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Abstract

In this contribution we deal with the problem of
doing computations with a Markov chain when
the information about transition probabilities is ex-
pressed linguistically. This could be the case, for in-
stance, if the process we are modeling is described
by a human expert, for whom the use of linguis-
tic labels is easier than being forced to give inexact
numerical probabilities which, in turn, may yield
an unstable chain. We address the uncertainty of
linguistic judgments by introducing fuzzy probabil-
ities, and carry on the calculation of the linguistic
stationary distribution of the chain by resorting to
an existing fuzzy approach with restricted matrix
multiplication. Preliminary results are very promis-
ing and deserve further research.

Keywords: Fuzzy probabilities, linguistic probabil-
ities, linguistic labels, Markov chain, stationary dis-
tribution.

1. Introduction

Assume a set of observations, X0, X1, ..., Xr of the
state of a system that evolves over time, taken at
time instants t = 0, 1, ..., r. Such observations de-
fine a collection of random variables that take values
in a given state space S = {1, ..., n}. The indexed
sequence {Xt, t = 1, 2, ...} is called a stochastic pro-
cess [1] in discrete time. If, additionally, it has the
so-called Markov property,

P [Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ..., X0 = x0]
= P [Xt+1 = xt+1|Xt = xt]

then the process is said to be a Markov chain.
Markov chains are a well-known statistical model

of a number of real physical, natural and social phe-
nomenons. Examples include areas such as biol-
ogy, medicine (disease expansion models[2]), econ-
omy, and also problems related to AI such as speech
recognition [3]. See [4] for more examples.

A special property of Markov chains is time-
homogeneity, which arises when P [Xt+h = j|Xt =
i] does not depend on concrete time instants t + h
and t but only on the time difference h between
them. In that case, P [Xt+h = j|Xt = i] = P [Xh =
j|X0 = i], ∀t ≥ 0.

An n-state time-homogeneous Markov chain is
described by its transition matrix P = (pij), i, j =

1, ..., n, where pij = P [Xt+1 = j|Xt = i]. Ma-
trix P collects the one-step transition probabilities.
In general, transition probabilities after h steps are
represented as P (h) = (p(h)

ij ) = Ph. These matrices
are stochastic, as every row adds to 1.

Matrix P contains all the information needed to
study the behaviour of the chain. Since the process
evolves along time, when this information is sub-
ject to uncertainty or small errors, the long-term
behaviour can turn very different, thus it is impor-
tant to have an exact description of the process we
are modeling through the transition probabilities.
Unfortunately, this is not always possible, due to
insufficient or total lack of numerical data to con-
struct the model. In those cases, a suitable solution
consists on the introduction of fuzzy set set theory
to cope with uncertainty in the transition probabili-
ties, and use fuzzy methods to carry out the desired
calculations.

Two main approaches have been presented in the
literature on fuzzy Markov chains. The first one,
probably the most extended, consists in relaxing
the restriction of having the process described by
a stochastic matrix, and using a fuzzy relation over
S × S instead. A number of works have been pub-
lished in this line, dealing with both theoretical as-
pects [5, 6] and successful applications, such as pro-
cessor power [7] , speech recognition [8], and multi-
temporal image classification [9, 10].

The second approach, proposed by J. Buckley
[11], considers the transition matrix as composed
of fuzzy numbers, and uses restricted matrix mul-
tiplication to operate with them in a way that the
constraint of being a well-formed probability distri-
bution always holds. Some works devoted to this
proposal are [11, 12, 13, 14, 15]. It is interesting
to note that all the classic probability theory can
be fuzzified this way. By doing so, the author ad-
dresses topics such as fuzzy random variables (dis-
crete and continuous), fuzzy Markov chains, fuzzy
queuing theory or fuzzy inventory control [11].

