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Abstract

It is well-known that the residual It of a left-
continuous t-norm 7T satisfies the exchange princi-
ple (EP)7 ViZ'7 IT(x,IT(y,Z)) = IT(vaT(ZaZ)) for
all z,y,z € [0,1]. However, the left-continuity of
T is only sufficient and not necessary, as many ex-
amples in the literature illustrate. In this work we
study the necessary conditions on a t-norm 7 for its
residual to satisfy (EP). The work presents a com-
plete characterization of the class of t-norms whose
residuals satisfy (EP).

Keywords: R-implication, t-norm, exchange prin-
ciple, fuzzy implication.

1. Introduction

The family of R-implications is one of the most
established classes of fuzzy implications. In fact,
one of the earliest methods for obtaining implica-
tions was from conjunctions as their residuals, when
no additional logical connectives are given. In this
way Godel extended the three-valued implication of
Heyting, while discussing the possible relationships
between many-valued logic on the one hand, and in-
tuitionistic logic on the other. Residuals of conjunc-
tions on a lattice £, be it from t-norms, uninorms,
t-subnorms, copulas, etc., have attracted the most
attention from researchers, since they can transform
the underlying lattice £ into a residuated lattice.
In this article we will consider only R-implications
generated from t-norms.

Definition 1.1. A function I: [0,1]> — [0,1] is
called an R-implication, if there exists a t-norm T’
(see Definition 2.3) such that

I(z,y) =sup{t € [0,1] | T'(z,t) <y},

for all z,y € [0, 1]. If an R-implication is generated
from a t-norm 7', then we will often denote it by Ir.

R-implications also have a parallel origin other
than its logical foundations. They were also ob-
tained from the study of solutions of systems of
fuzzy relational equations and have been known un-
der different names, for example, as a ®-operator in
Pedrycz [9], as T-relative pseudocomplement and
ap-operator in [8].
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1.1. A first characterization of
R-implications generated from
left-continuous t-norms

Sanchez [10] showed that the greatest solution of
sup — min composition of fuzzy relations is the re-
lation obtained from the residual of min. In fact,
Miyakoshi and Shimbo [8] generalized this result to
any left-continuous t-norm. They also showed that
their ap-operator is equivalent to the ®-operator of
Pedrycz. Most importantly, they gave the first char-
acterization of R-implications obtained from left-
continuous t-norms (for the proof see also [1, The-
orem 2.5.17]).

Theorem 1.2. For a function I: [0,1]? — [0, 1] the
following statements are equivalent:

(i) T is an R-implication generated from a left-
continuous t-norm.

(ii) I is non-decreasing with respect to the second

variable, it satisfies the exchange principle, i.e.,

for all x,y,z € [0,1]

I(:Ca I(ya Z)) - I(ya I(l‘, Z))v

it satisfies the ordering property, i.e., for all
z,y €[0,1]

(EP)

x<y<=I(z,y) =1, (OP)
and I is right continuous with respect to the
second variable.

As we see, there are two important axioms of mul-
tivalued implications above: (EP) and (OP). The
characterization of t-norms, which residuals satisfy
the ordering property (OP) have been obtained by
Baczynski and Jayaram [2].

Definition 1.3. A function 7T': [0,1]> — [0,1] is
said to be border-continuous, if it is continuous on
the boundary of the unit square [0,1]?, i.e., on the
set [0,1]%\]0, 1[2.

Proposition 1.4 ([2, Proposition 5.8], [1, Propo-
sition 2.5.9]). For a t-norm T the following state-
ments are equivalent:

(i) T is border-continuous.
(ii) I satisfies the ordering property (OP).



Our main goal in this article is to obtain a simi-
lar characterization but for the exchange principle,
i.e., we want to characterize those t-norms whose
residuals satisfy (EP). To see that this condition
is different from (OP), let us analyze the following
examples.

Example 1.5. (i) Consider the least t-norm, also
called the drastic product, given as follows

0, if x,y €10,1],
min(z,y),

TD(x’y) = {

otherwise.

Observe that it is a non-left-continuous t-norm.
Then the R-implication generated from Tp is
given by

1, ifx<1,

I ,Y) =
™ (7, y) {y, if x = 1.

