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Abstract

Classifier fusion is a means to increase accuracy and
decision-making of classification systems by design-
ing a set of basis classifiers and then combining their
outputs. The combination is made up by non lin-
ear functional dependent on fuzzy measures called
Choquet integral. It constitues a vast family of ag-
gregation operators including minimum, maximum
or weighted sum. The main issue before applying
the Choquet integral is to identify the 2M − 2 pa-
rameters for M classifiers. We follow a previous
work by Kojadinovic and one of the authors where
the identification is performed using an information-
theoritic approach. The underlying probability den-
sities are made smooth by fitting continuous para-
metric and then the Kullback-Leibler divergence
is used to identify fuzzy measures. The proposed
framework is applied on widely used datasets.

Keywords: Information fusion, Fuzzy measures,
Relative Entropy, Health assessment, Classification

1. Introduction

In most of pattern recognition tasks, a first step
consists in extracting relevant features bringing in-
formation on classes of interest. Features are then
transformed into membership degrees according to
the different classes by entities called classifiers.
A classifier is a system that takes as inputs a Q-

dimensional vector Xt = [x1 . . . xQ] (also called fea-
tures or attributes) and generates a degree of confi-
dence in the statement "X belongs to class ωj" for
all classes in Ω = {ω1 . . . ωK}.
Multiple Classifier Systems (MCS) [1] are de-

signed when complementary (and sometimes re-
dundant) information sources (here classifiers) are
used in order to improve classification accuracy and
decision-making. MCS can be also viewed as in-
formation fusion systems where inputs are classi-
fiers. MCS can take several forms and among them
the parallel one which takes as input M × K par-
tial degrees of confidence and generates an output,
called global confidence degree, made up of K de-
grees of confidence (one for each class). We denote
by φm,j(X) the degree of confidence delivered by a

classifier m ∈ {1 . . .M} for class ωj ∈ Ω given the
observation X.

Usual combinations of classifier outputs include
product, naive Bayes and decision templates among
others [1] but most of them can be used provided
each output represents an independent source of in-
formation. However, the independance assumption
is not always satisfied. To face this problem, an
approach that considers interactions among classi-
fier outputs such as fuzzy integrals and in particular
the Choquet Integral [2, 3] can be used. The explicit
interaction coefficients (in the 2-additive form) pro-
vide very interesting information on complementar-
ity and redundancy of the fused data which can also
be used for subset selection [4].

A fuzzy integral is a type of non-linear func-
tional dependent on fuzzy measures which consti-
tutes a vast family of aggregation operators includ-
ing many widely used operators (minimum, maxi-
mum, weighted sum, ordered weighted sum and so
on) [5]. In order to be combined by the Choquet
Integral, the commensurability [6] of classifier out-
puts must be satisfied. That means the classifier
outputs must be defined on the same measurement
scale.

The combination of all partial confidence degrees
provided by classifiers is thus made up by a Choquet
Integral which is described in the next section.

2. Choquet capacities and Choquet Integral

Let the M classifiers (sources) be denoted by Θ =
{θ1, θ2 . . . θM}. A fuzzy measure µk for a given class
ωk weighs the importance of a subset of sources S ⊆
Θ and is defined by [2, 3]:

µk : 2Θ → [0, 1]
S 7→ µk(S) (1)

satisfying the following constraints:

• µk(∅) = 0 and µk(Θ) = 1
• S ⊆ T ⇒ µk(S) ≤ µk(T ) (monotonicity)

The fuzzy measure is said:

• additive when µk(S ∪ T ) = µk(S) + µk(T ),
∀S, T ⊆ Θ/S ∩ T = ∅ (probability measure),
• super-additive when µk(S∪T ) ≥ µk(S)+µk(T ),
∀S, T ⊆ Θ/S ∩ T = ∅,
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• sub-additive when µk(S ∪ T ) ≤ µk(S) + µk(T ),
∀S, T ⊆ Θ/S ∩ T = ∅.