Due to the intuitive use of fuzzy numbers on
the transition matrix, and their natural connection
with linguistic variables to express uncertain infor-
mation, we present here for the first time the con-
cept of a fuzzy linguistic Markov chain, defined as
a Markov chain with a linguistic transition matrix.
It represents a step further in coping with uncertain
or vague information in stochastic processes, which
can be suitable in cases when no data about the sys-1
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tem are available, or these are vague and consist of
mere linguistic descriptions given either by an ob-
server or an expert who is able to express how the
phenomenon works only in an approximate manner.
We will show how linguistic labels and their under-
lying fuzzy numbers can be used to represent tran-
sition probabilities, and how they can be operated
to calculate one of the most usual characteristics of
a Markov chain, namely the (linguistic) stationary
distribution. The work is a continuation towards
the linguistic domain of an experimental study re-
cently conducted by the authors [16], in which lin-
guistic labels were mentioned just as a possible fu-
ture research direction.
The remainder of this contribution is structured

as follows. In section 2, the fuzzy Markov chains
approach presented in [11] is reviewed. In section 3
we explain how linguistic probabilities can be used
in conjunction with fuzzy Markov chains. Section
4 contains an illustrative example of our linguistic
proposal. Finally, section 5 is devoted to conclu-
sions and further work.

2. Fuzzy Markov chains

When one needs to represent an uncertain quantity,
a suitable solution is using a fuzzy number [17].
As it is well known, a fuzzy number is a special
kind of fuzzy set [18] defined over the real num-
bers, whose membership function fulfills some addi-
tional conditions. Before giving a formal definition,
we introduce the concept of α-cut. Given a fuzzy
set Ã over a universe U , its α-cuts are defined as
Ã[α] = {x ∈ U : µÃ ≥ α} = [ÃLα, ÃUα ],∀α ∈ [0, 1].

Definition 1. A fuzzy set Ã defined over R is a
fuzzy number iff

• Ã[α] are nonempty convex sets ∀α ∈ [0, 1].
• Ã(α) are compact sets ∀α ∈ [0, 1].
• Ã(α) ⊆ Ã(β) for α > β.
• Ã(α) =

⋂
β<α Ã(β) for α ∈ (0, 1].

Following this notion, Buckley [11] suggests us-
ing a fuzzy number for those entries of the transi-
tion matrix that are uncertain. Crisp (certain) en-
tries can be represented as singleton fuzzy numbers.
Thus, the crisp transition matrix P is replaced by
a fuzzy transition matrix P̃ = (p̃ij), i, j = 1, ..., n,
with p̃ij are fuzzy numbers. We will later explain
how to obtain the entries of P̃ .

Although the method we will explain is valid for
any kind of fuzzy number, in section 3 we will
restrict our attention to Trapezoidal Fuzzy Num-
bers (TrFNs), represented as 4-tuples. The TrFN
Ã = (a, b, c, d), where a, b, c, d ∈ R, a ≤ b ≤ c ≤ d
has the following membership function:

µÃ(x) =


(x− a)/(b− a) a ≤ x < b
1 b ≤ x ≤ c
(d− x)/(d− c) c < x ≤ d
0 otherwise

We will use the following operations with TrFNs.
Let Ã = (a1, b1, c1, d1) and B̃ = (a2, b2, c2, d2) be
two TrFNs. Then:

Ã⊕ B̃ = (a1 + a2, b1 + b2, c1 + c2, d1 + d2) (1)

Distance: d(Ã, B̃) = (|a1 − b1|+
2|a2 − b2|+ 2|a3 − b3|+ |a4 − b4|)/6

(2)

As mentioned in [11], the uncertainty is on the tran-
sition probabilities, but not in the fact that they
must add to 1. To address this issue, Buckley pro-
poses the notion of restricted matrix multiplication,
that assures the probability restriction holds at the
α-cut level when doing computations with the tran-
sition matrix, as follows. Let P̃ be the fuzzy tran-
sition matrix of an n-state Markov chain. Denote
P̃ (α) = (p̃ij [α]) the matrix of intervals whose en-
tries are the α-cuts of the fuzzy numbers for a given
α. This interval matrix can be thought of as the
(possibly infinite) set of all crisp matrices which
could actually act as the transition matrix of our
Markov chain, since we are uncertain about that
fact. Therefore, every row i of P̃ (α) represents
a closed space of discrete probability distributions
which row i may take. This space is defined for row
i by the bounded n-dimensional hypercube
p̃i1[α]× p̃i2[α]× ...× p̃in[α] = ×nj=1p̃ij [α].
Note not all n-tuples (a1, ..., an) belonging to the

above hypercube are valid for row i of the transi-
tion matrix. As mentioned before, the restriction of
being a well-formed probability distribution must
hold all the time, thus it is also necessary that
a1 + ... + an = 1. Let ∆n = {(x1, ..., xn) : xi ≥
0 and

∑n
i=1 xi = 1}. With this, Buckley defines

the domain of row i as follows.