It satisfies (EP), but does not satisty (OP).
Consider the non-left-continuous t-norm given
in [5, Example 1.24 (i)] as follows

0, if (z,y) €]0,0.5[,
min(z, y),

TB* (Za y) - {

otherwise.

Then the R-implication generated from Ty« is

1, if <,
Itg-(z,y) = ¢ 0.5, if x>y and z € [0,0.5],
Y, otherwise.

Obviously, Itg- satisfies (OP) but not (EP),
since

Itp- (0.4, It~ (0.5,0.3)) = 0.5,
while
Itp- (0.5, ITp~(0.4,0.3)) = 1.

Consider now the non-left-continuous t-norm 7T°
given in [5, Example 1.24 (ii)] as follows:

0,
Ts (m,y)—{ .
min(z,y),

Then the R-implication generated from 1w is

(iii)

if (z,y) €]0,1[2\[0.5,1[2,
otherwise.

1, ifz<yorzyecl00.5]
0.5, ifx €10.5,1] and y € [0,0.5],
Y, otherwise.

Ite(z,y)=

It is obvious that Itp does not satisfy (OP).
Itp also does not satisfy (EP) since

Itg (0.8, ITg(0.5,0.3)) = ITp(0.8,0.5) = 0.5,
while

Ite(0.5, Itp(0.8,0.3)) = Itp(0.5,0.5) = 1.
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(iv) Finally, consider the largest t-norm,
Tm(z,y) = min(z,y) whose residual is
the Godel implication

1, ifzx<y,
y, ifz >y,

Icp (Za y) = {
which satisfies both (EP) and (OP).

1.2. Left-continuity of T for (EP) of Iy:
Sufficient but necessary?

Left-continuity of T is sufficient for Iy to sat-
isfy (EP), but is not necessary. As a counterexample
consider the non-left-continuous nilpotent minimum
t-norm (see [6, p. 851]):

0, ifxt+y<l1,
otherwise.

TnM* (l’, y) = {

min(z, y),

Then the R-implication generated from Ty« is the
following Fodor implication

L if x <y,

max(l —z,y), ifz>y,

Irp (x,y) = {
which satisfies both (EP) and (OP). This leads us
to the following natural question:

What is(are) the most general condition(s)
on T to ensure that It has (EP)?

In this work, we take up this study and present
a complete characterization of the class of t-norms
whose residuals satisfy (EP). Towards this end, we
firstly partition the class of t-norms into those that
are border-continuous and those that are not and
deal with each of them separately.

2. Preliminaries

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-
tives, but to make this work more self-contained,
we introduce some notations used in the text and
we briefly mention some of the concepts and results
employed in the rest of the work.

Definition 2.1. A function I: [0,1]> — [0,1] is
called a fuzzy implication if it satisfies the following
conditions:

(I1)
(12)
(I3)

I is decreasing in the first variable,
I is increasing in the second variable,
1(0,0) =1, I(1,1)=1, 1I(1,0)=0.

The set of all fuzzy implications will be denoted by
FI.

Remark 2.2 (see [3, Theorem 7.6]). If a function
T:[0,1]> — [0,1] is border-continuous, commuta-
tive, monotonic increasing with neutral element 1,
then the residual I € F7T and it satisfies (OP).



Definition 2.3. (i) A function M: [0,1]*> — [0, 1]
is called a t-subnorm, if it is increasing in
both variables, commutative, associative and
M(z,y) < min(z,y) for all z,y € [0,1].

(ii) A t-norm T is a t-subnorm that has 1 as the
neutral element.

Definition 2.4. Two functions F, G [0,1]?> — [0, 1]
form an adjoint pair if they satisfy the residuation
property, i.e., for all z,y, z € [0,1],

F(z,2) <y < G(x,y) > z. (RP)
Theorem 2.5 (cf. [1, Proposition 2.5.2 & The-
orem 2.5.7]). If M is a left-continuous t-subnorm,
then

(i) Int(a,y) = max{t € [0,1] | M(z, ) <y},
(i) M and Ip; form an adjoint pair,
(iii) Ins satisfies (EP).

Theorem 2.6 ([1, Theorem 2.5.14]). If a func-
tion I:1[0,1]*> — [0,1] satisfies (EP), (OP) and is
both monotonic non-decreasing and right-continu-
ous with respect to the second variable, then Ty de-
fined as below

T[(x,y) = min{t € [Oa 1] | I(:L'7t) > y}

s a left-continuous t-norm, where the right side ex-
ists for all x,y € [0,1].