In classification problems, the fuzzy measure is used
in order to take into account interactions between
sources. One fuzzy measure is tuned for each class
and each discrete Choquet Integral aggregates the
information provided by the sources as follows [2, 3]:

C(φ1, . . . , φM ) =
M∑

i=1
(φ(i) − φ(i−1)) · µk(S(i)) (2)

where µk(S(i)) is the importance of subset of sources
S(i) = {θ(i), ..., θ(M)} and the value φ(i) is provided
by source θ(i). The notation (.) indicates a permu-
tation of indices according to the values provided by
the sources such as φ(1) ≤ φ(2) ≤ ... ≤ φ(M) ≤ 1
(and by convention φ(0) = 0). The Choquet inte-
gral thus coincides to the weighted arithmetic mean
when the fuzzy measure is additive.
One approximation of Eq. 2 called 2-additive

Choquet Integral is often used and consists in con-
sidering a 2-order additive capacity which takes into
account both the weights of each source and the in-
teraction between pairs. The weight νi of a source
θi (for the detection of class ωk) and the coefficient
Iij of interaction between both sources θi and θj can
be obtained from the fuzzy measure µk by [2, 3]:

νi =
∑

T⊆Θ\i

(M − |T | − 1)!|T |!
M ! ×

(
µk(T ∪ {i})− µk(T )

)
(3a)

Iij =
∑

T⊆Θ\{i,j}

(M − |T | − 2)!|T |!
(M − 1)! ×

(
µk(T ∪ {i, j})−

µk(T ∪ {i})− µk(T ∪ {j}) + µk(T )
)

(3b)

These parameters are interesting for interpreting
the fuzzy measure and also to highlight which
sources are important and how they interact. When
interactions between two sources are positive, the
sources are said complementary while they are said
redundant when interactions are negative.
The problem of Choquet Integral parameters

identification was treated by several authors [4, 7].
In the context of classification as considered here
(where the classes are known), the method pro-
posed by Grabisch [3] and called Heuristic Least
Mean Square (HLMS) is often used. However it re-
quires the global scores (the real output of the Cho-
quet Integral) to perform the optimization of the
fuzzy measure. Recently, two information theoritic
methods based on entropy [8, 6] and on relative en-
tropy [9] were proposed. The former is purely unsu-
pervised and requires only degrees of confidence of
classifiers while the latter requires the ground truth,
i.e. the real class of each pattern. The relative

entropy-based approach is supervised but requires
less prior information than HLMS.

3. Identification of Choquet Integral
parameters based on discrete relative
entropy

3.1. A probabilistic view

Each fuzzy value µk(S) expresses the relative impor-
tance of a subset S for distinguishing class ωk from
the others [8, 6]. In order to identify them, the au-
thors in [9] proposed to use the relative entropy, also
called Kullback-Leibler divergence (KL) [10], which
is a measure of divergence between two densities.
It could be interpreted as the expected discrimina-
tion information between two hypotheses and thus
appears very natural for the identification of fuzzy
measures.

To compute KL, one needs first to compute:

• the distribution (say PS
k ) of confidence degrees

in class ωk conditional to class ωk,
• and the distribution (say PS

k
) of confidence de-

grees in class ωk conditional to the other classes
(ωk = Ω\ωk),

both given a subset of sources S. These distribu-
tions characterize the input data (confidence de-
grees) and the greater is the difference (calculated
by KL) between them, the higher is the discrimina-
tion power.

Identifying fuzzy measure using a probabilistic
approach was introduced in [8, 6] where the author
proposed an unsupervised entropy-based method.
When the class is known for each input pattern, the
KL-based approach proposed in [9] should be used.
It fully exploits the available information provided
by the training dataset and, as expected, increases
the discrimination power.

3.2. Relative entropy

We assume all confidence degrees to be com-
mensurable values in [0, 1] which is generally
true in classification. Let PΘ

k (Y ) with Y =
(φ1,k(X), φ2,k(X) . . . φM,k(X)) ∈ [0, 1]|Θ| (resp.
PΘ

k
(Y )) be the probability that classifiers 1, 2 . . .M

jointly provide the values φ1,k(X),φ2,k(X),. . . and
φM,k(X) given the ground truth is class ωk (resp.
given ωk) and observation X. In [9], the distribu-
tions were assumed discrete and the relative entropy
(KL) of both distributions was thus given by:

D(PΘ
k ||PΘ

k
) =

∑
Y

PΘ
k (Y ) log

(PΘ
k (Y )
PΘ

k
(Y )

)
(4)

For the sake of simplicity, we will denote by Rk(S)
the KL value given by D(PS

k ||PS
k

) for a given subset
of sources S ⊆ Θ:

Rk(S) ≡ D(PS
k ||PS

k
) (5)
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Note that when the distributions PΘ
k and PΘ

k
are

computed, the distributions PS
k and PS

k
for S ⊂ Θ

are obtained by marginalizing out the components
θ ∈ Θ, θ /∈ S.

