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Abstract

The aim of this paper is to introduce, by axiomatic
way, the measure of the general (i.e. without prob-
ability) aimed information for crisp sets.

We traslate the problem in a system of functional
equation and we present a class of solutions; in the
case of independence we characterize the solution.

Finally, we give some aggregation operators for
this form of information measures.

Keywords: Information, functional equations, ag-
gregation operators.

1. Introduction

In the setting of general (i.e. without probability)
information, we shall characterize a measure of in-
formation of a crisp variable event, which has the
aim to achieve a fixed crisp event. We call this new
measure aimed information.
Example: the measure of information about sets

of men from different states, who achieve the same
diploma.

In the sect. 2 we shall recall some preliminaires
following the information theory of Kampé De Fer-
iét and Forte.
The sect. 3 is devoted to the introduction of the

aimed information, by axiomatic way, and the stat-
ment of the problem in a system of functional equa-
tions. For this system we shall find a class of so-
lutions; the solution has been found in the case of
independence.

Then, in the sect. 4 some aggregation operators
for the aimed information are proposed; finally, in
the sect. 5 we give the conclusion.

2. Preliminaires

Let Ω be an abstract space and A a σ−algebra of all
not-empty subsets of Ω,A ⊂ P(Ω), such that (Ω,A)
is measurable. We refer to [7] for all knowledges and
operations about crisp sets. We recall the definition
of measure of information as in [8, 5].

Definition 2.1 The measure J(·) of the general in-
formation is a map

J(·) : A → [0,+∞]

such that ∀ A1, A2 ∈ A :

(i) A1 ⊃ A2 ⇒ J(A1) ≤ J(A2) ,
(ii) J(∅) = +∞ , J(X) = 0 ,
(iii) J(A1∩A2) = J(A1)+J(A2) , if A1∩A2 6= ∅.

As regard to (iii), we assume it as the definition
of independence with respect to the information J
(shortly J-independence).
If J satisfies the previous properties [(i)-(iii)], we

call the triple (Ω,A, J) information space [2, 5].

3. General aimed information

Let S ∈ A be a fixed set, which represents the object
of the events A ∈ A.

Now, we are ready to give, by axiomatic way, the
definition of general aimed information.

Definition 3.1 The general information of A ∈ A,
aimed by a fixed event S ∈ A is a map

I(· → S) : A → [0,+∞]

such that
(j) A ⊃ A′ =⇒ I(A→ S) ≤ I(A′ → S),
∀ A,A′ ∈ A,
(jj) I(∅ → S) = +∞, I(Ω→ S) = 0,
(jjj) I((A ∩B)→ S) = I(A→ S) + I(B → S),
if A ∩B 6= ∅.

As regard to (jjj), we assume it as the definition of
aimed-independence with respect to the information
I (shortly I-aimed-independence).

Using these propeties, we shall give a class of gen-
eral aimed information. Therefore, we plan out a
system of functional equations [1], for which we shall
present a class of solutions. It is possible to find a
solution of the system if the condition of indepen-
dence has been added.

4. Statement of the problem

Let (Ω,A, J) be an information space.
Taking into account the previous axiomatic state-

ment, fixed S ∈ A, we shall looking for a class
of aimed measures I(A → S), by supposing that
I(A → S) depends only on J(A ∩ S), J(A), J(S).
For this reason, fixed S, we restrict our definition
to the following family:

AS = {A ∈ A/A ∩ S 6= ∅} ;
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at least AS contains the whole space Ω, so this fam-
ily is not empty. We are looking for the aimed in-
formation I(· → S) as a function:

I(· → S) : AS → [0,+∞]

and a function Φ : D → [0,+∞], such that

I(A→ S) = Φ
J(A ∩ S), J(A), J(S)

. (1)

The domain D will be specified later.
Putting x = J(A∩S), y = J(A), z = J(S), y′ =

J(A′), t = J(B), x ≥ y, x ≥ z, x, y, z, x′, t ∈
[0,+∞], with B ∈ AS, we recognize that the do-
main D of the function Φ is the following

D = {(x, y, z)/x ≥ y, x ≥ z}.

