continuous t-norm. They also showed that
their αT -operator is equivalent to the Φ-operator of
Pedrycz. Most importantly, they gave the first char-
acterization of R-implications obtained from left-
continuous t-norms (for the proof see also [1, The-
orem 2.5.17]).

Theorem 1.2. For a function I : [0, 1]2 → [0, 1] the
following statements are equivalent:

(i) I is an R-implication generated from a left-
continuous t-norm.

(ii) I is non-decreasing with respect to the second
variable, it satisfies the exchange principle, i.e.,
for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(y, I(x, z)), (EP)

it satisfies the ordering property, i.e., for all
x, y ∈ [0, 1]

x ≤ y ⇐⇒ I(x, y) = 1, (OP)

and I is right continuous with respect to the
second variable.

As we see, there are two important axioms of mul-
tivalued implications above: (EP) and (OP). The
characterization of t-norms, which residuals satisfy
the ordering property (OP) have been obtained by
Baczyński and Jayaram [2].

Definition 1.3. A function T : [0, 1]2 → [0, 1] is
said to be border-continuous, if it is continuous on
the boundary of the unit square [0, 1]2, i.e., on the
set [0, 1]2\]0, 1[2.

Proposition 1.4 ([2, Proposition 5.8], [1, Propo-
sition 2.5.9]). For a t-norm T the following state-
ments are equivalent:

(i) T is border-continuous.
(ii) IT satisfies the ordering property (OP).
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Our main goal in this article is to obtain a simi-
lar characterization but for the exchange principle,
i.e., we want to characterize those t-norms whose
residuals satisfy (EP). To see that this condition
is different from (OP), let us analyze the following
examples.

Example 1.5. (i) Consider the least t-norm, also
called the drastic product, given as follows

TD(x, y) =

{

0, if x, y ∈ [0, 1[,

min(x, y), otherwise.

Observe that it is a non-left-continuous t-norm.
Then the R-implication generated from TD is
given by

ITD(x, y) =

{

1, if x < 1,

y, if x = 1.

It satisfies (EP), but does not satisfy (OP).
(ii) Consider the non-left-continuous t-norm given

in [5, Example 1.24 (i)] as follows

TB∗(x, y) =

{

0, if (x, y) ∈]0, 0.5[2,

min(x, y), otherwise.

Then the R-implication generated from TB∗ is

ITB∗(x, y) =











1, if x ≤ y,

0.5, if x > y and x ∈ [0, 0.5[,

y, otherwise.

Obviously, ITB∗ satisfies (OP) but not (EP),
since

ITB∗(0.4, ITB∗(0.5, 0.3)) = 0.5,

while

ITB∗(0.5, ITB∗(0.4, 0.3)) = 1.

(iii) Consider now the non-left-continuous t-norm T
given in [5, Example 1.24 (ii)] as follows:

TB(x,y)=

{

0, if (x, y) ∈]0, 1[2\[0.5, 1[2,

min(x, y), otherwise.

Then the R-implication generated from TB is

ITB(x,y)=











1, if x ≤ y or x, y ∈ [0, 0.5[,

0.5, if x ∈ [0.5, 1[ and y ∈ [0, 0.5[,

y, otherwise.

It is obvious that ITB does not satisfy (OP).
ITB also does not satisfy (EP) since

ITB(0.8, ITB(0.5, 0.3)) = ITB(0.8, 0.5) = 0.5,

while

ITB(0.5, ITB(0.8, 0.3)) = ITB(0.5, 0.5) = 1.

(iv) Finally, consider the largest t-norm,
TM(x, y) = min(x, y) whose residual is
the Gödel implication

IGD(x, y) =

{

1, if x ≤ y,

y, if x > y,

which satisfies both (EP) and (OP).

1.2. Left-continuity of T for (EP) of IT :

Sufficient but necessary?

Left-continuity of T is sufficient for IT to sat-
isfy (EP), but is not necessary. As a counterexample
consider the non-left-continuous nilpotent minimum
t-norm (see [6, p. 851]):

TnM∗(x, y) =

{

0, if x+ y < 1,

min(x, y), otherwise.