To compute Eq. 4, the support of the distribution
PS

k must be included in the support of the distri-
bution PS

k
otherwise the relative entropy diverges

towards infinity. In order to respect this constraint,
the skew divergence was used in [9].

3.3. From relative entropy to Choquet
capacities

The relative entropy has to satisfy the conditions
presented Section 2 in order to be interpreted as
a Choquet capacity. For that, the relative entropy
Rk(S) for a subset S is normalized as in Kojadi-
novic’s method [8, 6] by the entropy of the whole
set of sources Rk(Θ):

µk(S) = Rk(S)
Rk(Θ) (6)

Moreover, the relative entropy is zero when the set S
is empty but also when both distributions are iden-
tical. Therefore, a source that provides the same
degrees of support for a sought-after class ωk and
for the other classes ωk is assigned a low importance
value since it can not distinguish class ωk from the
others. This is exactly the mean of discrimination
power.
The relative entropy has also to satisfy the mono-

tonicity constraint (Section 2), i.e. given two
sources θi and θj , the relative entropy has to satisfy
the following equations:

µ({θi, θj}) ≥ µ({θi}) (7a)
µ({θi, θj}) ≥ µ({θj}) (7b)

In order to check these constraints, one can rewrite
the relative entropy as [11, 8, 6]:

Rk({θi, θj}) = Rk({θi}) +Rk({θj | θi}) (8)

that is always positive and therefore has a mono-
tonic behavior [11, 8, 6, 9]:

Rk({θi, θj}) ≥ Rk({θi}) (9a)
Rk({θi, θj}) ≥ Rk({θj}) (9b)

This reasoning can be extended easily to larger sub-
sets of sources. Therefore, the normalized relative
entropy satisfies all the constraints in order to be
interpreted as a Choquet capacity.

3.4. Modeling positive and negative
interactions

When sources θi and θj , that provide distributions
PS

k and PS
k
, are independent, the relative entropy

has an additive behavior [11, 8, 6]:

Rk({θi, θj}) = Rk({θi}) +Rk({θj}) (10)

When sources θi and θj are interacting one each
other, the relative entropy can be expressed by:

Rk({θi, θj}) = Rk({θi}) +Rk({θj})
+
(
Rk({θj |θi})−Rk({θj})

) (11)

where the last term can be negative or positive ac-
cording to sources θi and θj implying that the iden-
tified Choquet capacities can be super-additive or
sub-additive. Therefore the proposed method is
able to model and identify both positive and neg-
ative interactions whereas Kojadinovic’s approach
can only identify negative ones.

4. Identification of Choquet Integral
parameters based on continuous relative
entropy

4.1. On using a continuous approach

The core of the KL-based method is the evalua-
tion of the multidimensional probability distribu-
tions (PS

k and PS
k
). In [8, 6, 9], the distributions

were computed using discretization of confidence
degrees (and histograms). We rather propose to
remain in the continuous space (the space of the
degrees of confidence) and to use parametric con-
tinuous densities for confidence degrees modelling.
These densities allow to:

• Ensuring an infinite support for the distri-
butions and therefore avoiding using artificial
methods to solve the problem of minimum sup-
port.
• Avoiding the necessity of finding the optimal
number of bins for the histograms. This could
be a serious problem for high dimensional data
such as in image processing or in complex sys-
tems diagnosis.
• Obtaining a more precise paving of the input
space and therefore generating smooth distri-
butions and improving the computation of the
relative entropy by summing over more data
points sampled from the continuous densities.
• Simplifying the computation of marginaliza-
tions (according to the family of densities).

