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Abstract

The present work addresses the study of techniques of
digital image processing based on fuzzy logic for sub-
cutaneous fat (SF) estimation in real time ultrasound
(RTU) images. The process for SF automatic estima-
tion in RTU images is divided into two steps: the iden-
tification of the image area corresponding to the SF re-
gions and, from these regions, the SF estimation. In or-
der to deal with the ambiguity present in the gray lev-
els of RTU images, fuzzy logic based methods are used.
Experimental results are also presented.

Keywords: Atanassov’s Intuitionistic Fuzzy Sets, En-
tropy, Multi-thresholding

1. Introduction

For animal science, reliable information and accurate
subcutaneous fat (SF) measurements are required to
evaluate body reserves of live animals [1]. Body
reserves are decisive for nutritional, reproductive and
health management [2]. Classically, measurements
of body reserves have been done by direct or indi-
rect calorimetry, comparative slaughter or dilution tech-
niques [3]. This is a slow, tedious, and expensive process
and, as direct consequence, tools for rapid, non-invasive
and inexpensive estimation of body composition have
been continuously pursued. Ultrasound provides a non-
invasive method for estimating fat accretion and body
composition on live animals [2, 4]. Ultrasound imagery
is a fast, reliable technology and provides a nondestruc-
tive way to predict body reserves by measuring subcu-
taneous fat under the skin [2, 5]. Nevertheless, man-
ually processing real time ultrasound (RTU) images is
a non accurate, slow and tedious process. Despite the
existence of a broad range of software for image analy-
sis and visual inspection, the supply of these systems
for the analysis of this kind of RTU images is still un-
der provided. In this work, a digital image processing
methodology for in vivo SF estimation in RTU images
is presented.

In the image analysis methodologies issued in this
work, the segmentation of the image plays a decisive
role towards a good processed image data since, being
the starting point of the process it can critically affect
its performance. In this sense, the image is decomposed
into meaningful parts for further analysis, resulting in
the partition of the initial set of pixels in the image into

a finite set of regions (subsets) according to a certain
criterion. In the present case the purpose of the seg-
mentation is to decompose the image into two separate
regions: the region with pixels belonging to the SF and
a second region corresponding to all the non SF regions.
In order to achieve such result, due to the difficulties im-
posed by the intrinsic characteristics of the issued RTU
images, rather than a bi-level thresholding approach, a
tri-level thresholding approach was implemented. This
tri-level thresholding approach results in only two (in-
stead of three) image regions since the image binariza-
tion is made using only the higher threshold value of the
two computed thresholds.

Extensive research has been conducted in the image
segmentation research field, and many types of image
segmentation approaches have been proposed in the lit-
erature, each one of them based on a certain methodol-
ogy to classify the regions [6, 7, 8, 9, 10, 11, 12].

Considering fuzzy set theory as an efficient tool for
image segmentation, within this theory, the most popu-
lar algorithms are those that use the concept of fuzzy en-
tropy [13, 14, 15, 16, 17, 18]. In this work, Atanassov’s
intuitionistic fuzzy sets [19, 20] are employed in such
way that Atanassov’s intuitionistic index (π) is used to
quantify the ambiguity present in the image pixels and,
intuitionistic entropy is used in the same sense as fuzzy
entropy is used in fuzzy logic based segmentation algo-
rithms.

The presented segmentation approach was devel-
oped within the work presented in [21] where the
main goal is to perform fuzzy logic based analysis in
ambiguous data images. The proposed approach is
an evolution/extension of the methodology, based on
Atanassov’s intuitionistic fuzzy sets (A-IFSs) presented
in [21], that uses a tri-level thresholding approach. This
tri-level approach was experimentally selected since this
approach was the one that accurately segmented the SF
region. In this work, besides the segmentation method-
ology, a method for quantification of the SF is also pre-
sented.

2. Proposed Methodology

Following the work in progress in animal science, in this
work we used an experimental group consisting of 10
garrano horses (290 ± 10 kg body weight). Their body
condition was evaluated using RTU images [22] ob-
tained at the lumbar site using Aloka SSD 500V equip-
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ment (Aloka, Tokyo, Japan) equiped with a 5.0 MHz
probe. In Fig. 1 an example of an RTU image and its
corresponding SF region is presented.

Figure 1: RTU image with corresponding ROI and SF region.

In Fig. 1 the region of interest (ROI) of the RTU image
is also pointed out since the used thresholding approach
only takes into account pixels belonging to the ROI.