Then the R-implication generated from TnM∗ is the
following Fodor implication

IFD(x, y) =

{

1, if x ≤ y,

max(1− x, y), if x > y,

which satisfies both (EP) and (OP). This leads us
to the following natural question:

What is(are) the most general condition(s)
on T to ensure that IT has (EP)?

In this work, we take up this study and present
a complete characterization of the class of t-norms
whose residuals satisfy (EP). Towards this end, we
firstly partition the class of t-norms into those that
are border-continuous and those that are not and
deal with each of them separately.

2. Preliminaries

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-
tives, but to make this work more self-contained,
we introduce some notations used in the text and
we briefly mention some of the concepts and results
employed in the rest of the work.

Definition 2.1. A function I : [0, 1]2 → [0, 1] is
called a fuzzy implication if it satisfies the following
conditions:

I is decreasing in the first variable, (I1)

I is increasing in the second variable, (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

The set of all fuzzy implications will be denoted by
FI.

Remark 2.2 (see [3, Theorem 7.6]). If a function
T : [0, 1]2 → [0, 1] is border-continuous, commuta-
tive, monotonic increasing with neutral element 1,
then the residual IT ∈ FI and it satisfies (OP).
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Definition 2.3. (i) A functionM : [0, 1]2 → [0, 1]
is called a t-subnorm, if it is increasing in
both variables, commutative, associative and
M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1].

(ii) A t-norm T is a t-subnorm that has 1 as the
neutral element.

Definition 2.4. Two functions F,G : [0, 1]2 → [0, 1]
form an adjoint pair if they satisfy the residuation
property, i.e., for all x, y, z ∈ [0, 1],

F (x, z) ≤ y ⇐⇒ G(x, y) ≥ z. (RP)

Theorem 2.5 (cf. [1, Proposition 2.5.2 & The-
orem 2.5.7]). If M is a left-continuous t-subnorm,
then

(i) IM (x, y) = max{t ∈ [0, 1] |M(x, t) ≤ y},
(ii) M and IM form an adjoint pair,

(iii) IM satisfies (EP).

Theorem 2.6 ([1, Theorem 2.5.14]). If a func-
tion I : [0, 1]2 → [0, 1] satisfies (EP), (OP) and is
both monotonic non-decreasing and right-continu-
ous with respect to the second variable, then TI de-
fined as below

TI(x, y) = min{t ∈ [0, 1] | I(x, t) ≥ y}

is a left-continuous t-norm, where the right side ex-
ists for all x, y ∈ [0, 1].

Lemma 2.7. If T : [0, 1]2 → [0, 1] is monotonic
non-decreasing, commutative and associative, then
the function T ∗ defined as below

T∗(x,y)=

{

sup{T (u, v)|u < x, v < y}, if x, y ∈]0, 1[

T (x, y), otherwise,

(1)
for all x, y ∈ [0, 1], is monotonic non-decreasing and
commutative. Moreover, T ∗ is called the condition-
ally left-continuous completion of T .

Observe firstly that in general T ∗ may not be left-
continuous. For example when T = TD, the drastic
t-norm, then T ∗ = T , but TD is not left-continuous.
This explains the word ‘conditionally’.

In next example we show that T ∗ may not satisfy
the associativity.

Example 2.8. Consider the following non-left con-
tinuous Viceník t-norm given by the formula

TVC(x, y) =











0.5, if min(x, y) ≥ 0.5

and x+ y ≤ 1.5,

max(x+ y − 1, 0), otherwise.

Then the conditionally left-continuous completion
of TVC is given by

T ∗VC(x, y) =











0.5, if min(x, y) > 0.5

and x+ y < 1.5,

max(x+ y − 1, 0), otherwise.

One can easily check that T ∗
VC

is not a t-norm since
it is not associative. Indeed, we have

T ∗VC(0.55, T ∗VC(0.95, 0.95)) = 0.5,

while

T ∗VC(T ∗VC(0.55, 0.95), 0.95) = 0.45.

Definition 2.9 (cf. [4, Definition 5.7.2]). A mono-
tonic non-decreasing, commutative and associa-
tive function T : [0, 1]2 → [0, 1] is said to satisfy
the (CLCC-A)-property, if its conditionally left-
continuous completion T ∗, as defined by (1), is as-
sociative.