Fig. 1 depicts the problem of finding the num-
ber of bins for discrete histograms. We drew 100
points from a mixture of five Gaussians with equal
probability and with means 0, 10, 25, 35, 50 and
unit variance. We then computed histograms (de-
picted in the first three figures) with 10, 50 and 100
bins and we also run an EM in order to identify au-
tomatically the parameters of a continuous density
made up of five components. The results are very
different with a preference given to the last figure.
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Figure 1: Role of the number of bins (see comments
in the text).

4.2. Modelling inputs by continuous
densities

4.2.1. Modelling

We assume that the joint probability density func-
tion related to PΘ

k (and similarly for PΘ
k
) has a con-

tinuous and parametric form. For example, we con-
sider mixtures of Gaussians which are very general
and have interesting properties:

PΘ
k (Y ) =

Lk∑
a=1

ck,a · fk,a(Y ) (12)

where
fk,a(Y ) = N (Y |αk,a,Σk,a) (13)

with Y = (φ1,k(X), φ2,k(X) . . . φM,k(X)) ∈ [0, 1]|Θ|
the joint observation of degrees of confidence, ck,a

the mixing coefficient of component a (among Lk,
with

∑
a ck,a = 1) and N (Y |αk,a,Σk,a) a multidi-

mensional normal density with mean αk,a and co-
variance Σk,a (positive definite):

N (Y |αk,a,Σk,a) =
exp

(
− 1

2 (Y − αk,a)T Σ−1
k,a (Y − αk,a)

)
(2π)M/2|Σk,a|1/2

(14)

The dimension of the parameters is the same as Θ
which is M . The same expression holds for PΘ

k
:

PΘ
k

(Y ) =
Lb∑

b=1
ck,b · gk,b(Y ) (15)

with different parameters indexed by subscripts
(k, b).

4.2.2. Learning parameters of densities

The parameters of the densities can be esti-
mated automatically by standard methods such as
the Expectation-Maximization algorithm (EM [12])
where L, the number of components, can also be
estimated.

When the parameters of the distributions PΘ
k and

PΘ
k

have been specified, it is easy to compute PS
k

and PS
k

for subsets S ⊂ Θ by marginalization.
In case the joint density related to PΘ

k is repre-
sented by a mixture of multivariate Gaussians, the
marginal is also a mixture of multivariate Gaus-
sians where some components (marginalized out)
have been eliminated. In particular, the |S| com-
ponents of the mean vector of the marginal are the
means of the variables in S and its covariance ma-
trix is composed of the pairwise covariances of the
same variables.

4.3. Continuous relative entropy

For two unimodal multivariate normal densities fk

and gk (with La = Lb = 1), the KL has an exact
closed form [13]:

Rex
k (S; fk; gk) = 1

2

(
log
( |Σk|
|Σk|

)
+ . . .

Tr
(

Σ−1
k

Σk

)
−M + . . .(

µk − µk

)t Σ−1
k

(
µk − µk

)) (16)

When densities are multimodal, the continuous rel-
ative entropy is obtained by integrating on the sup-
port of PS

k , Supp(PS
k ) = {Y : PS

k (Y ) > 0}:

Rk(S) =
∫

Y ∈Supp(P S
k

)
PS

k (Y ) log
(PS

k (Y )
PS

k
(Y )

)
dY

(17)
To evaluate this expression, several methods can
be used [13]. In this paper, we have used Monte
Carlo sampling (MC) and variational approxima-
tion (VA).

The MCmethod consists in drawing samples from
the mixture associated to PS

k . For that, a compo-
nent is chosen randomly using the distribution ck,..
A continuous sample is then drawn from the asso-
ciated Gaussian component and the density is eval-
uated. Given {Yi, i = 1 . . . N} the set of i.i.d. sam-
pled points, we can approximate the integral (17)
by its MC estimate:

RMC
k (S) = 1

N

∑
i

log
(PS

k (Yi)
PS

k
(Yi)

)
→ D(PS

k ||PS
k

)

(18)
The precision of the evaluation of KL depends ob-
viously on the number of simulations.

In the VA method, the integral is approximated
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by the following expression [13]:

RVA
k (S) =

La∑
a=1

ck,a·log


La∑

a′ =1

ck,a′ · e−Rex
k (S;fk,a;f

k,a
′ )

Lb∑
b=1

ck,b · e
−Rex

k (S;fk,a;g
k,b

)
))


(19)
where Rex

k (S; fk,a; gk,b) is the exact value of KL be-
tween component a of fk and component b of gk
given by Eq. 16.