Lemma 2.7. If T: [0,1]> — [0,1] is monotonic
non-decreasing, commutative and associative, then
the function T defined as below

if x,y €]0,1]
otherwise,

(1)
for allx,y € [0, 1], is monotonic non-decreasing and
commutative. Moreover, T is called the condition-
ally left-continuous completion of T .

sup{T (u,v)|u < z,v < y},
T (z,y)=
T(z,y),

Observe firstly that in general T* may not be left-
continuous. For example when T' = Tp, the drastic
t-norm, then T* = T, but Tp is not left-continuous.
This explains the word ‘conditionally’.

In next example we show that 7™ may not satisfy
the associativity.

Example 2.8. Consider the following non-left con-
tinuous Vicenik t-norm given by the formula

0.5, if min(z,y) > 0.5
and x +y < 1.5,

max(z +y — 1,0),

TVC ($, y) =
otherwise.

Then the conditionally left-continuous completion
of Ty ¢ is given by

0.5, if min(z,y) > 0.5
and x +y < 1.5,

max(z +y — 1,0),

T\*’C (x’ y) =
otherwise.
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One can easily check that 75, is not a t-norm since
it is not associative. Indeed, we have

Tvc(0.55, T3,<(0.95,0.95)) = 0.5,
while
Ty (T (0.55,0.95),0.95) = 0.45.

Definition 2.9 (cf. [4, Definition 5.7.2]). A mono-
tonic non-decreasing, commutative and associa-
tive function T: [0,1]> — [0,1] is said to satisfy
the (CLCC-A)-property, if its conditionally left-
continuous completion T*, as defined by (1), is as-
sociative.

Remark 2.10. Let T be a t-norm.

(i) By the monotonicity of T we have

T (@.5) = {T@—,y—), it 2,y €)0,1[,
T(z,y), otherwise,

for any x,y € [0, 1], where the value T'(z~,y7)

denotes the left-hand limit.

T* has 1 as its neutral element.

If T is border-continuous, then T* is left-

continuous (in particular it is also border-

continuous).

One can easily check that Ip« is a fuzzy impli-

cation.

By the monotonicity of T" we have T* < T and

hence I« > Ir.

If x <y then I« (x,y) = Ir(x,y) = 1.

Also, if « = 1, then by neutrality I« (z,y) =

Ip(z,y).

(i)
(iii)

(iv)
(v)

(vi)
(vii)

3. Border-continuous t-norms

In this section, we consider the class of border-
continuous t-norms and determine its sub-class
whose residuals satisfy (EP). Note that the t-norm
Tp in Example 1.5(iii) is a border-continuous but
non-left-continuous t-norm whose residual does not
satisfy (EP).

Lemma 3.1. Let T be a border-continuous t-norm
and let It satisfy (EP). Then Ip = Ip-~.

Proof. From formula for 7% and Remark 2.10 we
know that Ir(z,y) = Ir«(z,y) when < y or
(z,y) € [0,1]?\]0,1[2. Therefore assume that there
exist xg, yo €]0, 1[ such that zy > yo and

B = Ir-(w0,%0) > Ir(20,Y0) = Cv.

Since T™ is left-continuous we have that g
I+ (z9,y0) = T*(x0,0) < yo. Thus, § < 1 and
for every § € (o, ) we have

Yo > T* (w0, ) =T (2y,087)
> T(ag,6) > Ty ). 5)

Fix arbitrarily ¢ € («, 8). Now, we have 2 cases:



1. a € {t|T(zo,t) < yo}, in which case
T'(z0, ) < yo < T'(x0,9).
2. a ¢ {t|T(xo,t) <yo}, in which case
T(xo, ) < yo < T(xg, ) < T(x0,9).
From (5) and any of the above 2 cases we have

T(l’g, 5) S Yo < T(I'()’ 5)
= Ir(8,y0) = sup{t|T'(6,t) < yo} = 0.

