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Abstract

In this paper, we show that fuzzy transform orig-
inally introduced for a transformation of complex
spaces of functions to simpler ones can be used in
the analysis of real stationary random processes.
We will show that under certain assumptions the
fuzzy transform may be used for an approximation
of this type of stationary processes as well as for
a reduction of their variability. The obtained re-
sults could help researches to understand better the
analysis of time series based on fuzzy transform.

Keywords: Fuzzy transform, uniform fuzzy parti-
tion, stationary random process

1. Introduction

In time series analysis, random noise component
is assumed in many cases to be a stationary pro-
cess for its valuable properties. Fuzzy transform
(F-transform for short) is a technique based on a
partitioning of a real interval using fuzzy sets that
generally transforms complex spaces of functions to
simpler ones. By setting of fuzzy partition parame-
ters the F-transform can be used for approximation
and smoothing of original functions. The latter has
been used among others in time series analysis for
a trend extraction and a reduction of seasonal com-
ponents (see [1], [2]).
In this paper, we focus on the random noise com-

ponent of time series described by a weakly station-
ary process (with zero mean value). We will show
that under specific assumptions the F-transform can
be used for an approximation of this type of station-
ary process as well as for a reduction of variability.

The first result is motivated by the idea to rep-
resent complex stationary processes using processes
with a discrete spectrum. It can be shown (see,
e.g., [3]) that each stationary process ξ(t) defined
on a wide interval [−T, T ] (it means for a large T )
can be approximated arbitrarily closely by a linear
combination of harmonic oscillations of the form

n∑
j=1

ξje
iλjt,

where ξ1, . . . , ξn are pairwise uncorrelated random
variables with mean zero independent on time t, i is
the imaginary unit and λ1, . . . , λn are real constant.
More precisely, it can be proved that for any ε > 0

there exist random variables ξ1, . . . , ξn which are
pairwise uncorrelated and real numbers λ1, . . . , λn
such that

E

ξ(t)− n∑
j=1

ξje
iλjt

 < ε

for any t ∈ [−T, T ]. The representation of real sta-
tionary processes by F-transform, however, keeps
a different idea than the previous one. The lin-
ear combination of harmonic oscillations is here re-
placed by the combination of basic functions which
uniformly partition the real line and the closeness
of frequencies λj by closeness of nodes over which
fuzzy partitions are built.

The presented results have to be considered
as preliminary ones justifying the investigation
of stationary processes using F-transform. An-
other argument supporting the investigation of
F-transform in the area of stationary processes
comes from the computation complexity O(n) of
F-transform in contrast to the computational com-
plexity O(n logn) that holds for the fast Fourier
transform.

The second result of this paper is motivated by
a lack of proper theoretical justification of the fact
that the F-transform can be applied in time series
analysis for filtering out a random noise.

The paper is structured as follows. A necessary
background for the analysis of stationary processes
including two proofs of integral inequalities (in the
mean) for them is provided in next section. The
third section is devoted to the basic F-transform
concepts translated into the language of stochastic
processes. The main results are presented in the
fourth and fifth section. The last section is a con-
clusion.

2. Stationary processes

In this section, we provide a necessary background
for our analysis of weakly stationary process ξ(t) by
fuzzy transform.

2.1. Assumptions

In what follows, we assume that a probability space
(Ω,F , P ) is fixed and we consider a real random
process ξ(t) (defined for any real number t) such
that for any finite sequence t1, . . . , tn (n = 1, 2, . . . )
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of times there is a joint distribution function given
by

Ft1,...,tn(x1, . . . , xn) =
P ({ξ(t1) ≤ x1, . . . , ξ(tn) ≤ xn}).

(1)

The distribution functions (1) must satisfy the fol-
lowing two conditions:

(D1) The symmetry condition, according to which

Fti1 ,...,tin
(xi1 , . . . , xin) = Ft1,...,tn(x1, . . . , xn),

where i1, . . . , in is a permutation of the indices
1, . . . , n;

(D2) The compatibility condition, according to
which

Ft1,...,tm,tm+1,...,tn(x1, . . . , xm,∞, . . . ,∞) =
Ft1,...,tm(x1, . . . , xm)

for any tm+1, . . . , tn if m < n.