Definition 2. Let P be an n × n fuzzy transition
matrix. The domain of row i for a given membership
degree α ∈ [0, 1] is the set

Domi(α) =
(
×nj=1p̃ij [α]

)⋂
∆n =

{(pi1, ..., pin) ∈ Rn : pij ∈ [p̃Lijα
, p̃Uijα

] ∧
∑
j

pij = 1}

The domain of the whole matrix for a given α
is Dom(α) = ×ni=1Domi(α). Note the elements of
Dom(α) are matrices of dimensions n× n.

2.1. Fuzzy stationary probabilities

Very often we are interested in the stationary dis-
tribution of a Markov chain, π = (π1, ..., πn). Each
probability πi represents the amount of time (in per-
centage) that the chain spends in state i, which is a
valuable information about the global behaviour of
the system we are modeling. Analytically, the sta-
tionary distribution fulfills π = πP . Given the ex-
act transition matrix P , several theorems deal with
the existence of such distribution. An homogeneous
Markov chain is said to be irreducible if all states
form a single group so that every state is accessible
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from every other state, be it in one or more than one
step. Every finite, irreducible Markov chain with
transition matrix P has a stationary distribution π
such that π = πP [1]. However, since the transition
matrix is precisely what we are uncertain about, no
theorems can be applied here, at least in their orig-
inal formulation. Therefore, we assume the chain
does pose a stationary distribution.
It is possible to compute the fuzzy stationary dis-

tribution of a fuzzy Markov chain, following the ap-
proach described previously. The key idea is that
every fuzzy stationary probability πi can be con-
structed from its α-cuts, and the lower and upper
bounds of each α-cut can be computed as the min-
imum and maximum possible value for πi when the
crisp transition matrix lies in the feasible solution
space defined by Dom(α) for each α. Formally,

π̃i[α] = [πLiα, πUiα] where
πLiα = min{wi|w = wM : M ∈ Dom(α)} (3)
πUiα = max{wi|w = wM : M ∈ Dom(α)}(4)

It can be proved [11] that such intervals are closed,
connected sets, thus π̃i can be constructed from
them by the representation theorem [19].
Hence, the process to calculate πLiα and πUiα for a

given α consists in finding, within the matrix space
Dom(α), a matrix that minimizes the i-th compo-
nent of its stationary distribution, and another ma-
trix maximizing it, respectively. As suggested in
[11], this search process should be accomplished us-
ing a heuristic constrained optimization technique
since the objective function, which is the expression
to obtain component wi of the stationary vector w
from transition matrixM , is a black-box in the gen-
eral case of an n-dimensional matrix: no general
analytical expression exists to express wi as a func-
tion of the entries of M , as such expression would
be impractical when n grows a bit, e.g. n ≥ 5. De-
tails on the optimization algorithm employed here
are provided in the experiment section.
Once the α-cuts have been calculated, regression

can be applied to the lower and to the upper bounds
(separately) to obtain an analytical expression of
their membership functions, so that a completely
defined fuzzy number is finally constructed.

3. Linguistic probabilities

What has been explained in the previous section is
valid for any kind of fuzzy number, no matter how
they have been obtained. As mentioned in the in-
troduction, most often we have empirical data from
the phenomenon, and estimates of transition prob-
abilities can be derived from them, either crisp or
fuzzy. However, in case no data are available, we
may have to elicit probabilities from a human ex-
pert. In those cases, it can be quite difficult for him
to express his expertise using numerical crisp proba-
bilities that, in addition, must meet the requirement
of adding to 1. In order to solve this issue, here we
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Figure 1: Membership functions of linguistic prob-
ability labels according to [21].

propose using natural language to express probabil-
ities, thus modeling the transition probability as a
linguistic variable[20] whose possible values are lin-
guistic terms.

The concept of linguistic probability is not new.
It was employed, for instance, by Bonissone [21].
As he points out, psychological studies cited in that
work confirm that people are unwilling to give pre-
cise numerical estimates of probabilities, so it is
reasonable to allow them to provide linguistic esti-
mates of the likelihood of given statements that, in
this case, are of the form the system will move from
state A to state B. More recently, a proposal for a
linguistic probability theory [22] explains how to ex-
tend the classical probability theory in a linguistic
manner, with an example of a linguistic bayesian
network. In the present contribution, we use lin-
guistic probabilities as an additional layer that is
placed on top of Buckley’s fuzzy Markov chains ap-
proach explained in section 2.