Now, since I satisfies (EP) and (OP) we get

Ir (w0, I7(6,90)) = I (20, 20) = 1
= IT((S) IT($O7?JO))
- IT((s;Oé)a

thus 6 < a, by (OP); a contradiction. Hence § =
I+ (w0, y0) = IT(20,%0) = . U

Lemma 3.2. Let T be a border-continuous t-norm
and let Iy satisfy (EP). Then T satisfies the
(CLCC-A)-property, i.e., its conditionally left-
continuous completion T™* is associative.

Proof. To prove the associativity of T* we show that
T* is equal to the t-norm 77,., obtained from its
residual I7-. We prove this in a series of claims.

e The pair (T*, I7+) form an adjoint pair, i.e.,

T*(x,2) <y <= Ip(z,y) > =

for all z,y,z € [0, 1].

Since T is border-continuous, 7™ is a left-continuous
function and assume, that T*(x,z) < y for some
x,y,z € [0,1]. This implies, that

ze{te[0,1]|T"(x,t) <y},

and hence I« (z,y) > z. On the other side assume,
that z < Ip«(z,y) for some z,y, z € [0,1]. We con-
sider two cases now. If z < Ip«(x,y), then there
exists some t' > z such that T*(x,t') < y, so by
monotonicity T*(z,z) < y. If z = Ip«(z,y), then
either z € {t € [0,1] | T*(x,t) < y} and therefore
T*(x,z) <y,orz ¢ {te0,1]|T*(z,t) <y}. Thus
there exists an increasing sequence (¢;);cn such that
t; <z, T*(x,t;) <yforalli € Nand lim; , t; = 2.
By the left-continuity of T we get

T*(z,z) = T*(x, lim t;) = lim T"(x,t;) < y.

71— 00 71— 00

e [ is right-continuous in the second variable.
Let us assume that Ir- is not right-continuous
with respect to the second variable in some point
(xo,90) € [0,1] x [0,1[. Since I~ is monotonic in
the second variable, there exist a,b € [0,1], such
that ¢ > b and

IT* (IOa y) Z a, for all Y > Yo,

Ir+(x0,10) = b.
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By just showed (RP) for the pair (T, I7«) we get

T*(x0,a) <y, for all y > yo.

In the limit y — yo we have T*(zg,a) < yo.
Again from (RP) for the pair (T, Ir~) we obtain
b = Ip«(xo,y0) > a, a contradiction to a > b.
Therefore Iy« is a right-continuous function with
respect to the second variable.

e The pair (TIT* , Ir+) form an adjoint pair.

This fact follows from [1, Proposition 2.5.13].

o T7,. is a left-continuous t-norm.

Since T™ is border-continuous, by Remark 2.2 we
see that I« satisfies (OP). By Lemma 3.1, we ob-
tain that It = Ir- and hence Ip- satisfies (EP).
Thus, by Theorem 2.6, we get the claim.

oI =1Ty.,.
Fix arbitrarily ,y € [0,1]. Then

Ir- (2, T (2,)) =
= max{t € [0,1]| T"(21) < T"(2,9)} > v,

so T*(xz,y) € {t € [0,1] | I~ (x,t) >y}, thus

T*(z,y) > Ty (2, ). (2)

On the other side, since obviously Ip«(z,z) >
Ip«(z,2), from (RP) for the pair (T*,I7«) we get
T*(z, It~ (2,2)) < z for all ,z € [0,1]. Now, if we
put z =Ty, (z,y), then

Trp. (2yy) 2 T (2, I« (2, Trp (2,9)))- - (3)

Further, from (RP) for the pair (Tr,.,Ir-) we get
also Ir«(x,Tr,.(z,y)) > y. Using this inequality
in (3) and by monotonicity of T* we have

Trp. (w,y) 2 T (2, ). (4)

From (2) and (4) we get our claim. O

Theorem 3.3. For a border-continuous t-norm T
the following statements are equivalent:

(i) Ir satisfies (EP).
(ii) T satisfies the (CLCC-A)-property (i.e., T* is
a associative), and Iy = Ips.

Proof.
3.1.

(ii) = (i): If T satisfies the (CLCC-A)-property,
then T is a left-continuous t-norm. Therefore
Ip- satisfies (EP). But Iy = Ip-, so Iy also
satisfies (EP).

(i) = (ii): Follows from Lemmas 3.2 and

O

Using obtained result we able to present the char-
acterization of t-norms, whose residuals satisfy both
exchange principle and ordering property.