We use E, Var, Cov to denote the expected value,
variance and covariance of random variables. Fur-
ther, let us define a real function B(t, s) called co-
variance function of ξ(t) (see [4] ) by

B(t, s) = E[ξ(t)ξ(s)]. (2)

We assume that ξ(t) satisfies the following condi-
tions for any t:

(i) E[ξ(t)] = 0;

(ii) B(t, t+ τ) is independent of t for each τ ;

(iii) B(τ) = B(0, τ) is Lebesgue integrable.

The first two conditions says that ξ(t) is a (weakly)
stationary process, the latter is a necessary condi-
tion for our analysis. Obviously, the covariance of
random variables ξ(t) and xi(s) is equal to B(t−s),
i.e.,

Cov(ξ(t), ξ(s)) = B(t− s). (3)

Specifically, we have Var(ξ(t)) = B(0) = σ2. Then,

|B(τ)| ≤ B(0) = σ2 (4)

for any t, s.1 Note that the previous inequality says
that the random variables ξ(t) and ξ(s) are depen-
dent to each other in a degree which absolute value
is at most equal to the variance of ξ(t). Sometimes,
it seems to be natural to assume that higher dif-
ference between t and s causes lower dependence,
i.e., B(τ) is (continuously) going down to 0 for |τ |
is going up to greater numbers. The assumption on
integrability of B(τ) is a necessary condition for our
analysis of approximation and variability reduction
of ξ(t) using the fuzzy transform.

1It follows from the Cauchy-Schwartz’s inequality.

2.2. Limit of sequences of random variables

Let ξ1, ξ2, . . . be a sequence of random variables.
We say that a random variable ξ is a limit in the
mean square of the sequence of random variables
ξ1, ξ2, . . . and denote it by

l. i.m
n→∞

ξn = ξ (5)

if

lim
n→∞

E[(ξn − ξ)2] = 0, (6)

i.e., for any ε > 0 there exists a natural number n0
such that

E[(ξn − ξ)2] < ε

for any n > n0.2 Let us show two important prop-
erties of limit in the mean square which will be used
later (see [5]).

Theorem 1 Let (ξn)∞n=1, (ψn)∞n=1 be two se-
quences of random variables and let us suppose that
l. i.m n→∞ ξn = ξ and l. i.m n→∞ ψn = ψ. Then,
(i) E[ξ] = limn→∞E[ξn],

(ii) E[ξψ] = limn→∞E[ξnψn].

2.3. Integral of stationary process

Let f(t) be an arbitrary real function and ξ(t) a
stationary random process. The integral∫ d

c

ξ(t)f(t)dt (7)

is defined as the limit (in the mean square) of ran-
dom variables

n∑
j=2

ξ(t′j)f(t′j)(tj − tj−1),

where c = t1 < t2 < · · · < tn = d and tj−1 ≤ t′j ≤ tj
holds for any j = 2, . . . , n. Of course, this integral
does not exist for all pairs of real functions and sta-
tionary processes. For details, we refer to [3]. In
what follows, we will assume only such real func-
tions and stationary processes that are integrable
with respect to the integral (7).

In order to show the approximation of station-
ary processes using the F-transform, we will need
the following special case of Hölder’s inequality for
integrals which holds in the mean.
Theorem 2 Let ξ(t) be a stationary process and
f(t) be a real function defined on [c, d]. Then,

E

(∫ d

c

|ξ(t)f(t)|dt
)2
 ≤

E
[∫ d

c

|ξ(t)|2dt
∫ d

c

|f(t)|2dt
] (8)

2Note that we use the symbol l. i.m to distinguish the
limit in the mean square of a sequence of random variables
and the common limit of a sequence of numbers (cf., [5]).
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Proof: The following inequality is a special form of
Hölder’s inequality used in the probability theory

E[|ξ1ξ2|] ≤ (E[|ξ1|2] 1
2 (E[|ξ2|2]) 1

2 . (9)

Using (ii) of Theorem 1 and the definition of integral
(7), we obtain

E

(∫ d

c

|ξ(t)f(t)|dt
)2
 =

lim
n→∞

E


 n∑
j=2
|ξ(t′j)f(t′j)|(tj − tj−1)