The (1) becomes

I(A→ S) = Φ(x, y, z). (2)

From the properties (j), (jj), (jjj) above, we get the
following system of functional equations:

(a) Φ(x, y, z) ≤ Φ(x′, y′, z) x ≤ x′, y ≤ y′,

(b) Φ(+∞,+∞, z) = +∞,

(c) Φ(z, 0, z) = 0,

(d) Φ(y + t+ z, y + t, z) =
Φ(y + z, y, z) + Φ(t+ z, t, z).

For the (d), fixed S, and given A,B ∈ AS, we sup-
pose that A,B and S are J-independent, from (iii)
J(A ∩B ∩ S) = J(A) + J(B) + J(S). Moreover, by
(1), we get

I((A ∩B)→ S) = Φ
J(A ∩B ∩ S), J(A ∩B), J(S)


= Φ

J(A) + J(B) + J(S), J(A) + J(B), J(S)
 (3)

and

I(B → S) = Φ
J(B ∩ S), J(B), J(S)

. (4)

Taking into account (2), we obtain the equation (d)
by (1), (3) and (4).
We are looking for an universal solution of the

system [(a)-(d)], i.e. a solution of the e quations
and the inequality in every proper space.

First, we can give the following result:

Proposition 4.1 A class of solutions of the system
[(a)-(c)] is

Φh(x, y, z) = h−1
[
h(x) + h(y)− h(z)

]
, (5)

where h is any continuous, positive, increasing func-
tion with h(0) = 0 and h(+∞) = +∞.
Proof.The (a) is valid as h is increasing and x ≤

x′, y ≤ y′.
The (b) and (c) are satisfied from the values of h.

�

By using the J− aimed independence and the
form (5) with the hypothesis (on h) of the Proposi-
tion (4.1), the system [(a)-(d)] becomes:

(a′) h−1
[
h(x) + h(y)− h(z)

]
≤

h−1
[
h(x′) + h(y′)− h(z)

]
x ≤ x′, y ≤ y′,

(b′) h−1[h(+∞) + h(+∞)− h(z)
]

= +∞,

(c′) h−1
[
h(z) + h(0)− h(z)

]
= 0,

(d′) h−1
[
h(y + t+ z) + h(y + t)− h(z)

]
=

h−1
[
h(y + z) + h(y)− h(z)

]
+

h−1
[
h(t+ z) + h(t)− h(z)

]
.

Proposition 4.2 The solution of the system [(a’)-
(d’)] is

h(x) = c x c > 0. (6)

Proof. It is easy to see that (6) is solution of
the system [(a’)-(d’)].
In fact, (a’), (b’), (c’) are identically satisfied by

(6) through the hyphotesis of h. As regards to (d’),
putting

ϕ(y, z) = h−1
[
h(y + z) + h(y)− h(z)

]
, (7)

(d’) is

ϕ(y + t, z) = ϕ(y, z) + ϕ(t, z). (8)

Fized z = z∗ the (8) is the classical Cauchy equation
[1], whose solution is

ϕ(y, z∗) = λ(z∗)y. (9)

From (7), we get

λ(z∗)y = h−1
[
h(y + z∗) + h(y)− h(z∗)

]
, i.e.

h
λ(z∗)y

 = h(y + z∗) + h(y)− h(z∗). (10)

If z∗ = 0, as h(0) = 0, from (10) it is h
λ(0)y

 =
2 h(y), but h is injective, so λ(0) = 2 and it implies
λ(z) = 2 ∀z. The function h satisfies the following
condition:

h(2 y) = 2 h(y). (11)

From (7), we have obtained
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ϕ(y, z) = 2 y = h−1
[
h(y + z) + h(y)− h(z)

]
, i.e.

h(2 y) = h(y + z) + h(y)− h(z). (12)