Corollary 3.4. For a t-norm T the following state-
ments are equivalent:

(i) Ir satisfies (EP) and (OP).
(it) T is  border-continuous, satisfies
(CLCC-A)-property and It = Ir«.

the



4. Non border-continuous t-norms

In this section, we consider the class of non-border-
continuous t-norms and determine its sub-class
whose residuals satisfy (EP). Note that the t-norm
Ty~ in Example 1.5(ii) is neither border-continuous
nor left-continuous and its residual does not sat-
isfy (EP).

Let M be a t-subnorm and T, the t-norm ob-
tained from M as follows (see [5, Corollary 1.8]):

M(z,y),

min(z,y),

if (z,y) € 0,1[%,
otherwise.

Ta(x,y) = { (5)

Then, as it can be verified, the corresponding resid-
ual is related as follows:

Iy (z,y), ifz#1,
IT]W(Z7y): ( ) . N
Y, ifx=1.

(6)

The following definition discusses the reverse pro-
cess of the above, i.e., obtaining a t-subnorm from
a t-norm.

Definition 4.1. Let T be a t-norm. The border-
continuous projection (BCP) of T is the operation
Mr: [0,1]2 — [0,1] obtained from T as follows:

if (z,y) € 0,12,
otherwise,

o) = 1T @),
Mrlzy) {T(x,y),
(BCP)

for all z,y € [0, 1].
Remark 4.2. Let T be a t-norm.

(i) Basically, (BCP) of a T redraws the boundary
of the t-norm so that the resulting operation
M is border-continuous. Note that this is the
reverse of lifting a t-subnorm to a t-norm by
suitably redefining the boundary.

Note that the following is true: T is border-
continuous if and only if T'= M.

The conditionally left-continuous completion of
the My obtained from a T' denoted by M7 is
given by M7 (z,y) = Mr(z=,y7).

It can be easily shown that (BCP) of a T is
commutative, monotonic and Mr(l,z) < .
However, note that while My is always associa-
tive, i.e., Mp is always a t-subnorm, it may not
always have the (CLCC-A)-property, i.e., M7
is not always associative (see Example 4.3).

Example 4.3. Consider the non-border-continuous
t-norm given by (cf. [5, Proposition 3.66])

0, if (z,y) €0,0.52,
Tos(z,y) = ¢ 0.5, if (z,y) € [0.5, 1%,
min(z,y), otherwise.

The (BCP) My, and its conditionally left-conti-
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nuous completion M7, _ are defined as the following:

0, if (z,y) € [0,0.5[2,
Mr, ,(z,y) = { 0.5, if (z,y) € [0.5,1]?,

min(z,y), otherwise,

0, if (z,y) € [0,0.5]2,
My, (x,y) =< 0.5, if (x,y) €]0.5,1]2,

min(z,y), otherwise.

Observe that M7, _ is not associative, since

My, (0.7, M7, (0.7,0.5)) = Mz, .(0.7,0.5) = 0.5,
while

My, (M7, . (0.7,0.7),0.5) = My, .(0.5,0.5) = 0.

Example 4.4. Consider the non-border-continuous
t-norm given by (cf. [5, Example 3.19])

0, if (z,y) € ([0,0.2[x[0,1])
u([0, 1[x[0,0.2]),
0.4+ 2(y — 0.4)(z — 0.4),
if (z,y) € [0.4,1]%,
otherwise.

TZ(xay) -

min(z,y),

Figure 1 gives the plots of the t-norm Ty along with
its (BC)-projected My, and its conditionally left-
continuous completion M7, ~defined as the follow-
ing:

0, if (x,y) € ([0,0.2[x[0,1])
u([o, 1] x [0,0.2]),
My (z,y) = 0.4+ 3(y — 0.4)(z — 0.4),
if (z,y) € [0.4,1[%,
min(z,y), otherwise.
0, if (x,y) € ([0,0.2] x [0,1])
u([o, 1] x [0,0.2)),
My, (z,y) = 0.4+ 3(y — 0.4)(z — 0.4),
if (z,y) €]0.4,12,
min(z,y), otherwise.

One can easily check that My, is associative.

Theorem 4.5. For a t-norm T the following state-
ments are equivalent:
(i) Ir satisfies (EP).
(ii) My satisfies (CLCC-A)-property (i.e., My is
associative) and Inr, = Inrs .
By Remark 4.2(ii), the above result subsumes
Theorem 3.3.