2
 =

lim
n→∞

n∑
i=2

n∑
j=2

E[|ξ(t′i)ξ(t′j)|]|f(t′i)f(t′j)|·

·(ti − ti−1)(tj − tj−1) ≤

lim
n→∞

n∑
i=2

n∑
j=2

(E[|ξ(t′i)|2] 1
2 (E[|ξ(t′j)|2]) 1

2 |f(t′i)f(t′j)|·

·(ti − ti−1)(tj − tj−1) =

lim
n→∞

(
n∑
i=2

(E[|ξ(t′i)|2] 1
2 |f(t′i)|(ti − ti−1)

)2

=

(
lim
n→∞

n∑
i=2

E[|ξ(t′i)|2] 1
2 |f(t′i)|(ti − ti−1)

)2

=

(∫ d

c

E[|ξ(t)|2] 1
2 |f(t)|dt

)2

.

By the Hölder’s inequality for integrals, we obtain(∫ d

c

E[|ξ(t)|2] 1
2 |f(t)|dt

)2

≤

(∫ d

c

E[|ξ(t)|2]dt
) 1

2
(∫ d

c

|f(t)|2dt
) 1

2
2

,

which implies the Hölder’s type of inequality in the
mean for integrals of stationary processes. �
Since E[ξ(t)f(t)] ≤ E[|ξ(t)f(t)|], one can sim-

ply check the integral inequality for absolute value
which holds in the mean.

Theorem 3 Let ξ(t) be a stationary random pro-
cess and f(t) be a real function defined on [c, d].
Then,

E
[∫ d

c

ξ(t)f(t)dt
]
≤ E

[∫ d

c

|ξ(t)f(t)|dt
]
. (10)

Proof: Obvious. �

3. F-transform of stationary process

In this section, we will briefly review the main prin-
ciples of the fuzzy transform. Detailed explanation
of the general theory can be found in [6, 7, 8].

Let U be an arbitrary (nonempty) set called a
universe. By a fuzzy set in the universe U we will
understand a function A : U → [0, 1].

The F-transform is a special technique that can
be applied to real continuous functions f , defined
on an interval [a, b] ⊂ R. The essential idea is to
transfer f into another, simpler space, and then to
transfer the respective image back. The latter space
consists of finite vectors that are obtained on the ba-
sis of the well formed fuzzy partitions of the domain
of the given function. Thus, the first step called
direct F-transform results in the vector of averaged
functional values. The second step called inverse F-
transform converts this vector into another contin-
uous function f̂ , which approximately reconstructs
the original f .

3.1. Uniform fuzzy partition

Let Z denote the set of integers. It is well-known
that a uniform fuzzy partition is defined using a
generating function K which is modified by a pa-
rameter h expressing the required spread. Each ba-
sic function of the uniform fuzzy partition is then
constructed using a suitable shift of the modified
generating function K, where the uniformity for all
shifts is supposed. The generating function is de-
fined as follows.

Definition 1 A function K : R → [0, 1] is
said to be a generating function if K is an even
Lebesgue integrable function (fuzzy set) which is
non-increasing in [0,∞) and

K(x)
{

> 0, if x ∈ (−1, 1);
= 0, otherwise.

(11)

A generating function K is said to be normal if
K(0) = 1.

It should be noted that the previous definition is
more general than the analogous definition of a gen-
erating function in [9], because the continuity of K
is replaced by its integrability and the normality of
K is considered as an additional condition.3 Uni-
form fuzzy partitions of the real line are defined as
follows (cf., [11]).

Definition 2 Let K be a normal generating func-
tion, h be a positive real number and c0 ∈ R. A
system of fuzzy sets defined by

Ak(x) = K

(
x− c0
h
− k
)

(12)

for any k ∈ Z is said to be a uniform fuzzy parti-
tion (UFP) of the real line determined by the triplet
(K,h, c0) if the Ruspini’s condition is satisfied, i.e.,

S(x) =
∑
k∈Z

Ak(x) = 1 (13)

holds for any x ∈ R.
3In [10], a generating function was called a basal function.
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In the sequel, the parameters h and c0 are called a
spread and a central node, respectively. The fuzzy
sets Ak defined by (12) that form a uniform fuzzy
partition of the real line are called basic functions.
A simple consequence of (12) is the formula Ak(x) =
A0(x − hk) that holds for any x ∈ R and k ∈ Z.
Putting ck = c0 + kh one can simply check that
Ak(ck) = 1 and Ak is centered around the node ck.