We have defined 7 possible linguistic labels to
evaluate the probability that the chain moves from
one state to another. The underlying TrFNs are
the mathematical structure that enables calcula-
tions with the labels. Their concrete values are
those proposed in [21] after a psychological study
(Fig. 1). Note some of the terms carry more uncer-
tainty that others. We also consider crisp Impossible
and Sure, whose TrFNs are respectively the single-
tons (0, 0, 0, 0) and (1, 1, 1, 1).
Because we are modelling a probability, the con-

straint of being a well-formed probability distri-
bution must still hold. In the linguistic case,
this is equivalent to the following condition [22].
Given a discrete linguistic probability distribution,
π̃1, ..., π̃n, their sum must contain1 the singleton
fuzzy number 1χ, which is defined by µ1χ

(x) = 1
if x = 1, and 0 otherwise. This statement is valid
regardless of the type of fuzzy numbers involved or
how the sum has been defined, although in our ex-
periments we employ Eq. (1). In a Markov chain,
the use of linguistic probabilities leads to a linguistic

1Ã ⊇ B̃ ↔ µÃ(x) ≥ µB̃(x)∀x ∈ R
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transition matrix. When expressing his judgments
through linguistic terms, the expert should check
the constraint explained above for every row:

p̃i1 ⊕ p̃i2 ⊕ ...⊕ p̃in ⊇ 1χ,∀i = 1, ..., n (5)

The reason is the following. The set Domi(α) is
not empty when there exists at least one probability
distribution whose elements fulfill all the interval
(α-cuts) constraints of row i, and this happens ∀α ∈
[0, 1] if, and only if, the fuzzy numbers of row i,
whose α-cuts constitute the box constraints, satisfy
Eq. (5), as expressed in the following lemma.

Lemma 3. Let S̃ = p̃i1 ⊕ ... ⊕ p̃in. Then,
Domi(α) 6= ∅ ⇐⇒ S̃ ⊇ 1χ, i.e. iff Eq. (5) holds.

Proof. a) If ∀α,Domi(α) is not empty, then
∃(pi1, ..., pin) ∈ Rn : pij ∈ [p̃Lijα

, p̃Uijα
] ∧
∑
j pij =

1. Because p̃Lijα
≤ pij ≤ p̃Uijα

∀j = 1, ..., n, then∑
j p̃

L
ijα
≤
∑
j pij ≤

∑
j p̃

U
ijα

, i.e.,
∑
j p̃

L
ijα
≤ 1 ≤∑

j p̃
U
ijα

, which means that 1 ∈ [
∑
j p̃

L
ijα
,
∑
j p̃

U
ijα

],
i.e. 1 ∈ [S̃Lα , S̃Uα ], and this happens ∀α, hence
S̃ ⊇ 1χ and Eq. (5) is satisfied.

b) If Eq. (5) is satisfied, then ∀α, 1 ∈ [S̃Lα , S̃Uα ]
so
∑
j p̃

L
ijα
≤ 1 ≤

∑
j p̃

U
ijα

. It follows that, for the
last element n, p̃Linα

≤ 1 −
∑
j<n p̃

L
ijα

. Moreover,
1 ≤ p̃Uinα

so 1−
∑
j<n p̃

L
ijα
≤ p̃Uinα

. Putting both to-
gether,

(
1−

∑
j<n p̃

L
ijα

)
∈ [p̃Linα

, p̃Uinα
]. Thus we

can easily obtain an element of Domi(α) whose
components belong to the desired intervals, for in-
stance (p̃Li1α

, p̃Li2α
, ..., p̃Li,(n−1)α

, 1−
∑
j<n p̃

L
ijα

) ∈ Rn.
Since we have found an element of Domi(α), it
means that Domi(α) 6= ∅.

The above lemma shows the connection between
two apparently different proposals on fuzzy proba-
bilities, namely [11] and [22].