Example 4.6. Consider the non-border-continuous

t-norm Tz given in Example 4.4. It can be verified

that I M, = I Mz, hence its residual I, does sat-
z

isfy (EP). In fact, In,, is given by

]., if z<y or z€[0,0.2[,
0.2, if >y & y<0.2,
IMTZ (1'7 y) - .
Y, if >y & y€[0.2,0.4][,
3(y—0.4
0.4+ (w ) if >y & y>0.4,

5(x—0.4)
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Figure 1: The t-norm Tz along with its (BC)-projected Mr, and its conditionally left-continuous completion

My, (see Example 4.4)

and satisfies (EP). Further, we have that

I z,y), ifx#1,
I, (2,y) = M (2:1) . f
Y, if z = 1.

The plots of both functions are given on Figure 2.

5. Ordinal sums of t-norms

Just as there exists a complete representation of
continuous t-norms in terms of an ordinal sum rep-
resentation, see [5, Theorem 5.11], the following rep-
resentation of left-continuous t-norms as the ordinal
sum of t-subnorms can be given.

Theorem 5.1 ([7, Theorem 1]). A function
T:[0,1)2 — [0,1] is a left-continuous t-norm if and
only if there exist a family of pairwise disjoint open
sub-intervals {]ag, Ok[tre of [0,1] and a family of
left-continuous t-subnorms (My)kex such that if ei-
ther B, = 1 for some k € KC or B = ag- for some
k,k* € K and My« has zero-divisors, then My, is a
t-norm, so that

an -+ (B — ) - M (=3, 3=
Zf €,y G]aka 61@]7
otherwise.

T(x,y) =

min(z,y),

Theorem 5.2 ([7, Theorem 5]). If T is a left-
continuous t-norm with the ordinal sum structure
as given in Theorem 5.1, then

L, ifx <y,
T—Qp Y— O

ag + (ﬂk - ak) A, (Bk—ak’ Br—ou
if ap <y <x < B,
otherwise.

).

Y,
T—xf Y—og

-+ (B — o) - Do, (= A
if ap <y <z <Py,
otherwise,

).

IGD(:L'7y)7
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where Igp is the Gdédel implication (see Exam-
ple 1.5(iv)).

Obviously, I given in Theorem 5.2 satisfies (EP)
and thus the formula in Theorem 5.1 can be used as
a construction method for t-norms yielding residual
implications possessing (EP). This method of con-
struction (based on left-continuous triangular sub-
norms) of t-norms for which the residual implica-
tion satisfies (EP) can be further generalized, not
requiring the left-continuity of single summands in
the ordinal sum. We show such a generalization
considering t-norms summands only (i.e., we will
deal with ordinal sums of t-norms only). Firstly, we
consider t-norms obtained as an ordinal sum with a
single summand.

Theorem 5.3. Let T} be a t-norm and let T =
({a1,01,T1)). Then the following statements are
equivalent:

(i) Ir satisfies (EP).
(it) Ir, satisfies (EP) and if 81 < 1 then T\ is
border-continuous.

A generalization of the above result to t-norms
with countable ordinal summands is straight-
forward.

Corollary 5.4. Let T = ({ag, Bk, Tk))kex be an
ordinal sum t-norm. Then the following statements
are equivalent:

(i) Ir satisfies (EP).
(ii) For every k € K, I, satisfies (EP) and either
Ty is border-continuous or B = 1.

6. Concluding Remarks

In this work we have given a complete characteriza-
tion of the class of t-norms whose residuals satisfy
the exchange principle. The study reveals that the
concept of conditionally left-continuous completion
of a t-norm plays an important role. In fact, it can
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Figure 2: The residuals of the t-subnorm My, and Tz (see Example 4.6)

be seen that unless a t-norm can be embedded into a [9] W. Pedrycz, Fuzzy relational equations with
left-continuous t-norm, in some rather precise man- triangular norms and their resolutions, BUSE-
ner as presented in the work, its residual does not FAL 11:24-32, 1982.

satisfy the exchange principle. [10] E. Sanchez, Resolution of composite fuzzy re-

lation equations. Info. Control 30:38-48, 1976.
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