The two conditions (11) and (12) imply

h(y + z) = h(y) + h(z). (13)

We have found again the Cauchy equation, whose
solution is h(x) = c x, with c real positive number,
moreover, the solution of the system [(a’)-(d’)] is
(6). �

Taking into account the Propositions (4.1) and
(4.2), we have the following theorem:

Theorem 4.3 The solution of the system [(a)-(d)]
is

Φ(x, y, z) = x+ y − z. (14)

�

So, we have found a class of I−aimed information:
from (5) we get

Ih(A→ S) =

h−1
h(J(A ∩ S)) + h(J(A))− h(J(S))

,
where h is any continuous, positive, increasing func-
tion with h(0) = 0 and h(+∞) = +∞.
In the case of independence, from (14), we have:

I(A→ S) = J(A ∩ S) + J(A)− J(S).

5. Aggregation operators

We know [3, 4, 6, 9, 10] that an aggregation op-
erator is a procedure by which a unique value can
be associated to the result obtained through differ-
ent tests or different data base. The unique value is
kind of aritmetic mean. We think that it can be use-
fully for the applications to give some agggregation
operators for aimed general information, too.
From now on, we fix S ∈ A. Let IS ⊂ [0,+∞]n be

the family of the aimed general information I(· →
S).
The aggregation operator L of n aimed general

information I(Ak → S), Ak ∈ A, k = 1, ...n, is a
map L : IS −→ [0,+∞] [3, 6, 10] defined by the
following properties:
(I) idempotence:
if I(Ak → S) = λ, ∀ k = 1, ...n,
then L(λ, ..., λ︸ ︷︷ ︸

n times

) = λ;

(II) momotonicity:
I(A1 → S) ≤ I(A′1 → S) =⇒

L
I(A1 → S), ..., I(Ak → S), ..., I(An → S)

 ≤
L
I(A′1 → S), ..., I(Ak → S), ..., I(An → S)

;

(III) continuity from below:
I(A1/m → S)↗ I(A1 → S) =⇒
L
I(A1/m → S), ..., I(Ak → S), ..., I(An → S)


↗ L

I(A1 → S), . . . , I(Ak → S), ..., I(An →

S)
.
Putting I(Ak → S) = xk, k = 1, ..., n, I(A′1 →

S) = x
′

1, I(A1/m → S) = x1/m, we obtain:

(I ′) L(λ, . . . , λ︸ ︷︷ ︸
n times

) = λ,

(II ′) x1 ≤ x1
′ =⇒

L(x1, ..., xk, ..., xn) ≤ L(x′1, ..., xk, ..., xn)

(III ′) x1/m ↗ x1 =⇒
L(x1/m, ..., xk, ..., xn)↗ L(x1, ..., xk, ..., xn).

For the solutions of the system [(I’)-(III’)], we pro-
pose the following propositions, whose proofs are
immediate:

Proposition 5.1 Two natural solutions of the sys-
tem [(I’)-(III’)] are

L(x1, ..., xk, ..., xn) =
n∨
k=1

xk;

L(x1, ..., xk, ..., xn) =
n∧
k=1

xk.

�

Proposition 5.2 A class of solution of the system
[(I’)-(III’) is

L(x1..., xk, ..., xn) = h−1
h(x1) + ...+ h(xn)

n


where h : [0,+∞] → [0,+∞] is any continuous,
increasing function h(0) = 0, h(+∞) = +∞. �

Remark.
1) If h(x) = x, the aggregation operator L is the

aritmetic mean.
2) These results are valid also in fuzzy setting.

6. Conclusion

In this paper, we have presented a definition, by
axiomatic way, of general aimed information I(A→
S) in the crisp setting.

If we suppose that this information is linked to
J(A ∩ S), J(A), J(S), we found a class of solution
of a system of functional equations. If we consider
the independence, we obtained the solution.

Then, we have given some classes of aggregation
operators of these general aimed information.
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