3.1. Output retranslation process

Since our system allows for a linguistic input, it is
also expected that the system is able to provide a
linguistic output. Therefore, after first computing
the α-cuts of the stationary fuzzy probabilities and
subsequently applying regression, it is necessary to
assign a linguistic probability label to every fuzzy
number obtained. This is known as retranslation
and has been studied previously, for instance in [23].
The idea is to assign to every output TrFN the label
of the closest TrFN of the reference set (Fig. 1).
Although other variants are possible, at this stage

of research we use a simple measure of distance be-
tween TrFNs defined in Eq. (2). Note this metric
can be replaced by any other that better fits the
needs of the problem.

4. Example of application and results

We depart from the Markov chain of Fig. 2 whose
transition matrix is known to us. It represents the

The general case is an easy extension. Our solving algorithm

develops into two stages.

In the first stage we check if there exists at least one

patroller’s strategy such that stay-out is a best response for

the intruder. If such a strategy exists, then the patroller

will follow it, being its payoff maximum when the intruder

abstains from the intrusion (recall that X0 ≥ Xi for all i).
This stage is formulated as the following bilinear feasibility

problem in which αi,js are the unknown variables (C \ i is

the set obtained by removing the element i from C):

αi,j ≥ 0 ∀i, j ∈ C (1)
X

j∈C

αi,j = 1 ∀i ∈ C (2)

αi,j ≤ ti,j ∀i, j ∈ C (3)

γ1,w
i,j = αi,j ∀w, i, j ∈ C, j 6= w (4)

γh,w
i,j =

X

x∈C\w

“

αx,jγ
h−1,w
i,x

” ∀h ∈ {2, . . . , d},
∀w, i, j ∈ C, j 6= w

(5)

Y0

0

@1 −
X

i∈C\w
γd,w
z,i

1

A + Yw

X

i∈C\w
γd,w
z,i ≤ 0 ∀z, w ∈ C (6)

Constraints (1)-(2) express that probabilities αi,js are well

defined; constraints (3) express that the patroller can only

move between two adjacent free cells; constraints (4)-

(5) express the Markovian hypothesis over the patroller’s

decision policy; constraints (6) express that no action

enter-when(w, z) gives to the intruder an expected utility

larger than that of stay-out. Notice that the non-linearity is

due to the constraints (5). If the above problem admits a

solution, the resulting αi,js are the optimal patrolling strategy

for the robot. When the above problem is unfeasible, we pass

to the second stage of the algorithm.

In the second stage we find the best response i of the

intruder such that the patroller’s expected utility is maximum.

This is formulated as a multi bilinear programming problem,

where the single bilinear problem in which enter-when(q, s)
is the best response for the intruder is defined as follows:

max Xq

X

i∈C\q
γd,q
s,i + X0

0

@1 −
X

i∈C\r
γd,q
s,i

1

A

s.t.

constraints (1)-(5)

Y0

0

@1 −
X

i∈C\q
γd,q
s,i

1

A + Yq

X

i∈C\q
γd,q
s,i ≥

≥ Y0

0

@1 −
X

i∈C\w
γd,w
z,i

1

A + Yw

X

i∈C\w
γd,w
z,i

∀z, w ∈ C (7)

The objective function is the maximization of the pa-

troller’s expected utility. Constraints (7) express that no

action enter-when(w, z) gives a larger value to the intruder

than action enter-when(q, s). We can formulate n2 above

problems, for all the possible enter-when(q, s) actions (q, s ∈
{1, 2, . . . , n}). If a problem is feasible, its solution is a set

of αi,js, namely a possible patrolling strategy for the robot.

From all the solutions of feasible problems, we pick out the

one that gives the patroller the maximum expected utility.

We report in Fig. 2 the optimal patroller’s strategy for the

setting of Fig. 1, as calculated with the algorithm described

here. The expected utility for the patroller is 0.805 and

the corresponding induced best response for the intruder is

enter-when(04,01), namely to enter cell 04 when the patroller

is in 01. Cells 05, 08, and 13 are excluded from the route

of the patroller. Indeed, visiting these cells would allow the

intruder to perform an always successful action, for example

enter-when(06,08) (see Fig. 1).
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Fig. 2. Patroller’s optimal strategies in the setting of Fig. 1

D. Augmenting Patroller’s Sensing Capabilities

In this section we extend the sensing model of the pa-

trolling robot by considering that it can sense the presence

of the intruder beyond its current cell. We introduce a matrix

V (n × n) where vi,j = 1 if cell j can be sensed by the

patroller from cell i and vi,j = 0 otherwise. Matrix V
embeds a model of the detecting sensor of the robot. A

general sensing model of the patroller can be considered in

our approach by substituting constraints (4)-(5) above with:

γ1,w
i,j = αi,j (1 − vj,w) ∀w, i, j ∈ C, j 6= w (8)

γh,w
i,j = (1 − vj,w)

X

x∈C\w

“

αx
j γ

h−1,w
i,x

” ∀h ∈ {2, . . . , d},
∀w, i, j ∈ C, j 6= w

(9)

In this case γh,w
i,j is the probability that the patroller reaches

cell j in h steps, starting from cell i and not having sensed

cell w. For example, let us consider that the patroller is able

to sense its current cell and the free cells that are one cell

away from it (r = 2). For instance, in Fig. 1, from cell 05, it

can sense cells 04 and 08; from cell 06, it can sense cells 01

and 09; from cell 11, it can sense cells 07, 10, and 12; and

so on. With this sensor model, the optimal patrolling strategy

for the robot is reported in Fig. 3. Comparing with Fig. 2,

cells 04 and 12 have been excluded from the patrol route.

This makes sense, since the patroller, due to the augmented

sensing capabilities, is able to patrol them from adjacent cells

that are more “central” (03 and 11, respectively).

IV. A SYNCHRONIZED MULTIROBOT SETTING

In this section we show (a) that our model can easily

capture settings with multiple synchronized robots and (b)

that the patroller’s strategy produced by our approach, when

the patroller and the intruder have no preferences over the

cells, and by the approach presented in [3] are the same.

Hence, since our approach is able to capture more general

Figure 2: Markovian patrolling scheme of an au-
tonomous robot in a map with 13 cells. Reproduced
from [24]. Non accessible states 5, 8 and 13 were not
considered for the transition matrix.

1 2 3 4 5 6 7 8 9 10
1 - VLC - - ML - - - - -
2 IM - IM - - - - - - -
3 - SC - SC - IM - - - -
4 - - EL - - - - - - -
5 MC - - - - - SC - - -
6 - - IM - - - - - IM -
7 - - - - IM - - IM - -
8 - - - - - - IM - IM -
9 - - - - - SC - IM - SC
10 - - - - - - - - EL -

Table 1: Linguistic transition matrix estimated
from a sequence of 200 observations.

randomized movement of an autonomous robot that
is patrolling a bi-dimensional area divided in cells
against an intruder who wants to attack some (un-
known) location. The movement from one cell to
any of the adjacent locations is randomized in order
to be able to patrol a larger environment without
letting any location always unvisited. In this way,
an intruder who learns the robot’s movement, even
if he notices that the patrolling scheme is random-
ized and learns the robot’s movement probabilities,
does not have a guarantee that he will be able to
successfully attack any given location, since there
is always a non-zero probability of being caught.
The movement probability to an adjacent location
only depends on the current location, and not on the
path followed by the robot to reach current location.
Therefore, it is Markovian by definition, with each
state of the chain representing one location within
the grid. More details on this problem and the so-
lution method that led to this Markov chain can be
found in [24].

In a real instance of this problem, the transition
probabilities shown in the figure would be unknown,
so an expert that either has been watching the robot
or knows (for some reason) its patrolling scheme
in an approximate way would provide a linguistic
transition matrix directly.

However, instead of asking an expert, in this pre-
liminary study we have proceeded as follows. We
generated a sequence of 200 observations of the evo-
lution of the chain. Each observation is an integer
number indicating the state at that time instant.
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Figure 3: Fuzzy stationary probabilities (TrFNs) obtained and linguistic labels assigned (above each plot).
For each state, we show the TrFN obtained, together with the closest labels of the reference set (Fig. 1).

Then, with this sequence, we estimated the tran-
sition probabilities as the proportion of times the
chain moves from each state to another. Finally, we
converted such numeric estimates into linguistic la-
bels, by replacing each crisp probability estimate by
the linguistic label to which it belongs most, accord-
ing to Fig. 1. For instance, a crisp probability of 0.4
belongs simultaneously to fuzzy sets Small chance
and It may, but the membership degree of the latter
is higher, so it would be replaced by It may (IM).
The linguistic transition matrix obtained is shown
in Table 1, where “-” stands for an impossible transi-
tion in the crisp sense. We made some adjustments
to make sure Eq. (5) holds for every row, such as
replacing in some cases the label for which a crisp
estimate has the highest membership, by the imme-
diately greater or immediate smaller label. Table 1
was obtained as a result of this conversion process.
The TrFNs underlying the labels of the table are
the input of our method.