Remark 2.10. Let T be a t-norm.

(i) By the monotonicity of T we have

T ∗(x, y) =

{

T (x−, y−), if x, y ∈]0, 1[,

T (x, y), otherwise,

for any x, y ∈ [0, 1], where the value T (x−, y−)
denotes the left-hand limit.

(ii) T ∗ has 1 as its neutral element.
(iii) If T is border-continuous, then T ∗ is left-

continuous (in particular it is also border-
continuous).

(iv) One can easily check that IT∗ is a fuzzy impli-
cation.

(v) By the monotonicity of T we have T ∗ ≤ T and
hence IT∗ ≥ IT .

(vi) If x ≤ y then IT∗(x, y) = IT (x, y) = 1.
(vii) Also, if x = 1, then by neutrality IT∗(x, y) =

IT (x, y).

3. Border-continuous t-norms

In this section, we consider the class of border-
continuous t-norms and determine its sub-class
whose residuals satisfy (EP). Note that the t-norm
TB in Example 1.5(iii) is a border-continuous but
non-left-continuous t-norm whose residual does not
satisfy (EP).

Lemma 3.1. Let T be a border-continuous t-norm
and let IT satisfy (EP). Then IT = IT∗ .

Proof. From formula for T ∗ and Remark 2.10 we
know that IT (x, y) = IT∗(x, y) when x ≤ y or
(x, y) ∈ [0, 1]2\]0, 1[2. Therefore assume that there
exist x0, y0 ∈]0, 1[ such that x0 > y0 and

β = IT∗(x0, y0) > IT (x0, y0) = α.

Since T ∗ is left-continuous we have that β =
IT∗(x0, y0) =⇒ T ∗(x0, β) ≤ y0. Thus, β < 1 and
for every δ ∈ (α, β) we have

y0 ≥ T
∗(x0, β) = T (x−0 , β

−)

≥ T (x−0 , δ) ≥ T (x−0 , α). (5)

Fix arbitrarily δ ∈ (α, β). Now, we have 2 cases:
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1. α ∈ {t|T (x0, t) ≤ y0}, in which case

T (x0, α) ≤ y0 < T (x0, δ).

2. α /∈ {t|T (x0, t) ≤ y0}, in which case

T (x0, α
−) ≤ y0 < T (x0, α) ≤ T (x0, δ).

From (5) and any of the above 2 cases we have

T (x−0 , δ) ≤ y0 < T (x0, δ)

=⇒ IT (δ, y0) = sup{t|T (δ, t) ≤ y0} = x0.

Now, since IT satisfies (EP) and (OP) we get

IT (x0, IT (δ, y0)) = IT (x0, x0) = 1

= IT (δ, IT (x0, y0))

= IT (δ, α),

thus δ ≤ α, by (OP); a contradiction. Hence β =
IT∗(x0, y0) = IT (x0, y0) = α.

Lemma 3.2. Let T be a border-continuous t-norm
and let IT satisfy (EP). Then T satisfies the
(CLCC-A)-property, i.e., its conditionally left-
continuous completion T ∗ is associative.

Proof. To prove the associativity of T ∗ we show that
T ∗ is equal to the t-norm TIT∗ obtained from its
residual IT∗ . We prove this in a series of claims.
• The pair (T ∗, IT∗) form an adjoint pair, i.e.,

T ∗(x, z) ≤ y ⇐⇒ IT∗(x, y) ≥ z.

for all x, y, z ∈ [0, 1].
Since T is border-continuous, T ∗ is a left-continuous
function and assume, that T ∗(x, z) ≤ y for some
x, y, z ∈ [0, 1]. This implies, that

z ∈ {t ∈ [0, 1] | T ∗(x, t) ≤ y},

and hence IT∗(x, y) ≥ z. On the other side assume,
that z ≤ IT∗(x, y) for some x, y, z ∈ [0, 1]. We con-
sider two cases now. If z < IT∗(x, y), then there
exists some t′ > z such that T ∗(x, t′) ≤ y, so by
monotonicity T ∗(x, z) ≤ y. If z = IT∗(x, y), then
either z ∈ {t ∈ [0, 1] | T ∗(x, t) ≤ y} and therefore
T ∗(x, z) ≤ y, or z /∈ {t ∈ [0, 1] | T ∗(x, t) ≤ y}. Thus
there exists an increasing sequence (ti)i∈N such that
ti < z, T

∗(x, ti) ≤ y for all i ∈ N and limi→∞ ti = z.
By the left-continuity of T ∗ we get

T ∗(x, z) = T ∗(x, lim
i→∞
ti) = lim

i→∞
T ∗(x, ti) ≤ y.