Remark 1 (Important) One can see that uni-
form fuzzy partitions of closed real intervals used
in the fuzzy transform can be simply spread out to
uniform fuzzy partitions of the real line. Therefore,
each uniform fuzzy partitions of a closed real inter-
val can be understood as a partition of the real line
which is limited to the closed real interval, and we
can restrict our investigation properties of uniform
fuzzy partitions to the partitions of the real line. In
the sequel for the sake of simplicity, we will omit
“the real line” in “uniform fuzzy partition or UFP
of the real line”, and we will speak only about uni-
form fuzzy partitions or UFPs.

Let us show two most usable examples of gener-
ating function and a uniform fuzzy partition deter-
mined by this function (see [6]).

Example 1 (Triangle generating function)
Let K : R→ [0, 1] be defined by

KT (x) = max(1− |x|, 0). (14)

On Figure 1, one can see a part of the UFP of
R determined by (KT , 2, 1). The dashed function
displays the triangular generating function with the
bandwidth h = 2, and, for example, the basic func-
tion A2 is obtained by shifting the center 0 of the
generating function KT to the new center (node)
c2 = c0 + 2h = 1 + 2 · 2 = 5.

1

1 2 3 4 5 6 7− 1− 2− 3− 4− 5− 6− 7
x

K T

A0 A1 A2A− 1A− 2A− 3

Figure 1: A part of the UFP of the real line deter-
mined by (KT , 2, 1). The dashed function displays
the triangle generating function KT which is cen-
tered around 0.

Example 2 (Cosine generating function) Let
K : R→ [0, 1] be defined by

KC(x) =
{

1
2 (1 + cos(πx)), −1 ≤ x ≤ 1;
0, otherwise.

(15)

On Fig. 2, one can see a part of the UFP of R deter-
mined by (KC , 2, 1). The dashed function displays
the raised cosine generating function with the band-
width h = 2 and the central node c0 = 1.

1

1 2 3 4 5 6 7− 1− 2− 3− 4− 5− 6− 7
x

K C

A0 A1 A2A− 1A− 2A− 3

Figure 2: A part of the UFP of the real line deter-
mined by (KC , 2, 1). The dashed function displays
the raised cosine generating function KC which is
centered around 0.

3.2. Direct and inverse F-transform

We use Ah = (Ak)k∈Z to denote a uniform
fuzzy partition of real line determined by (K,h, x0)
and denote (ck)k∈Z their corresponding nodes, i.e.,
Ak(x) = A0(x− ck) = K(x−ck

h ).

Remark 2 (Important) It should be stressed that
we deal here with functions which domain is the real
line. Similarly to Remark 1 we can extend a func-
tion f defined on [a, b] to be defined on R by putting
f(t) = 0 for any t /∈ [a, b]. It is clear that the
approximation of functions with finite domains by
the F-transform provided in [9] can be equivalently
done using F-transform defined over infinite uni-
form fuzzy partitions and functions with the infinite
domain (−∞,∞). Moreover, it seems that a prob-
lem with the basic functions which form the bound-
ary of finite UFPs is automatically excluded in this
case. However, it does not mean that a function ex-
tended from [a, b] to the real line will have a better
approximation around the boundaries a and b than
in the case where a finite UFP is considered.

Definition 3 Let ξ(t) be a stationary process, Ah

be a uniform fuzzy partition and (ck)k∈Z denote the
respective nodes. An infinite vector of random vari-
ables (ξk)k∈Z is called a direct fuzzy transform (F-
transform) of ξ(t) with respect to Ah if

ξk = 1
h

∫ ck+1

ck−1

ξ(t)Ak(t)dt, k ∈ Z.

The random variable ξk is called a component of
F-transform.

It is easy to show that the linearity of F-transform
is preserved for stationary processes, i.e., if ξ(t) =
aη(t) + bζ(t), a, b ∈ R, then

ξk = aηk + bζk. (16)
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Note that the linearity belongs among the most
valuable properties of the F-transform often used
in proofs.
In this paper, we use ξk,h to denote the k-th F-

transform component at the node ck with respect
to Ah and suppose only such stationary processes
ξ(t) for which ξk,h can be found for any k ∈ Z and
h > 0.