We used the R programming language [25] for
implementing the optimization problems of Eq. (3)
and (4), and also for plotting the results. The opti-

mization algorithm employed was an R version [26]
of Differential Evolution [27]. The computation of
the α-cuts took approximately 10 minutes in a par-
allelized implementation that exploits all the cores
over an Intel Core-i7 processor at 2.67 GHz with
6 GB RAM. We made use of the plotting facilities
provided by the FuzzyNumbers package [28]. The
results are displayed in Fig. 3.

A number of issues should be pointed out. The
first one is that the membership function of the ob-
tained TrFNs (thick line) is an almost perfect line at
both sides of the core. This is just as expected if we
take into account that the input were TrFNs with
straight lines as well. However, in addition, this
phenomenon confirms that the optimization process
to compute the α-cuts is working fine, since the re-
sulting lower bounds and upper bounds are visually
perfectly aligned. If the expressions of the mem-
bership functions of input probabilities were more
“exotic”, then generalized TrFNs with other kind of
membership functions at both sides (not lines but
curves) would have been obtained because the α-
cuts calculated would not be aligned. This does
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not represent a problem since it is enough to define
a proper distance measure that can cope with any
kind of TrFN in order to assign a label to them.
It also proves that the general method outlined in

[11] is effective in practice, provided the optimizer
can deal properly with constrained optimization to
make sure the solutions (i.e., matrices) evaluated
belong to Dom(α) in each case.

Secondly, in this case only three different labels
were required for all states. This depends heav-
ily on the nature of the Markov chain being ob-
served. Some Markov chains, as the one of this
example, have very spread stationary probabilities,
while other chains tend to be more concentrated
around one state which is visited far more often than
the rest. Therefore, this is not an issue caused by
our method.

Note there are some difficult cases when assign-
ing a linguistic to the TrFN, such as states 2 or 5.
In those cases, a different distance measure might
have yielded different results but, as mentioned in
the previous section, our method proposal is inde-
pendent of the distance measure employed and thus
admits any function that fits the user’s needs.

Finally, it should be recalled that, regardless the
shape of the input probabilities, the output is lin-
guistic and hence, easier to interpret than numeri-
cal values. In addition, since the transition matrix
is uncertain, crisp stationary probabilities obtained
with poor numerical punctual estimates of the tran-
sition probabilities may be misleading and lead to
erroneous conclusions when comparing values of sta-
tionary probabilities that are very similar, or when
we have too little information to do a reliable com-
parison. In those cases, our method will most likely
assign the same linguistic label to those fuzzy sta-
tionary probabilities, which is probably more desir-
able and more robust.

5. Conclusions and further work

For the first time, we have developed a method
to compute linguistic stationary probabilities of a
Markov chain when the information about the tran-
sition probabilities is given in linguistic terms. We
have addressed the uncertainty that is present in
natural language judgments by using fuzzy num-
bers in the transition matrix. Furthermore, the
fuzzy probabilities taken as reference set were ob-
tained after a psychological study to better capture
the uncertainty behind the linguistic evaluation of
the likelihood of real-life events. We have employed
an existing proposal to calculate the α-cuts of fuzzy
stationary probabilities. Trapezoidal fuzzy numbers
are built from the obtained α-cuts through a linear
regression procedure to compute the membership
function at both sides of the core. Finally, the out-
put fuzzy numbers are assigned a linguistic term
from the reference set.
Our proposal has been implemented in the R pro-

grammin language and has been successfully applied
to a sample Markov chain. The obtained TrFNs pre-
serve the shape of the input fuzzy numbers, and the
output linguistic stationary probabilities are easier
to interpret. In future studies, formal sensitivity
analyses should be conducted to demonstrate the
robustness of the method in problems where small
variations in the transition probability matrix cause
a big change in the stationary probabilities. Similar
robustness studies have been conducted in [6] fol-
lowing the alternative fuzzy Markov chain approach
that is based on fuzzy relations. Furthermore, other
kind of measures from the Markov chain, such as
first-passage time of a given state, could be investi-
gated with the fuzzy linguistic methodology, as well
as the application to real problems such as robotic
patrolling.
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