• IT∗ is right-continuous in the second variable.
Let us assume that IT∗ is not right-continuous
with respect to the second variable in some point
(x0, y0) ∈ [0, 1] × [0, 1[. Since IT∗ is monotonic in
the second variable, there exist a, b ∈ [0, 1], such
that a > b and

IT∗(x0, y) ≥ a, for all y > y0,

IT∗(x0, y0) = b.

By just showed (RP) for the pair (T ∗, IT∗) we get

T ∗(x0, a) ≤ y, for all y > y0.

In the limit y → y0 we have T ∗(x0, a) ≤ y0.
Again from (RP) for the pair (T ∗, IT∗) we obtain
b = IT∗(x0, y0) ≥ a, a contradiction to a > b.
Therefore IT∗ is a right-continuous function with
respect to the second variable.
• The pair (TIT∗ , IT∗) form an adjoint pair.
This fact follows from [1, Proposition 2.5.13].
• TIT∗ is a left-continuous t-norm.

Since T ∗ is border-continuous, by Remark 2.2 we
see that IT∗ satisfies (OP). By Lemma 3.1, we ob-
tain that IT = IT∗ and hence IT∗ satisfies (EP).
Thus, by Theorem 2.6, we get the claim.
• T ∗ = TIT∗ .
Fix arbitrarily x, y ∈ [0, 1]. Then

IT∗(x, T
∗(x, y)) =

= max{t ∈ [0, 1] | T ∗(x, t) ≤ T ∗(x, y)} ≥ y,

so T ∗(x, y) ∈ {t ∈ [0, 1] | IT∗(x, t) ≥ y}, thus

T ∗(x, y) ≥ TIT∗ (x, y). (2)

On the other side, since obviously IT∗(x, z) ≥
IT∗(x, z), from (RP) for the pair (T ∗, IT∗) we get
T ∗(x, IT∗(x, z)) ≤ z for all x, z ∈ [0, 1]. Now, if we
put z = TIT∗ (x, y), then

TIT∗ (x, y) ≥ T ∗(x, IT∗(x, TIT∗ (x, y))). (3)

Further, from (RP) for the pair (TIT∗ , IT∗) we get
also IT∗(x, TIT∗ (x, y)) ≥ y. Using this inequality
in (3) and by monotonicity of T ∗ we have

TIT∗ (x, y) ≥ T ∗(x, y). (4)

From (2) and (4) we get our claim.

Theorem 3.3. For a border-continuous t-norm T
the following statements are equivalent:

(i) IT satisfies (EP).
(ii) T satisfies the (CLCC-A)-property (i.e., T ∗ is

a associative), and IT = IT∗ .

Proof. (i) =⇒ (ii): Follows from Lemmas 3.2 and
3.1.

(ii) =⇒ (i): If T satisfies the (CLCC-A)-property,
then T ∗ is a left-continuous t-norm. Therefore
IT∗ satisfies (EP). But IT = IT∗ , so IT also
satisfies (EP).

Using obtained result we able to present the char-
acterization of t-norms, whose residuals satisfy both
exchange principle and ordering property.

Corollary 3.4. For a t-norm T the following state-
ments are equivalent:

(i) IT satisfies (EP) and (OP).
(ii) T is border-continuous, satisfies the

(CLCC-A)-property and IT = IT∗ .
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4. Non border-continuous t-norms

In this section, we consider the class of non-border-
continuous t-norms and determine its sub-class
whose residuals satisfy (EP). Note that the t-norm
TB∗ in Example 1.5(ii) is neither border-continuous
nor left-continuous and its residual does not sat-
isfy (EP).