The inverse F -transform is defined as the linear
combination of components and basic functions. We
use a slight modification of the original definition in
[9] as follows.

Definition 4 Let ξ(t) be a stationary process and
(ξk)k∈Z be the direct F -transform of ξ(t) with re-
spect to Ah. Then,

ξ̂(t) =
∑
k∈Z

ξkAk(t) (17)

is called an inverse F -transform of ξ(t) with respect
to Ah.

The linearity of F -transform components (16) is
preserved by the inverse F -transform as the follow-
ing lemma shows.

Lemma 4 Let η(t), ζ(t), a, b ∈ R and put ξ(t) =
aη(t) + bζ(t). Then,

ξ̂(t) = aη̂(t) + bζ̂(t).

Proof: Obvious. �

4. Approximation of ξ(t) by F-transform

In order to investigate the approximation of station-
ary processes ξ(t) by the F-transform, let B∗(τ) =
B(0)−B(τ) and suppose that

lim
h→0

1
h

∫ h

0
B∗(τ)dτ = 0. (18)

From (4), it is easy to see that the function B∗(τ)
is a non-negative real function and the assumption
(18) on ξ(t) says that random variables ξ(t) and ξ(s)
are very strongly dependent for small differences be-
tween t and s, in other words, B(τ) converges to
B(0) for τ → 0.4

Example 3 (see Example 2, p. 33 in [3]) Let
us consider a stationary process

ξ(t) = η cosλt+ ζ sinλt, (19)

where η and ζ are real random variables with E[η] =
E[ζ] = 0, Var[η] = Var[ζ] = b and Cov[η, ζ] = 0.
It is easy to verify that

B(τ) = b cosλτ.
4The latter follows from the integral mean value theorem

saying that, for each h > 0, there is τ ′ ∈ (0, h) such that
1/h
∫ h

0 B∗(τ)dτ = B∗(τ ′), i.e., B∗(τ) converges to 0.

Then, we obtain by simple computation that

lim
h→0

1
h

∫ h

0
b(1− cos τ)dτ = lim

h→0
b− b sinλh

λh
= 0

and ξ(t) satisfies (18).

In what follows, we provide several theorems
demonstrating how the F-transform can approxi-
mate stationary process satisfying (18). In the origi-
nal paper ([6]) on the F-transform, the author shows
that a twice continuously differentiable function dif-
fers from the F-transform components at nodes ck
up to h2. As a consequence we obtain that the
F-transform components converge to the values of
original function at nodes ck for h → 0. The fol-
lowing theorem shows an analogous property for
stationary stochastic process under the assumption
(18).

Theorem 5 Let ξ(t) satisfy (18) and ck be a fixed
node. Then, there exists a sequence of F-transform
components ξk,h1 , ξk,h2 , . . . at the node ck w.r.t.
Ah1 ,Ah2 , . . . , respectively, such that

l. i.m
n→∞

ξk,hn
= ξ(ck). (20)

Proof: Let h1 > h2 > · · · > 0 be a sequence such
that limn→∞ hn = 0 and define Ahn

= (K,hn, ck).
By the definition of ξk,hn

, one can simply check that
(20) holds if and only if

lim
n→∞

1
h2
n

E

(∫ ck+1

ck−1

(ξ(t)− ξ(ck))Ak(t)dt
)2
 = 0.

Put αhn
=
∫ ck+1
ck−1

(Ak(t))2dt. Since ck+1 − ck−1 =
2hn, αhn

≤ 2hn. Using the Hölder type of inequal-
ity (8) and (10), we obtain

E

(∫ ck+1

ck−1

(ξ(t)− ξ(ck))Ak(t)dt
)2
 ≤

E
[∫ ck+1

ck−1

(ξ(t)− ξ(ck))2dt

∫ ck+1

ck−1

(Ak(t))2dt

]
=

αhn

∫ ck+1

ck−1

E[(ξ(t))2 − 2ξ(t)ξ(ck) + (ξ(ck))2]dt =

2αhn

∫ ck+1

ck−1

(B(0)−B(t− ck))dt =

2αhn

∫ hn

−hn

B∗(τ)dτ ≤ 4hn
∫ hn

−hn

B∗(τ)dτ.