4.4. Final algorithm

The overall algorithm for computing the fuzzy mea-
sure is as follows:
Require: Lk the set of confidence degrees in class

ωk of M classifiers given the ground truth is class
ωk

Require: Lk the set of confidence degrees in class
ωk of M classifiers given the ground truth are
classes different from ωk

Ensure: the fuzzy measure µk for class ωk

1: PΘ
k ← Estimate the parameters of the densities

on Lk

2: PΘ
k
← Estimate the parameters of the densities

on Lk
3: µk(Θ)← 1, µk(∅)← 0
4: Rk(Θ)← Apply Eq. 17 with PΘ

k and PΘ
k

5: for all S ⊂ Θ do
6: PS

k ← marginalize PΘ
k on S

7: PS
k
← marginalize PΘ

k
on S

8: Rk(S)← Apply Eq. 17 with PS
k and PS

k

9: µk(S)← Rk(S)
Rk(Θ) (Eq. 6)

10: end for
From µk, one can compute the weight of each

source (i.e. classifier) and their interactions using
Eq. 3b. These values can help an end-user or any
people interested in knowing which classifiers con-
tribute to the final results as well as how they in-
teract.

5. Experiments

A toy example is first presented. Then, the pro-
posed method is evaluated on two datasets from
UCI [14]: vehicle and image segmentation. Classi-
fiers used were the following: Evidential Neural Net-
work (EvNN) [15] (with 4 prototypes for each class),
Evidential Nearest Neighborhood (EvKNN) [16]
(with K = 5) and Support Vector Machines
(SVM) [12] (with a Gaussian Kernel of size 2.2).
Classifiers were learnt using 1-vs-1 strategy for each
class, and the final scores were obtained by using
a weighted vote. SVM scores were transformed
into probabilities using a sigmoid transfer function.
Note that classifier parameters were not “optimized"
for each dataset, since the goal is here to assess the

fusion process. The KL was assessed using the MC
method using 1e6 samples.

5.1. A toy example

Figure 2: A density PΘ
k .

Figure 3: A density PΘ
k
.

As an example, let consider two classifiers θ1 and
θ2 with confidence degrees in ωk, given the ground
truth is ωk, being distributed according to Fig. 2,
and according to Fig. 3 for confidence degrees in ωk

given the ground truth is another class ωk. From
these densities, we are looking for characterizing the
importance of the coalition {θ1, θ2} in distinguish-
ing ωk from ωk.
In Fig. 2, the confidence degrees of classifier 1 are

globally close to unity given class ωk. That means
classifier 1 often provides high scores for ωk given
the ground truth is ωk. Classifier 2 however seems
to provide some results close to 0.5 meaning classi-
fier 2 is frequently not certain about the predicted
class. Given the ground truth is ωk (Fig. 3), clas-
sifier outputs are globally close to 0 for ωk. That
means classifiers generally provide low values for ωk

when the ground truth is ωk as expected.
In order to quantify the importance µk({θ1, θ2})

of the coalition {θ1, θ2} given ωk, we compute the
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divergence between both distributions. The higher
is the divergence, the higher is the importance of
{θ1, θ2} for distinguishing ωk from the other classes.
In this example, densities were obtained using two
mixtures with the following parameters:

• given ωk, αk,1 = [0.1, 0.1], Σk,1 =
[.01, 8; 8, .01], αk,2 = [0.2, 0.4] and Σk,2 =
[.02, .01; .01, .02] (with equal mixing coeffi-
cients ck,a).
• given ωk, αk,1 = [0.8, 0.8], Σk,1 = [8, 1; 1, 8],
αk,2 = [0.55, 0.9], Σk,2 = [.02, 8; 8, .02],
αk,3 = [0.95, 0.97], Σk,3 = [4, 1; 1, 4] (with
equal mixing coefficients ck,a).

With these parameters, Eq. 17 leads to
Rk({θ1, θ2}) ≈ 9.44 (with N = 1.106).