Up until now, in animal science, the experts needed
to process the RTU images manually. This manual ap-
proach (MI) is illustrated in Fig. 1 where one can see
the three arbitrarily chosen measure points from which
average the expert calculates the estimated SF thickness.

This processing of the RTU images besides being
slow and tedious is, most of all, neither accurate nor
reproducible. We think there are two main reasons for
this lack of accuracy: (i) the inherent ambiguity of the
RTU images that makes it very difficult to determine the
SF region boundaries and (ii) the nature of the measure-
ment procedure that involves choosing three arbitrary
measurement points. Our main goal with this work is
to overcome both of these difficulties.

After experimental tests made with the aid of an ani-
mal science expert, a tri-level approach of thresholding
(2 threshold values, t1 and t2 such that t1 < t2) was
used in this work. This tri-level thresholding approach
that would normally give raise to 3 image regions results
only into two image regions since the image binarization
is made using only the threshold t2 in the following way:

q(x, y) =

{
0 if q(x, y) ≤ t2
L− 1 if q(x, y) > t2

being L the gray levels of an image Q.
Finally, after the image binarization, a method for the

SF region quantification was also developed.

2.1. Atanassov’s intuitionistic fuzzy sets based
image tri-level thresholding

In the present approach, being a tri-level thresholding
approach, the membership of the pixel to each one
of the three image objects starts being represented by
three fuzzy sets, each one associated with one of the

three image regions (R1, R2 or R3). In order to
choose/construct the membership function of each pixel
of the image to the associated fuzzy set, four numerical
values are assigned to each one of them:

• Three values for representing the expert knowledge
of the membership of the pixel to each one of the
three image objects. Three membership functions,
constructed by the expert using dissimilarity func-
tions(see [23]), are used to obtain each one of these
values.

• The expert knowledge/ignorance, in determining
the above mentioned membership functions, is
represented by a third value obtained through
Atanassov’s intuitionistic index (π).

This fourth value (π) indicates how sure the expert is
in assigning each pixel to the correspondent region, be-
ing that if π = 0 then the expert is positively sure of
the pixel’s belonging. This value increases with respect
to the lack of knowledge/ignorance of the expert as to
whether the pixel belongs to R1, R2 or R3 reaching to
the value of 1 when the expert used the greatest lack
of knowledge/ignorance/intuition allowed in the assign-
ing of the pixel to the regions (i.e., the construction of
the membership functions of the set associated with that
pixel), resulting in a Atanassov’s intuitionistic fuzzy in-
dex maximum value. For this reason, A-IFSs [19, 20]
are used.

Finally, after calculating the entropy values of each
one of the L A-IFSs associated with the image, the com-
bination of t1, t2 ∈ {0, 1, · · · , L−1} such that t1 < t2,
associated with the A-IFS of lowest entropy are chosen
as the best thresholds. The justification for this choice is
given in [21] where, since we’ve used the entropy pro-
posed by Burillo and Bustince (see [24]), it is proven
that this entropy will be null when the set is a FSs and
will be maximum when the set is totally intuitionistic.

As it has been said before, the final outcome of this
tri-level thresholding methodology is a binary image ob-
tained by setting all pixels q(x, y) ≤ t2 to 0 and all the
other to L− 1.

Being (x, y) the coordinates of each pixel on the im-
age Q, and being q(x, y) the gray level of the pixel (x, y)
so that 0 ≤ q(x, y) ≤ L − 1 for each (x, y) ∈ Q
where L is the image grayscale, the implementation of
this methodology can be described as follows:

2.1.1. Fuzzy sets construction

Considering an image Q and two intensity thresholds t1
and t2, we will construct L fuzzy sets Q̃O1t associated
with region R1, L fuzzy sets Q̃O2t associated with re-
gion R2, and another L fuzzy sets Q̃O3t associated with
region R3, in such way that the membership function of
each element to the sets Q̃O1t, Q̃O2t and Q̃O3t must ex-
press the relationship between the intensity q of the pixel
and its membership to region R1, R2 or R3 respectively.

For each possible combinations of t1, t2 ∈
{0, 1, · · · , L − 1}, such that t1 < t2, the mean of the

351



intensities of gray of the pixels that belong to the re-
gion R1 (mO1t), the mean of the intensities of gray of
the pixels that belong to the region R2 (mO2t), and the
mean of the intensities of gray of the pixels that belong
to the region R3 (mO3t) are given by the following ex-
pressions:

mO1t =

∑t1
q=0 qh(q)

∑t1
q=0 h(q)

,

mO2t =

∑t2
q=t1+1 qh(q)

∑t2
q=t1+1 h(q)

,

mO3t =

∑L−1
q=t2+1 qh(q)

∑L−1
q=t2+1 h(q)

.