By the assumption (18) and limn→∞ hn = 0, we
simply obtain limn→∞

4
hn

∫ hn

−hn
B∗(τ)dτ = 0, hence

0 ≤ lim
n→∞

1
h2
n

E

(∫ ck+1

ck−1

(ξ(t)− ξ(ck))Ak(t)dt
)2


≤ lim
n→∞

4
hn

∫ hn

−hn

B∗(τ)dτ = 0
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and the proof is finished. �
The following two theorems show that each sta-

tionary process ξ(t) can be approximate arbitrarily
closely by the F-transformed components belonging
to the nearest neighborhood of t (i.e., [t−h, t+h]).

Theorem 6 Let ξ(t) satisfy (18) and (Ahn
)∞n=1 be

a sequence of UFPs such that limn→∞ hn = 0.
Then, for any ε > 0, there exists n0 ∈ N such that
for any n > n0 it holds

E[(ξ(t)− ξk,hn
)2] < ε (21)

for any F-transform component ξk,hn
w.r.t. Ahn

and t ∈ R such that |ck − t| ≤ hn.

Proof: By analogous arguments as in the proof of
previous theorem, for an arbitrary Ahn

and ck (a
node from Ahn), we obtain

E[(ξ(t)− ξk,hn
)2] =

1
h2
n

E

(∫ ck+1

ck−1

(ξ(s)− ξ(t))Ak(s)ds
)2


≤ 4
hn

∫ ck+1−t

ck−1−t
B∗(τ)dτ ≤ 4

hn

∫ 2hn

−2hn

B∗(τ)dτ,

where |ck − t| ≤ hn. A simple consequence of the
assumption (18) is

lim
h→∞

4
h

∫ 2h

−2h
B∗(τ)dτ = 0.

Therefore, there exists n0 ∈ N such that for any
n > n0 it holds

4
hn

∫ 2hn

−2hn

B∗(τ)dτ < ε,

which concludes the proof. �

Theorem 7 Let ξ(t) satisfy (18) and (Ahn
)∞n=1 be

a sequence of UFPs such that limn→∞ hn = 0.
Then, for any ε > 0, there exists n0 ∈ N such that
for any n > n0 it hods

E[(ξ(t)− ξk,hn)(ξ(t)− ξk+1,hn)] < ε (22)

for any F-transform components εk,hn and εk+1,hn

w.r.t. Ahn and t ∈ R such that |ck − t0| ≤ hn and
|ck+1 − t0| ≤ hn.

Proof: By the previous theorem, there exists n0
such that for any n > n0

E[(ξ(t)− ξk,hn
)2] < ε,

E[(ξ(t)− ξk+1,hn
)2] < ε

hold for any t ∈ R with |ck−t| ≤ hn and |ck+1−t| ≤
hn. From (9), we simply obtain

E[(ξ(t)− ξk,hn
)(ξ(t)− ξk+1,hn

)] ≤

(E[(ξ(t)− ξk,hn
)2]) 1

2 (E[(ξ(t)− ξk+1,hn
)2]) 1

2 < ε,

which concludes the proof. �
The last theorem of this section is a version of

Theorem 2 in [6] for stationary processes.

Theorem 8 Let ξ(t) satisfy (18) and (Ahn
)∞n=1 be

a sequence of UFPs such that limn→∞ hn = 0.
Then, the corresponding sequence of inverse F-
transforms

ξ̂h1(t), ξ̂h2(t), . . .
converges in the mean square to ξ(t), i.e.,

l. i.m
n→∞

ξ̂hn(t) = ξ(t) (23)

for any t ∈ R.

Proof: Let Ah1 ,Ah2 , . . . be a sequence of UFPs
with limn→∞ hn = 0 and let ε > 0 be arbitrary.
Recall that ξ̂hn

(t) =
∑
k∈Z ξk,hn

Ak(t) for any t ∈ R.
By Theorems 6 and 7, there exists n0 ∈ N such that
for any n > n0 it holds

E[(ξ(t)− ξk,hn
)2] < ε,

E[(ξ(t)− ξk+1,hn)2] < ε,

E[(ξ(t)− ξk,hn)(ξ(t)− ξk+1,hn)] < ε

for any k ∈ N and t ∈ R such that |ck − t| ≤ hn
and |ck+1 − t| ≤ hn. If t ∈ R is fixed, then for any
n > n0 there exists ck, ck+1 satisfying the previous
inequalities. Moreover, according to the definition
of uniform fuzzy partitions, we have

ξ̂hn
(t) = ξk,hn

Ak(t) + ξk+1,hn
Ak+1(t).