Let M be a t-subnorm and TM the t-norm ob-
tained from M as follows (see [5, Corollary 1.8]):

TM (x, y) =

{

M(x, y), if (x, y) ∈ [0, 1[2,

min(x, y), otherwise.
(5)

Then, as it can be verified, the corresponding resid-
ual is related as follows:

ITM (x, y) =

{

IM (x, y), if x 6= 1,

y, if x = 1.
(6)

The following definition discusses the reverse pro-
cess of the above, i.e., obtaining a t-subnorm from
a t-norm.

Definition 4.1. Let T be a t-norm. The border-
continuous projection (BCP) of T is the operation
MT : [0, 1]2 → [0, 1] obtained from T as follows:

MT (x, y) =

{

T (x, y), if (x, y) ∈ [0, 1[2,

T (x−, y−), otherwise,

(BCP)
for all x, y ∈ [0, 1].

Remark 4.2. Let T be a t-norm.

(i) Basically, (BCP) of a T redraws the boundary
of the t-norm so that the resulting operation
MT is border-continuous. Note that this is the
reverse of lifting a t-subnorm to a t-norm by
suitably redefining the boundary.

(ii) Note that the following is true: T is border-
continuous if and only if T =MT .

(iii) The conditionally left-continuous completion of
the MT obtained from a T denoted by M∗T is
given by M∗T (x, y) =MT (x−, y−).

(iv) It can be easily shown that (BCP) of a T is
commutative, monotonic and MT (1, x) ≤ x.
However, note that whileMT is always associa-
tive, i.e.,MT is always a t-subnorm, it may not
always have the (CLCC-A)-property, i.e., M∗T
is not always associative (see Example 4.3).

Example 4.3. Consider the non-border-continuous
t-norm given by (cf. [5, Proposition 3.66])

T0.5(x, y) =











0, if (x, y) ∈ [0, 0.5[2,

0.5, if (x, y) ∈ [0.5, 1[2,

min(x, y), otherwise.

The (BCP) MT0.5
and its conditionally left-conti-

nuous completionM∗T0.5
are defined as the following:

MT0.5
(x, y) =











0, if (x, y) ∈ [0, 0.5[2,

0.5, if (x, y) ∈ [0.5, 1]2,

min(x, y), otherwise,

M∗T0.5
(x, y) =











0, if (x, y) ∈ [0, 0.5]2,

0.5, if (x, y) ∈]0.5, 1]2,

min(x, y), otherwise.

Observe that M∗T0.5
is not associative, since

M∗T0.5
(0.7,M∗T0.5

(0.7, 0.5)) =M∗T0.5
(0.7, 0.5) = 0.5,

while

M∗T0.5
(M∗T0.5

(0.7, 0.7), 0.5) =M∗T0.5
(0.5, 0.5) = 0.

Example 4.4. Consider the non-border-continuous
t-norm given by (cf. [5, Example 3.19])

TZ(x, y) =































0, if (x, y) ∈ ([0, 0.2[×[0, 1[)

∪([0, 1[×[0, 0.2[),

0.4 + 5
3 (y − 0.4)(x− 0.4),

if (x, y) ∈ [0.4, 1[2,

min(x, y), otherwise.

Figure 1 gives the plots of the t-norm TZ along with
its (BC)-projected MTZ

and its conditionally left-
continuous completion M∗TZ

defined as the follow-
ing:

MTZ
(x, y) =































0, if (x, y) ∈ ([0, 0.2[×[0, 1])

∪([0, 1]× [0, 0.2[),

0.4 + 5
3 (y − 0.4)(x− 0.4),

if (x, y) ∈ [0.4, 1[2,

min(x, y), otherwise.

M∗TZ
(x, y) =































0, if (x, y) ∈ ([0, 0.2]× [0, 1])

∪([0, 1]× [0, 0.2]),

0.4 + 5
3 (y − 0.4)(x− 0.4),

if (x, y) ∈]0.4, 1[2,

min(x, y), otherwise.

One can easily check that M∗TZ
is associative.

Theorem 4.5. For a t-norm T the following state-
ments are equivalent:

(i) IT satisfies (EP).
(ii) MT satisfies (CLCC-A)-property (i.e., M∗T is

associative) and IMT = IM∗
T

.

By Remark 4.2(ii), the above result subsumes
Theorem 3.3.