5.2. Vehicle dataset

The UCI’s vehicle dataset is a four-classes problem
composed of 946 examples almost uniformly dis-
tributed between classes. The goal is to classify data
into one of the following types of vehicle: OPEL
(ω1), SAAB (ω2), BUS (ω3) and VAN (ω4). The
half of the dataset was used for classifier training,
and the other half for testing.

Figure 4: EvNN classification results. Top: classes
1 and 2, bottom: classes 3 and 4.

Figures 4-6 pictorially described ROC curves
computed for each class given results of classifiers.
Also are displayed the Area Under the Curve (AUC)
which reflects the efficiency in detecting the class.
These curves can be compared with ROC curves of
Figure 7 computed from the results of the fusion
process proposed in this paper. Table 1 also gives
the obtained fuzzy measures, while interaction and
classifier weights computed from them (as detailed
previously) are provided in Tables 2 and 3.

ROC curves clearly show the complementarity of
individual classifiers. For example, class ω1 is better
recognized using EvKNN (Fig. 5) with almost 98%

Figure 5: EvKNN classification results. Top:
classes 1 and 2, bottom: classes 3 and 4.

Figure 6: SVM classification results. Top: classes 1
and 2, bottom: classes 3 and 4.

Figure 7: Fusion by Choquet Integral. Top: classes
1 and 2, bottom: classes 3 and 4.
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of good classification. Class ω2 is better recognized
using SVM (Fig. 6) with an accuracy close to 83%.
Class ω3 is well recognized (about 93%) by EvNN
(Fig. 4) and EvKNN (Fig. 5). Lastly, class ω4 is
better detected by SVM (Fig. 6).

set ω1 ω2 ω3 ω4

1 0.22 0.39 0.23 0.24
2 0.66 0.57 0.34 0.37
12 0.75 0.70 0.44 0.65
3 0.36 0.29 0.20 0.44
13 0.50 0.60 0.43 0.62
23 0.89 0.84 0.83 0.65

Table 1: The fuzzy measure for each class learnt by
the proposed algorithm for the “vehicle" dataset.

set ω1 ω2 ω3 ω4

I12 −0.08 −0.20 −0.10 +0.10
I13 −0.03 −0.02 +0.03 +0.01
I23 −0.08 +0.03 +0.33 −0.10

Table 2: Interaction values associated to the fuzzy
measures of Table 1.

set ω1 ω2 ω3 ω4

ν1 0.15 0.26 0.19 0.28
ν2 0.56 0.47 0.45 0.35
ν3 0.29 0.28 0.37 0.37

Table 3: Weight values associated to the fuzzy mea-
sure of Table 1.

As shown in Figure 7, the proposed fusion pro-
cess draw benefits of all these classifiers, providing
AUCs close to 99%, 84%, 97% and 88% for class
ω1, ω2, ω3 and ω4 respectively (improvement close
to 10%). Interaction indexes can explain this re-
sult. Indeed, class ω1, that is well detected by all
classifiers, is represented by a fuzzy measure with
negative interactions because of redundancy. The
highest redundancy is detected for class ω2 between
EvNN and EvKNN (I12 = −0.20) while the highest
complementarity is detected for class ω3 between
EvNN and SVM classifiers (I23 = +0.33). Weights
are also the highest for classifiers with the best ac-
curacies, except for class ω2.

5.3. Image segmentation dataset

The UCI’s image segmentation dataset is a seven-
classes problem composed of 210 training exam-
ples and 2100 for testing. Initially, features are 19-
dimensional but we reduced them to 6 dimensions
and we kept features [1 3 4 8 9 17]. The goal is
thus to classify data into one of the following types
of vehicle: Brickface (ω1), Sky (ω2), Foliage (ω3),
Cement (ω4), Window (ω5), Path (ω6) and Grass
(ω7).

For this dataset, we present the results in the form
of confusion matrices (Table 4-7) where the ground
truth is on columns while results of classifiers are

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω1 0 0 0 6 18 0 0
ω2 67 264 0 67 15 0 0
ω3 0 0 41 8 7 0 0
ω4 233 36 259 219 256 0 0
ω5 0 0 0 0 3 0 0
ω6 0 0 0 0 1 300 1
ω7 0 0 0 0 0 0 299

Table 4: Confusion matrix of EvNN classifier
(global acc.: 53.6%, degraded on purpose).