Hence, we obtain

E
[(
ξ̂hn(t)− ξ(t)

)2
]

=

E
[
(ξk,hnAk(t) + ξk+1,hnAk(t)− ξ(t))2

]
=

E
[
((ξk,hn − ξ(t))Ak(t) + (ξk+1,hn − ξ(t))Ak+1(t))2

]
=

E[(ξk,hn
− ξ(t))2](Ak(t))2+

+2E[(ξk,hn − ξ(t))(ξk+1,hn − ξ(t))]Ak(t)Ak+1(t)+

+E[(ξk+1,hn
− ξ(t))2](Ak+1(t))2 <

ε((Ak(t))2 + 2Ak(t)Ak+1(t) + (Ak+1(t))2) =
ε(Ak(t) +Ak+1(t)) = ε.

for any n > n0, which concludes the proof.
�

5. Noise reduction of ξ(t) by F-transform

Let Ah = (Ak)k∈Z be a fixed uniform fuzzy par-
tition determined by (K,h, c0) over which the F-
transform is applied. Let (ck)k∈Z denote the respec-
tive nodes. Recall that we assume only stationary
processes ξ(t) such that the following integral exists
for any k ∈ Z

ξk = 1
h

∫ ck+1

ck−1

ξ(t)Ak(t)dt (24)

and, moreover,

E[ξ(t)] = 0 and Var[ξ(t)] = σ2
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for any t ∈ R.
Let us denote

Ikl = 1
h2

∫ ck+1

ck−1

∫ cl+1

cl−1

|B(t− s)|Ak(t)Al(s)dtds,

Ih = 1
h

∫ h

−h
B(τ)Kh(τ)dτ,

where Kh(t) = K(t/h) The following theorem char-
acterizes the mean and variance of the component
ξk.

Theorem 9 Let ξ(t) be a stationary random pro-
cess and Ah be a uniform fuzzy partition. Then, for
any k, l ∈ Z, we have

(i) E[ξk] = 0,

(ii) |Cov[ξk, ξl]| ≤ Ikl ≤ σ2,

(iii) if |B(τ)| is a non-increasing function in
[0,∞), then

|Cov[ξk, ξl]| ≤ Ih ≤ σ2.

Remark 3 Obviously, the assumption on B(τ)
in (iii) can be equivalently expressed supposing
that B(τ) is a non-negative function that is non-
increasing on [0,∞). Thus, we assume that the de-
pendence of random variables non-increases for in-
creasing time differences.

Proof: (i) It immediately follows from the equality

E
[∫ ck+1

ck−1

R(t)Ak(t)dt
]

=
∫ ck+1

ck−1

E[R(t)]Ak(t)dt.

(ii) From (ii) of Theorem 1, one can simply show
that

|E[ξkξl]| ≤
1
h2

∫ ck+1

ck−1

∫ cl+1

cl−1

|B(t, s)|Ak(t)Al(s)dtds

= Ikl ≤
σ2

h2

∫ ck+1

ck−1

∫ cl+1

cl−1

Ak(t)Al(s)dtds = σ2.

The statement follows from |Cov[ξk, ξl] = |E[ξkξl]|.
(iii) Let |B(τ)| be a non-increasing function. Put

Hkl(t) = 1
h

∫ cl+1

cl−1

|B(t, s)|Al(s)ds. (25)

for any t ∈ [ck−1, ck+1]. Using the substitution τ =
s− cl, one can rewrite (25) as

Hkl(t) = 1
h

∫ −h
h

|B(τ − (t− cl))|Kh(τ)dτ.