With h(q) being the number of pixels of the image
with intensity q.

We construct the membership functions of each possi-
ble combinations of intensities t1, t2 in the above men-
tioned conditions, to the sets Q̃O1t, Q̃O2t and Q̃O3t in
the following way [25]:

µQ̃O1t
(q) = F

(
d

(
q

L− 1
,
mO1t

L− 1

))
,

µQ̃O2t
(q) = F

(
d

(
q

L− 1
,
mO2t

L− 1

))
,

µQ̃O3t
(q) = F

(
d

(
q

L− 1
,
mO3t

L− 1

))
.

In this approach we use the function F (x) = 1−0.5x
along with the restricted dissimilarity function d(x, y) =
|x − y| which conduct us to the fuzzy sets Q̃O1t, Q̃O2t

and Q̃O3t represented by the following membership
functions:

µQ̃O1t
(q) = 1− 0.5

∣∣∣∣
q

L− 1
− mO1t

L− 1

∣∣∣∣ ,

µQ̃O2t
(q) = 1− 0.5

∣∣∣∣
q

L− 1
− mO2t

L− 1

∣∣∣∣ ,

µQ̃O3t
(q) = 1− 0.5

∣∣∣∣
q

L− 1
− mO3t

L− 1

∣∣∣∣ .

Note that F (x) and d(x, y) are only ones of the set
of possibilities of functions that could have been used
(see [21]). The constructed membership functions are
always greater than or equal to 0.5 and, the smaller the
distance between a pixel’s intensity q and the mean of
intensities of the considered region (region R1, R2 or
R3), the greater the value of its membership to that re-
gion.

2.1.2. Atanassov’s intuitionistic index π quantification

In this approach we interpret Atanassov’s intuitionistic
index π as the lack of knowledge/ignorance of the expert
in assigning the membership value of a certain pixel to
the regions R1, R2 or R3 of the image. Under this inter-
pretation of π, we will consider that µQ̃O1t

, µQ̃O2t
and

µQ̃O3t
indicates the expert’s degree of knowledge of the

pixel belonging to region R1, R2 or R3 respectively.
In any case the following conditions must be fulfilled:

1. The lack of knowledge that the expert uses in the
choice of the membership of a pixel must be zero
if he is certain that the pixel belongs to one of the
considered regions.

2. The lack of knowledge/ignorance must decrease
with respect to the certainty of the expert as to the
pixel belonging to one of the regions.

3. The lack of knowledge/ignorance must have the
lower possible influence on the choice of the mem-
bership degree. In the worst of cases, the lack of
knowledge will have a maximum influence of 50
percent.

In this context, π(q) is the quantification of the lack
of knowledge/ignorance of the expert in the selection
of the membership functions µQ̃O1t

(q), µQ̃O2t
(q) and

µQ̃O3t
(q).

We used the following expression for π(q):

π(q) = ∧(1− µQ̃O1t
(q), 1− µQ̃O2t

(q), 1− µQ̃O3t
(q))

(1)
The expression 1 fulfils the above mentioned condi-

tions since, 0.5 6 µQ̃O1t
(q) 6 1, 0.5 6 µQ̃O2t

(q) 6 1
and 0.5 6 µQ̃O3t

(q) 6 1 then:

π(q) = 0 if and only if

µQ̃O1t
(q) = 1 or µQ̃O2t

(q) = 1 or µQ̃O3t
(q) = 1

meaning that the expert is positively sure that the pixel
belongs to one of the objects.

π(q) = 0.5 if and only if

µQ̃O1t
(q) = 0.5 and µQ̃O2t

(q) = 0.5 and µQ̃O3t
(q) = 0.5

meaning that the expert has the greatest lack of knowl-
edge/ignorance in determining to which region the pixel
belongs to.