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω1 152 9 26 69 61 0 0
ω2 38 223 0 55 17 0 0
ω3 22 1 176 12 45 0 0
ω4 45 55 13 140 6 30 0
ω5 43 12 85 24 171 0 14
ω6 0 0 0 0 0 270 0
ω7 0 0 0 0 0 0 286

Table 5: Confusion matrix of EvKNN classifier
(global acc.: 67.5%)

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω1 98 0 1 3 4 0 0
ω2 4 78 0 3 0 0 0
ω3 5 0 59 0 0 0 0
ω4 18 6 3 49 1 0 0
ω5 0 0 14 0 94 0 0
ω6 0 0 0 0 0 111 0
ω7 175 216 223 245 201 189 300

Table 6: Confusion matrix of SVM classifier (global
acc.: 37.6%)

on lines. Tables 4- 6 are confusion matrices of indi-
vidual classifiers. We here degraded on purpose the
results of the first classifier (EvNN) on classes ω1,
ω3, ω5 and ω7 (by adding noise on the parameters
trained by the algorithm). As a result, the confusion
matrix presents low detection rate for these classes
(close to 0 for some of them). We then applied the
fusion process.

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω1 97 3 3 1 11 0 0
ω2 55 234 0 58 15 0 0
ω3 0 0 156 6 20 0 0
ω4 148 63 62 231 113 3 0
ω5 0 0 79 4 141 0 7
ω6 0 0 0 0 0 297 0
ω7 0 0 0 0 0 0 293

Table 7: Confusion matrix after fusion using MC
sampling (global acc.: 69%)

Table 7 shows the confusion matrix of the fusion
process result. This matrix clearly shows that the
proposed method is able to draw benefits from in-
dividual classifiers. Table 8 is the confusion matrix
obtained by the fusion process based on the vari-
ational approximation of the KL divergence which
shows that, for this application, the approximation
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class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω1 95 3 8 3 25 0 0
ω2 75 226 0 68 21 0 0
ω3 5 0 145 6 25 0 0
ω4 125 71 81 222 100 3 0
ω5 0 0 66 1 129 0 5
ω6 0 0 0 0 0 297 2
ω7 0 0 0 0 0 0 293

Table 8: Confusion matrix after fusion using varia-
tional approximation (global acc.: 66%)

is satisfying.
Interaction values obtained in this application are

shown in Table 9. For classes ω1, ω3 and ω5 inter-
actions between classifiers emphasize complemen-
tarity. In particular, classifiers EvNN and EvKNN
present the strongest complementarities. This is
represented in confusion matrix where these clas-
sifiers mix sometimes several classes while classifier
3 confuses between class ω7 and the others.
In general, an efficient classifier has also a rela-

tively high weight (Tab. 10), and if it is not the
case, interaction values provide compensation.

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

I12 0.32 −0.29 0.15 −0.22 0.03 −0.17 −0.28
I13 0.06 0.00 0.06 −0.04 0.03 −0.02 −0.03
I23 −0.09 0.07 0.02 −0.09 0.05 0.05 −0.02

Table 9: Interaction values for application 2.

class ω1 ω2 ω3 ω4 ω5 ω6 ω7

ν1 0.32 0.54 0.35 0.69 0.33 0.52 0.48
ν2 0.54 0.28 0.50 0.24 0.50 0.33 0.48
ν3 0.14 0.18 0.15 0.07 0.17 0.15 0.04

Table 10: Weight values for application 2.

6. Conclusion

We proposed an information-theoritic approach re-
lying on Kullback-Leibler divergence for fuzzy mea-
sures identification in the context of supervised clas-
sification. The use of well known parametric and
continuous functions for the representation of con-
fidence degrees allows to simplifying the estimation
of joint densities and marginalization. We shown its
application on widely used datasets where the fuzzy
measure brought a lot of useful information concern-
ing classifier importance and interactions. Results
also emphasized that the proposed fusion process
allows, on the one hand, to improve classification
results and, on the other hand, to be robust to clas-
sifiers mistakes.
Further investigations concern the study of al-

gorithms used for learning distribution parameters
which are of key of importance.
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