Example 4.6. Consider the non-border-continuous
t-norm TZ given in Example 4.4. It can be verified
that IMTZ

= IM∗
TZ

, hence its residual ITZ
does sat-

isfy (EP). In fact, IMTZ
is given by

IMTZ
(x, y) =



















1, if x≤y or x∈[0,0.2[,

0.2, if x>y & y≤0.2,

y, if x>y & y∈[0.2,0.4[,

0.4 + 3(y−0.4)
5(x−0.4) , if x>y & y≥0.4,
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Figure 1: The t-norm TZ along with its (BC)-projected MTZ
and its conditionally left-continuous completion

M∗TZ
(see Example 4.4)

and satisfies (EP). Further, we have that

ITZ
(x, y) =

{

IMTZ
(x, y), if x 6= 1,

y, if x = 1.

The plots of both functions are given on Figure 2.

5. Ordinal sums of t-norms

Just as there exists a complete representation of
continuous t-norms in terms of an ordinal sum rep-
resentation, see [5, Theorem 5.11], the following rep-
resentation of left-continuous t-norms as the ordinal
sum of t-subnorms can be given.

Theorem 5.1 ([7, Theorem 1]). A function
T : [0, 1]2 → [0, 1] is a left-continuous t-norm if and
only if there exist a family of pairwise disjoint open
sub-intervals {]αk, βk[}k∈K of [0, 1] and a family of
left-continuous t-subnorms (Mk)k∈K such that if ei-
ther βk = 1 for some k ∈ K or βk = αk∗ for some
k, k∗ ∈ K and Mk∗ has zero-divisors, then Mk is a
t-norm, so that

T (x, y) =















αk + (βk − αk) ·Mk

(

x−αk
βk−αk

, y−αk
βk−αk

)

,

if x, y ∈]αk, βk],

min(x, y), otherwise.

Theorem 5.2 ([7, Theorem 5]). If T is a left-
continuous t-norm with the ordinal sum structure
as given in Theorem 5.1, then

IT (x, y) =























1, if x ≤ y,

αk + (βk − αk) · IMk

(

x−αk
βk−αk

, y−αk
βk−αk

)

,

if αk < y < x ≤ βk,

y, otherwise.

=















αk + (βk − αk) · IMk

(

x−αk
βk−αk

, y−αk
βk−αk

)

,

if αk < y < x ≤ βk,

IGD(x, y), otherwise,

where IGD is the Gödel implication (see Exam-
ple 1.5(iv)).

Obviously, IT given in Theorem 5.2 satisfies (EP)
and thus the formula in Theorem 5.1 can be used as
a construction method for t-norms yielding residual
implications possessing (EP). This method of con-
struction (based on left-continuous triangular sub-
norms) of t-norms for which the residual implica-
tion satisfies (EP) can be further generalized, not
requiring the left-continuity of single summands in
the ordinal sum. We show such a generalization
considering t-norms summands only (i.e., we will
deal with ordinal sums of t-norms only). Firstly, we
consider t-norms obtained as an ordinal sum with a
single summand.

Theorem 5.3. Let T1 be a t-norm and let T =
(〈α1, β1, T1〉). Then the following statements are
equivalent:

(i) IT satisfies (EP).
(ii) IT1

satisfies (EP) and if β1 < 1 then T1 is
border-continuous.

A generalization of the above result to t-norms
with countable ordinal summands is straight-
forward.

Corollary 5.4. Let T = (〈αk, βk, Tk〉)k∈K be an
ordinal sum t-norm. Then the following statements
are equivalent:

(i) IT satisfies (EP).
(ii) For every k ∈ K, ITk satisfies (EP) and either
Tk is border-continuous or βk = 1.

6. Concluding Remarks

In this work we have given a complete characteriza-
tion of the class of t-norms whose residuals satisfy
the exchange principle. The study reveals that the
concept of conditionally left-continuous completion
of a t-norm plays an important role. In fact, it can
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Figure 2: The residuals of the t-subnorm MTZ
and TZ (see Example 4.6)

be seen that unless a t-norm can be embedded into a
left-continuous t-norm, in some rather precise man-
ner as presented in the work, its residual does not
satisfy the exchange principle.
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