Hence,
0 6 π(q) 6 0.5

2.1.3. Atanassov’s intuitionistic fuzzy sets construction

In this section, for all possible combinations of t1, t2 ∈
{0, 1, · · · , L − 1}, such that t1 < t2, we will associate
an A-IFS (using the index π described in the subsection
above) with each one of the fuzzy sets Q̃O1t, Q̃O2t and
Q̃O3t, in the following way:

QO1t = {(q, µQO1t
(q), νQO1t

(q))|q = 0, 1, · · · , L−1},
given by

µQO1t
(q) = µQ̃O1t

(q)
νQO1t(q) = 1− µQO1t(q)− π(q)

and

QO2t = {(q, µQO2t
(q), νQO2t

(q))|q = 0, 1, · · · , L−1},
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given by

µQO2t
(q) = µQ̃O2t

(q)
νQO2t

(q) = 1− µQO2t
(q)− π(q)

and

QO3t = {(q, µQO3t
(q), νQO3t

(q))|q = 0, 1, · · · , L−1},

given by

µQO3t
(q) = µQ̃O3t

(q)
νQO3t(q) = 1− µQO3t(q)− π(q)

2.1.4. Entropy calculation

At this step we are going to calculate, for each possi-
ble combinations of t1, t2 ∈ {0, 1, · · · , L − 1}, such
that t1 < t2, the entropy εT of each one of the L intu-
itionistic fuzzy sets of Atanassov QO1t, QO2t and QO3t.
In this approach we use the Type 2 entropy defined by
Burillo and Bustince by means of the following expres-
sion [24]:

εT2(QO1t) =
1

N ×M

L−1∑
q=0

h(q) · π(q) (2)

where N×M are the image dimensions in pixels, h is
the image histogram and π is obtained with equation( 1).

2.1.5. Threshold values selection

The combination of the gray levels t1, t2 ∈
{0, 1, · · · , L− 1} such that t1 < t2, associated with the
A-IFS of lowest entropy are chosen as the best possible
thresholds.

2.2. Segmentation results

In Fig. 2, 10 RTU images corresponding to each one
of the 10 garrano horses of the experimental group are
shown.

Looking at Fig. 2 one can see that some images ex-
hibit different characteristics, regarding their gray levels
(some are lighter than others) when compared with each
other. As a result, the SF region pixels gray levels are
not constant within the set of images making the seg-
mentation task more difficult.

In Fig. 3 the segmented images corresponding to the
10 images of Fig. 2 are shown.

The results presented in Fig. 3 show that the SF re-
gions of all the images were properly segmented.

We’ve asked the animal science expert to process the
segmented images, assisted approach (AI), in same way
he did with the original ones using the MI approach.
As expected, due to the ambiguous nature of the orig-
inal RTU images, the results obtained by the animal
science expert when processing the segmented images
were more consistent and with much higher repeatabil-
ity when compared with the ones obtained by the same
expert with the classical MI approach. Moreover, the an-
imal science expert was much more confident with the

A B

C D

E F

G H

I J

Figure 2: Original RTU images.

measurements obtained with the AI approach with rela-
tion to the ones he obtained with the manual approach.
We believe that the main reason for this outcome is that
using AI approach the ambiguity problem was overcome
by the image segmentation.

2.3. SF region quantification methodology

Although the results for SF estimation obtained with
the AI approach were more consistent and with high re-
peatability, due to the nature of the measurement process
(manually select three points of the SF zone from which
average the SF is assessed), if we change the animal sci-
ence expert one could end up with less consistent results
with much lower repeatability. For that reason, a fully
automatic approach for SF estimation, based on the seg-
mented images obtained was developed in order to es-
tablish a consistent SF estimation methodology where
the accuracy of the results and their repeatability is as-
sured making them reproducible by any animal science
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A B

C D

E F

G H

I J

Figure 3: Segmented images using the proposed approach.

expert.
This automatic inspection use the line histograms (H)

of the segmented images. These line histograms are sim-
ilar to classic luminance histogram in the way that they
provide a statistical view on the distribution of pixels on
the image and can be defined by the following expres-
sion:

H(x) =

∑M
y=0 q(x, y)
L− 1

, ∀x ∈ [0, N ]

In Fig. 4 we present the line histograms of RTU im-
ages A, C and I where the SF region correspond to
the black region of the line histogram. In this sense
to estimate the SF we proceeded to the measurement
of the thickness, in pixels and later converted to mm
(10mm : 60 pixels according to the equipment calibra-
tion), of this region.

In this automatic approach (AuI) the region area was
used to determine the SF thickness in the following way:
first we experimentally established n α cuts (α1, α2, · · ·

Figure 4: Original images and corresponding line histograms.

,αn) with αi = i ∗ 50 pixels. The number of α cuts de-
pends on the shape of the SF region on histogram. To
provide a better understanding of this relation, in Fig. 5
we present an example of an SF region with four α cuts,
i.e., n = 4. Using the above mentioned α cuts, a col-
lection of ordered lengths L = {l1, l2, · · · , ln} with
li ∈ [0; 1], is obtained through the histogram in the fol-
lowing way:

li =
lasti − firsti

N

being firsti and lasti the intersections of the α cut i
with the line histogram and N the same as in Eq. 2.