Since |B(τ)| is a non-negative even function, we ob-
tain that

Hkl(t) ≤ Hkl(cl) = Ih. (26)

Indeed, put ∆ = t − cl and B′(τ) = B(τ − ∆).
Without loss of generality, suppose that ∆ ≥ 0.
One can simply check that

|B(τ)| − |B′(τ)| = |B′(τ ′)| − |B(τ ′)|

for any τ, τ ′ ∈ R such that τ + τ ′ = ∆. A simple
consequence of ∆ > 0 is

(|B(τ)| − |B′(τ)|)Kh(τ) ≥
(|B′(τ ′)| − |B(τ ′)|)Kh(τ ′)

for any τ, τ ′ ∈ R such that τ ≤ ∆
2 and τ + τ ′ = ∆.

Hence, we obtain∫ ∆
2

−∞
(|B(τ)| − |B′(τ)|)Kh(τ)dτ ≥∫ +∞

∆
2

(|B′(τ)| − |B(τ)|)Kh(τ)dτ,

which implies∫ h

−h
|B(τ)|Kh(τ)dτ =

∫ +∞

−∞
|B(τ)|Kh(τ)dτ ≥∫ +∞

−∞
|B′(τ)|Kh(τ)dτ =

∫ h

−h
|B′(τ)|Kh(τ)dτ.

Using (ii), we obtain

|Cov[ξk, ξl]| ≤ Ikl = 1
h

∫ ck+1

ck−1

Hkl(t)Ak(t)dt ≤

1
h

∫ ck+1

ck−1

IhAk(t)dt = Ih ≤ σ2,

which concludes the proof. �

Remark 4 One can see that the variability of com-
ponent of F-transform is a special case of (ii) and
(iii) of the previous lemma. Namely, Var[ξk] ≤ σ2

and if Ikk < σ2 (or Ih < σ2 under the assumption
declared in (iii)).

Remark 5 An interesting consequence of (ii) (or
(iii)) of the previous lemma is that for higher val-
ues of h the variance of F-transform components
decreases. A similar effect can be obtained if the
dependencies among random variables in different
times are weaker (close to zero) even for times
which differences are very small. In other words,
if the value of double integral in Ikl (or integral in
Ih) is close to zero, then |Cov[ξk, ξl]| is close to
zero.

Now, we will proceed with the analysis of mean
and variance of inverse F-transform of ξ(t). In the
previous section, we showed that ξ̂(t) can approx-
imate ξ(t) with an arbitrary precision. Therefore,
it is natural to expect that the same holds also for
functions obtained using the inverse F-transform.
The following theorem shows that our conjecture
is right which can be also used, for example, for a
noise reduction in time series.
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Theorem 10 Let ξ̂(t) denote the inverse F -
transform of a stationary process ξ(t) over a uni-
form fuzzy partition Ah. Then,

(i) E[ξ̂(t)] = E[ξ(t)] = 0,

(ii) Var[ξ̂(t)] ≤
∑1
i,j=0 Ik+i,k+jAk+i(t)Ak+j(t) ≤

σ2,

(iii) if |B(τ)| is a non-increasing function in
[0,∞), then Var[ξ̂(t)] ≤ Ih ≤ σ2,

holds for any t ∈ R.

Proof: (i) It immediately follows from (i) of the
previous theorem and the equality (supposing that
t ∈ [ck, ck−1])

ξ̂(t) = ξkAk(t) + ξk+1Ak+1(t).

(ii) Using (ii) of Theorem 9, we obtain

Var[ξ̂(t)] ≤
1∑
i=0

1∑
j=0
|Cov[ξk, ξl]|Ak+i(t)Ak+j(t) ≤

1∑
i=0

1∑
j=0
Ik+i,k+jAk+i(t)Ak+j(t) ≤ σ2.

(iii) It can be proved similarly to the previous state-
ment using (iii) of Theorem 9. �

Remark 6 Similarly to Remark 5, we can deduce
that a higher reduction of variability in filtered out
stationary process ξ̂(t) is reached for higher values
of h and lower values of double integral in Ikl or
(integral in Ih).

6. Conclusion

In this paper, we analyzed the (weakly) stationary
processes. We showed that under certain assump-
tions the fuzzy transform can be used for an approx-
imation of this type of stationary process as well
as for a reduction of variability. Although, our re-
sults are only preliminary ones and they are far from
the known results on the discrete representation of
stochastic processes (see, e.g., [12]), we believe that
they support and give us rational arguments to con-
tinue in the investigation of stationary processes in
the context of the F-transform.
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