These lengths, due to the cumulative nature of the line
histogram, are ordered by the amount and the feasibility
of the information they provide. This way, the infor-
mation provided by li−1 is more feasible than the one
provided by li.

Then the optimal area (Aopt) of each one of the n SF
regions in the line histogram is calculated by means of
the following expression:
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Figure 5: SF line histogram zone α cuts.

Figure 6: Representation of the optimal and real areas.
A - Aopt and B - Areal

Aopti = li ∗ αi for all i ∈ {1, · · · , n}

The real area (Areal) of each one of the four SF re-
gions in the line histogram is also calculated:

Areali =
lasti∑

x=firsti

A(x)

where

A(x) =

{
H(x)− αi−1 if H(x) < αi

αi − αi−1 otherwise

for all i ∈ {1, · · · , n}
For better understanding, in Fig. 6 a representation of

the areas Aopt and Areal is shown.
Before calculating the thickness of the SF zone, each

one of the n zones is weighted by means of a set of
weights W = {w1, w2, · · · , wn} with wi ∈ [0, 1], in
the following way:

wi =
Areali

n ∗Aopti ∗
∑n

i=1
Areali
Aopti

for all i ∈ {1, · · · , n}
This way, all weights lie in the unit interval and sum

up to 1 and the thickness of the SF area is calculated

using an Ordered Weighted Averaging (OWA) opera-
tor [26, 27, 28, 29] according to the following expres-
sion:

SF =
n∑

i=1

li ∗ wi

Finally, the SF thickness is converted to mm using
the following expression:

SFmm = SF ∗ N

6
In Table 1 the numerical values of the SF estimated

thickness obtained with the three approaches issued in
this work (MI, AI and AuI) are presented.

Table 1: Numerical values of SF thickness measures
MI AI AuI

A 4.08 5.56 6.44
B 3.11 4.00 6.29
C 2.28 2.09 2.13
D 2.73 2.37 1.93
E 2.00 2.37 2.66
F 3.83 2.89 3.55
G 3.50 3.06 2.90
H 3.50 4.48 4.58
I 2.22 2.61 2.53
J 2.50 1.93 1.23

In Table 2 we statistically evaluate the performance of
the proposed methodology with relation to the other two
methodologies for SF estimation issued in this work:
the classical manual methodology (Manual Inspection
- MI), the semi-automatic method (Assisted Inspection
- AI) and the automatic method (Automatic Inspection
- AuI). Keep in mind that: the MI approach uses the
original RTU images of Fig. 1 and both AI and AuI ap-
proaches use the segmented images Fig. 3 and, the MI
and AI approaches need the presence of the an animal
science expert.

Table 2: Correlation matrix of SF thickness measures
MI AI AuI

MI 1 0.759∗∗ 0.705∗

AI 1 0.919∗∗

AuI 1
p < 0.05∗; p < 0.01∗∗

The correlation analysis made in Table 2 shows a
strong relation (p < 0.01) between the AI and AuI ap-
proaches. Nevertheless, we are aware that since this
study was made in live animals, this is not a fully objec-
tive analysis because the real SF thickness measurement
values are not available.

3. Conclusions

Aware of the characteristics of RTU images (high level
of ambiguity in the levels of gray) a image segmenta-
tion methodology based on fuzzy logic was used. In
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the proposed automatic method, the human error factor
is removed and, most of all, results repeatability is en-
sured. Both these problems were unsolved until now in
the animal science field. The human error is removed
primarily by means of the image segmentation proce-
dure that accurately separates the SF region taking into
account the pixels predicate (the predicate needed by a
pixel to belong to the SF region) ambiguity by means
of the Atanassov’s intuitionistic fuzzy index (π). Re-
sults repeatability is ensured by means of the proposed
automatic SF region quantification procedure that, mak-
ing use of the SF region line histogram and an ordered
weighted average operator, able us to accurately quan-
tify the SF region.

Moreover, the analysis of a large number of images is
facilitated. This work provides a reliable methodology
for analyzing RTU images, that can be used to monitor
the body composition of horses.

It’s our belief that the proposed application is a step
forward for the animal science research field allowing
a quick and accurate estimation of animal body compo-
sition namely, animal subcutaneous fat. Further work
is intended, focusing on the adaptation of the proposed
analysis methodology to other parameters of interest in
this type of images.
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